telescope_controller_abstract.py 17 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
#!/usr/bin/env python3

"""Socket Client Telescope (abstract) implementation

To be used as a base class (interface) for any concrete socket client telescope class
"""


# Standard library imports
#from enum import Enum
import functools
import logging
import socket
import sys
import time

# Third party imports

# from sockets_tele/
sys.path.append("..")
# from src_socket/client/
sys.path.append("../../../..")
#import src.core.pyros_django.utils.celme as celme
import src.core.celme as celme


# Local application imports
#sys.path.append('../..')
#from src.client.socket_client_abstract import UnknownCommandException, SocketClientAbstract
##from src_socket.client.socket_client_abstract import *
from devices_controller.devices_controller_abstract_component.device_controller_abstract import *




# Execute also "set" and "do" commands
#GET_ONLY=False
# Execute only "get" commands
#GET_ONLY=True

# Default timeouts
TIMEOUT_SEND = 10
TIMEOUT_RECEIVE = 10


'''
class c(Enum):

    # GET, SET
    DEC = 'DEC'
    RA = 'RA'
    RA_DEC = 'RA_DEC'
    
    # DO
    PARK = 'PARK'
    WARM_START = 'WARM_START'
'''




class Position():
    x = 0
    y = 0
    def __init__(self, x,y):
        self.x = x 
        self.y = y
    def get_values(self):
        return self.x, self.y    
    


#class SocketClientTelescopeAbstract(SocketClientAbstract):
class TelescopeControllerAbstract(DeviceControllerAbstract):
    
    # @abstract (to be overriden)
    _cmd_device_concrete = {}
    _cmd_device_abstract = {
        # GET-SET commands:
        'get_ack': [],
        
        'get_ra': [],
        'set_ra': [],
        'get_dec': [],
        'set_dec': [],
        'get_radec': ['get_radec'],
        'set_radec': ['set_radec'],
        
        '''
        'get_timezone': [],
        'set_timezone': [],
        
        'get_date': [],
        'set_date': [],
        
        'get_time': [],
        'set_time': [],
        '''
        
        'get_longitude': [],
        'set_longitude': [],
        'get_latitude': [],
        'set_latitude': [],
        
        'get_velocity': [],
        'set_velocity': [],
        
        # DO commands:
        ##'do_init': ['do_init'],
        ##'do_park': [],
        'do_goto': [],
        'do_move': [],
        'do_movenorth': [],
        'do_movesouth': [],
        'do_movewest': [],
        'do_moveeast': [],
        'do_move_dir': [],
        'do_warm_start': [],
        'do_prec_refr': [],
    }


    #TODO: remplacer PROTOCOL par "SOCKET-TCP", "SOCKET-UDP", "SERIAL", ou "USB"
    def __init__(self, device_host:str="localhost", device_port:int=11110, PROTOCOL:str="TCP", buffer_size=1024, DEBUG=False):
        '''
        :param device_host: server IP or hostname
        :param device_port: server port
        :param PROTOCOL: "UDP" or "TCP"
        '''
        super().__init__(device_host, device_port, PROTOCOL, buffer_size, DEBUG)
        # overwrite abstract _cmd dictionary with subclass native _cmd_native dictionary:
        #self._cmd = {**self._cmd, **self._cmd_native}

                

    
    def get_celme_longitude(self, longitude):
        return celme.Angle(longitude).sexagesimal("d:+0180.0")
    def get_celme_latitude(self, latitude):
        return celme.Angle(latitude).sexagesimal("d:+090.0")


    
    '''
    TELESCOPE COMMANDS (abstract methods)
    '''


    
    '''
    ****************************
    ****************************
    GENERIC TELESCOPE COMMANDS (abstract methods)
    ****************************
    ****************************
    '''



    '''
    ****************************
     GENERIC GET & SET commands 
    **************************** 
    '''
    
    # @abstract
    @generic_cmd
    def get_ack(self): pass
    #return self.execute_generic_cmd("get_ack")

    # RA/DEC
    # @abstract
    '''
    Sets the object's Right Ascension and the object status to "Not Selected". 
    The :Sd# command has to follow to complete the selection. 
    The subsequent use of the :ON...# command is recommended (p106)
    :Sr<hh>:<mm>.<m># 
    or 
    :Sr<hh>:<mm>:<ss>#   
    0 if invalid
    1 if valid
    '''
    @generic_cmd
    def get_ra(self): pass
    #def get_ra(self):               return self.execute_generic_cmd("get_ra")
    @generic_cmd
    def set_ra(self, ra): pass        
    #return self._set("ra", ra)

