telescope_controller_abstract.py
16.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
#!/usr/bin/env python3
"""Socket Client Telescope (abstract) implementation
To be used as a base class (interface) for any concrete socket client telescope class
"""
# Standard library imports
#from enum import Enum
import functools
import logging
import socket
import sys
import time
# Third party imports
# from sockets_tele/
sys.path.append("..")
# from src_socket/client/
sys.path.append("../../../..")
#import src.core.pyros_django.utils.celme as celme
import src.core.celme as celme
# Local application imports
#sys.path.append('../..')
#from src.client.socket_client_abstract import UnknownCommandException, SocketClientAbstract
##from src_socket.client.socket_client_abstract import *
from devices_controller.devices_controller_abstract_component.device_controller_abstract import *
# Execute also "set" and "do" commands
#GET_ONLY=False
# Execute only "get" commands
#GET_ONLY=True
# Default timeouts
TIMEOUT_SEND = 10
TIMEOUT_RECEIVE = 10
'''
class c(Enum):
# GET, SET
DEC = 'DEC'
RA = 'RA'
RA_DEC = 'RA_DEC'
# DO
PARK = 'PARK'
WARM_START = 'WARM_START'
'''
class Position():
x = 0
y = 0
def __init__(self, x,y):
self.x = x
self.y = y
def get_values(self):
return self.x, self.y
#class SocketClientTelescopeAbstract(SocketClientAbstract):
class TelescopeControllerAbstract(DeviceControllerAbstract):
# @abstract (to be overriden)
_cmd_device_concrete = {}
_cmd_device_abstract = {
# GET-SET commands:
'get_ack': [],
'get_ra': [],
'set_ra': [],
'get_dec': [],
'set_dec': [],
'get_radec': ['get_radec'],
'set_radec': ['set_radec'],
'''
'get_timezone': [],
'set_timezone': [],
'get_date': [],
'set_date': [],
'get_time': [],
'set_time': [],
'''
'get_longitude': [],
'set_longitude': [],
'get_latitude': [],
'set_latitude': [],
'get_velocity': [],
'set_velocity': [],
# DO commands:
##'do_init': ['do_init'],
##'do_park': [],
'do_goto': [],
'do_move': [],
'do_movenorth': [],
'do_movesouth': [],
'do_movewest': [],
'do_moveeast': [],
'do_move_dir': [],
'do_warm_start': [],
'do_prec_refr': [],
}
#TODO: remplacer PROTOCOL par "SOCKET-TCP", "SOCKET-UDP", "SERIAL", ou "USB"
def __init__(self, device_host:str="localhost", device_port:int=11110, PROTOCOL:str="TCP", buffer_size=1024, DEBUG=False):
'''
:param device_host: server IP or hostname
:param device_port: server port
:param PROTOCOL: "UDP" or "TCP"
'''
super().__init__(device_host, device_port, PROTOCOL, buffer_size, DEBUG)
# overwrite abstract _cmd dictionary with subclass native _cmd_native dictionary:
#self._cmd = {**self._cmd, **self._cmd_native}
def get_celme_longitude(self, longitude):
return celme.Angle(longitude).sexagesimal("d:+0180.0")
def get_celme_latitude(self, latitude):
return celme.Angle(latitude).sexagesimal("d:+090.0")
'''
TELESCOPE COMMANDS (abstract methods)
'''
'''
****************************
****************************
GENERIC TELESCOPE COMMANDS (abstract methods)
****************************
****************************
'''
'''
****************************
GENERIC GET & SET commands
****************************
'''
# @abstract
@generic_cmd
def get_ack(self): pass
#return self.execute_generic_cmd("get_ack")
# RA/DEC
# @abstract
'''
Sets the object's Right Ascension and the object status to "Not Selected".
The :Sd# command has to follow to complete the selection.
The subsequent use of the :ON...# command is recommended (p106)
:Sr<hh>:<mm>.<m>#
or
:Sr<hh>:<mm>:<ss>#
0 if invalid
1 if valid
'''
@generic_cmd
def get_ra(self): pass
#def get_ra(self): return self.execute_generic_cmd("get_ra")
@generic_cmd
def set_ra(self, ra): pass
#return self._set("ra", ra)
'''
Sets the object's declination.
It is important that the :Sr# command has been send prior.
Internal calculations are done that may take up to 0.5 seconds.
If the coordinate selection is valid the object status is set to "Selected"
:Sd{+-}<dd>{*°}<mm>#
or
:Sd{+- }<dd>{*°:}<mm>:<ss>
0 if invalid
1 if valid
'''
@generic_cmd
def get_dec(self): pass
#def get_dec(self): return self.execute_generic_cmd("get_dec")
@generic_cmd
def set_dec(self, dec): pass
#def set_dec(self, dec): return self._set("dec", dec)
# MACRO radec
#def get_radec(self): return self._get("RADEC")
#def get_radec(self)->tuple: return ((self.get_ra()), (self.get_dec()))
def get_radec(self)->GenericResult:
return GenericResult(self.get_ra().txt + "," + self.get_dec().txt)
# MACRO
def set_radec(self, ra, dec)->GenericResult:
self.set_ra(ra)
self.set_dec(dec)
return GenericResult("OK")
@generic_cmd
def get_long(self): pass
@generic_cmd
def set_long(self, longitude): pass
@generic_cmd
def get_lat(self): pass
@generic_cmd
def set_lat(self, latitude): pass
@generic_cmd
def get_vel(self): pass
'''
****************************
GENERIC DO commands
****************************
'''
# @abstract
#def do_INIT(self): return self._do("INIT")
''' do_PARK() (p103)
- STARTUP position = CWD
- :hC#
- position required for a Cold or Warm Start, pointing to the celestial pole of the given hemisphere (north or south),
with the counterweight pointing downwards (CWD position). From L4, V1.0 up
- HOME position parking => par defaut, c'est CWD, mais ca peut etre different
- :hP#
- defaults to the celestial pole visible at the given hemisphere (north or south) and can be set by the user
'''
@generic_cmd
def do_move(self): pass
@generic_cmd
def do_movenorth(self): pass
@generic_cmd
def do_movesouth(self): pass
@generic_cmd
def do_movewest(self): pass
@generic_cmd
def do_moveeast(self): pass
# @abstract
#def do_GOTO(self, pos:Position): return self._do("GOTO")
#def do_WARM_START(self): return self._do("WARM_START")
@generic_cmd
def do_warm_start(self): pass
@generic_cmd
def do_prec_refr(self): pass
# MACRO generic command
def do_init(self):
'''
1) Send cde ACK ('06') and check answer to see if telescope is ready (see doc page 100)
(utile pour savoir si tout est ok ; par ex, si une raquette est branchée sur le tele, ça peut bloquer le protocole)
Usable for testing the serial link and determining the type of mount (German equatorial).
Return code can be:
- B# while the initial startup message is being displayed (new in L4),
- b# while waiting for the selection of the Startup Mode,
- S# during a Cold Start (new in L4),
- G# after completed startup ==> MEANS ALL IS OK
'''
#ACK = self.get("ACK")
ACK = self.get_ack()
'''
2) IF telescope is not ready (still starting up), ask it to do a Warm Start ('bW#')
During Startup, with a "b#" being returned, the PC can select the startup mode by sending a
• bC# for selecting the Cold Start,
• bW# for selecting the Warm Start,
• bR# for selecting the Warm Restart
If not ok (still starting up, no 'G#' in return), send 'bW#' (see above) for selecting the Warm Start
'''
#if ACK != 'G':
if not ACK.ok:
self.do_warm_start()
ACK = self.get_ack()
elapsed_time = 0
while not ACK.ok:
time.sleep(1)
elapsed_time += 1
if elapsed_time == TIMEOUT_RECEIVE: raise TimeoutException()
ACK = self.get_ack()
'''
3) Set timezone, date, and time (p109)
'''
'''
a) set TIMEZONE
Set the number of hours by which your local time differs from UTC.
If your local time is earlier than UTC set a positive value,
if later than UTC set a negative value. The time difference has to be set before setting the calendar date (SC) and local time (SL), since the Real Time Clock is running at UTC
=> :SG{+-}hh#
'''
res = self.get_timezone()
print("Current timezone is", res)
res = self.set_timezone('+00')
#if res != '1': raise UnexpectedCommandReturnCode(res)
if not res.ok: raise UnexpectedCommandReturnCode(res)
res = self.get_timezone()
if res.txt != '+00': raise UnexpectedCommandReturnCode(res)
print("NEW timezone set is", res)
'''
b) set DATE
Set Calendar Date:
months mm, days dd, year yy of the civil time according to the timezone set.
The internal calendar/clock uses GMT
:SC<mm>/<dd>/<yy>#
0 if invalid
or
TODO:
1Updating planetary data#<24 blanks>#
'''
res = self.get_date()
print("Current date is", res)
# format is 2018-09-26T17:50:21
d = self.get_utc_date()
# format to mm/dd/yy
now_utc_mm_dd_yy = d[5:7] + '/' + d[8:10] + '/' + d[2:4]
#print("date is", now_utc_mm_dd_yy)
res = self.set_date(now_utc_mm_dd_yy)
#res = self.set_DATE(self.get_utc_date())
#if res[0] != '1': raise UnexpectedCommandReturnCode(res)
#if not res.startswith('1Updating planetary data'): raise UnexpectedCommandReturnCode(res)
if not res.ok: raise UnexpectedCommandReturnCode(res)
res = self.get_date()
if res.txt != now_utc_mm_dd_yy: raise UnexpectedCommandReturnCode(res)
print("NEW DATE set is", res)
'''
c) set TIME
Set RTC Time from the civil time hours hh, minutes mm and seconds ss.
The timezone must be set before using this command
:SL<hh>:<mm>:<ss>#
'''
res = self.get_time()
print("Current time is", res)
_,now_utc_hh_mm_ss = d.split('T')
#print("time is", now_utc_hh_mm_ss[:5])
res = self.set_time(now_utc_hh_mm_ss)
#if res != '1': raise UnexpectedCommandReturnCode(res)
if not res.ok: raise UnexpectedCommandReturnCode(res)
res = self.get_time()
if res.txt[:5] != now_utc_hh_mm_ss[:5]: raise UnexpectedCommandReturnCode(res)
print("NEW TIME set is", res)
'''
4) Set LOCATION (lat,long) (p103,110)
Pour l'observatoire de Guitalens:
Sg = 2.0375 E
St = 43.6443 N
(attention, 2.0375 E = - 2.0375)
'''
'''
a) set Longitude
Sets the longitude of the observing site to ddd degrees and mm minutes.
The longitude has to be specified positively for western latitudes
(west of Greenwich, the plus sign may be omitted) and negatively for eastern longitudes.
Alternatively, 360 degrees may be added to eastern longitudes.
=> :Sg{+-}<ddd>*<mm>#
'''
# TELE format is -002°02 (I convert it to -002:02)
res = self.get_long()
print("Current longitude is", res)
# CELME format is -002:02:15
res = self.get_celme_longitude("-2.0375")
res_ddd_mm = res[:-3]
#res_ddd_mm = res[:-3].replace(':','*')
#res_ddd_mm = '-002:03'
#print("celme longitude is", res)
ddd,mm,ss = res.split(':')
#dddmm = '-002*03'
res = self.set_long(ddd+'*'+mm)
#if res != '1': raise UnexpectedCommandReturnCode(res)
if not res.ok: raise UnexpectedCommandReturnCode(res)
res = self.get_long()
if res.txt != res_ddd_mm: raise UnexpectedCommandReturnCode(res_ddd_mm, res.txt)
print("NEW longitude set is", res)
'''
b) set Latitude
Sets the latitude of the observing site to dd degrees, mm minutes.
The minus sign indicates southern latitudes, the positive sign may be omitted.
=> :St{+-}<dd>*<mm>#
'''
# TELE format is +43°38 (I convert it to +43:38)
res = self.get_lat()
print("Current latitude is", res)
# CELME format is +43:38:15
res = self.get_celme_latitude("+43.6443")
res_dd_mm = res[:-3]
#res_dd_mm = res[:-3].replace(':','*')
print("res is", res)
#res_dd_mm = '+43:50'
#print("celme longitude is", res)
dd,mm,ss = res.split(':')
ddmm = dd+'*'+mm
#ddmm = '+43*50'
res = self.set_lat(ddmm)
#if res != '1': raise UnexpectedCommandReturnCode(res)
if not res.ok: raise UnexpectedCommandReturnCode(res)
res = self.get_lat()
if res.txt != res_dd_mm: raise UnexpectedCommandReturnCode(res_dd_mm,res.txt)
print("NEW latitude set is", res)
'''
5) Send cde ':p3#' : Precession & Refraction (see page 107)
Ask Gemini to do Precession calculation
Coordinates transferred to the Gemini refer to the standard epoch J2000.0.
Refraction is calculated (From L4, V1.0 up)
'''
self.do_prec_refr()
return GenericResult("OK")
# @abstract
def set_speed(self, speed_rate):
pass
''' GOTO (p105)
- GOTO(position, blocking=Y/N):
(MS = move start)
= Goto RA=18h23m45s Dec=+34d00m00s J2000
- radec.goto()
'''
# MACRO generic command
def do_goto(self, ra, dec, speed_rate=None):
# 1) set speed
if speed_rate: self.set_speed(speed_rate)
radec = self.get_radec()
print("Current position is", radec)
# 2) set RA-DEC
'''
:Sr18:23:45#:Sd+34:00:00#:MS#
'''
res = self.set_ra(ra)
#if res != '1': raise UnexpectedCommandReturnCode(res)
if res.ko: raise UnexpectedCommandReturnCode(res)
res = self.set_dec(dec)
#if res != '1': raise UnexpectedCommandReturnCode(res)
if res.ko: raise UnexpectedCommandReturnCode(res)
# 3) MOVE (non blocking by default for GEMINI)
self.do_move()
# 4) Test velocity until it is "Tracking"
'''
After MOVE, test velocity with ':Gv#' (p103) : we should have 'S', then 'C', then 'T'
- N (for "no tracking")
- T (for Tracking)
- G (for Guiding)
- C (for Centering)
- S (for Slewing)
'''
vel = None
while vel != 'T':
v = self.get_vel()
vel = v.txt
print("Velocity is", v)
time.sleep(2)
time.sleep(2)
radec= self.get_radec()
print("Current position is", radec)
return GenericResult("OK")
# @abstract MACRO
def do_move_dir(self, dir, nbsec, speed_rate=None):
dir = dir.upper()
if speed_rate: self.set_speed(speed_rate)
if dir=="NORTH": self.do_movenorth()
elif dir=="SOUTH": self.do_movesouth()
elif dir=="WEST": self.do_movewest()
elif dir=="EAST": self.do_moveeast()
else: raise UnknownCommandException(dir)
time.sleep(int(nbsec))
self.do_stop()
return GenericResult("OK")
# TODO: empecher de creer une instance de cette classe abstraite
# Avec ABC ?
'''
if __name__ == "__main__":
#HOST, PORT = "localhost", 9999
#HOST, PORT = "localhost", 20001
HOST, PORT = "localhost", 11110
# Classic usage:
#tsock = SocketClient_UDP_TCP(HOST, PORT, "UDP")
# More elegant usage, using "with":
with SocketClient_ABSTRACT(HOST, PORT, "UDP") as tsock:
# 0) CONNECT to server (only for TCP, does nothing for UDP)
tsock._connect_to_server()
while True:
# 1) SEND REQUEST data to server
# saisie de la requête au clavier et suppression des espaces des 2 côtés
data = input("REQUEST TO SERVER [ex: ':GD#' (Get Dec), ':GR#' (Get RA)']: ").strip()
# test d'arrêt
if data=="": break
#data_to_send = bytes(data + "\n", "utf-8")
tsock.send_data(data)
#mysock.sendto("%s" % data, (HOST, PORT))
#print("Sent: {}".format(data))
# 2) RECEIVE REPLY data from server
data_received = tsock.receive_data()
#reponse, adr = mysock.recvfrom(buf)
#print("Received: {}".format(data_received))
#print("Useful data received: {}".format(data_useful))
print('\n')
#tsock.close()
'''