    '''
    Sets the object's declination. 
    It is important that the :Sr# command has been send prior. 
    Internal calculations are done that may take up to 0.5 seconds. 
    If the coordinate selection is valid the object status is set to "Selected"
    :Sd{+-}<dd>{*°}<mm># 
    or
    :Sd{+- }<dd>{*°:}<mm>:<ss>
    0 if invalid
    1 if valid
    '''
    @generic_cmd
    def get_dec(self): pass
    #def get_dec(self):              return self.execute_generic_cmd("get_dec")
    @generic_cmd
    def set_dec(self, dec): pass
    #def set_dec(self, dec):         return self._set("dec", dec)
    
    # MACRO radec
    #def get_radec(self):            return self._get("RADEC")
    #def get_radec(self)->tuple:     return ((self.get_ra()), (self.get_dec()))
    def get_radec(self)->tuple:     
        return GenericResult(self.get_ra().txt + "," + self.get_dec().txt)
    
    # MACRO
    def set_radec(self, ra, dec)->tuple:     
        self.set_ra(ra)
        self.set_dec(dec)
        return GenericResult("OK")
    
    
    @generic_cmd
    def get_long(self): pass
    @generic_cmd
    def set_long(self, longitude): pass
    
    @generic_cmd
    def get_lat(self): pass
    @generic_cmd
    def set_lat(self, latitude): pass
    
    @generic_cmd
    def get_vel(self): pass




    '''
    ****************************
     GENERIC DO commands 
    **************************** 
    '''

    # @abstract
    #def do_INIT(self):              return self._do("INIT")

    ''' do_PARK() (p103)
    - STARTUP position = CWD
        - :hC#
        - position required for a Cold or Warm Start, pointing to the celestial pole of the given hemisphere (north or south), 
        with the counterweight pointing downwards (CWD position). From L4, V1.0 up
    - HOME position parking => par defaut, c'est CWD, mais ca peut etre different
        - :hP#
        - defaults to the celestial pole visible at the given hemisphere (north or south) and can be set by the user
    '''

    @generic_cmd
    def do_move(self): pass
    @generic_cmd
    def do_movenorth(self): pass
    @generic_cmd
    def do_movesouth(self): pass
    @generic_cmd
    def do_movewest(self): pass
    @generic_cmd
    def do_moveeast(self): pass

    # @abstract
    #def do_GOTO(self, pos:Position):    return self._do("GOTO")
    #def do_WARM_START(self):         return self._do("WARM_START")
    @generic_cmd
    def do_warm_start(self): pass

    @generic_cmd
    def do_prec_refr(self): pass        

 
    
    # MACRO generic command
    def do_init(self):
        
        '''
        1) Send cde ACK ('06') and check answer to see if telescope is ready (see doc page 100)
        (utile pour savoir si tout est ok ; par ex, si une raquette est branchée sur le tele, ça peut bloquer le protocole)
        Usable for testing the serial link and determining the type of mount (German equatorial).
        Return code can be:
        - B# while the initial startup message is being displayed (new in L4),
        - b# while waiting for the selection of the Startup Mode,
        - S# during a Cold Start (new in L4),
        - G# after completed startup ==> MEANS ALL IS OK
        '''
        #ACK = self.get("ACK")
        ACK = self.get_ack()
           
        ''' 
        2) IF telescope is not ready (still starting up), ask it to do a Warm Start ('bW#') 
        During Startup, with a "b#" being returned, the PC can select the startup mode by sending a
            • bC# for selecting the Cold Start,
            • bW# for selecting the Warm Start,
            • bR# for selecting the Warm Restart
        If not ok (still starting up, no 'G#' in return), send 'bW#' (see above) for selecting the Warm Start
        '''
        #if ACK != 'G':
        if not ACK.ok:
            self.do_warm_start()
            ACK = self.get_ack()
            elapsed_time = 0
            while not ACK.ok:
                time.sleep(1)
                elapsed_time += 1
                if elapsed_time == TIMEOUT_RECEIVE: raise TimeoutException()
                ACK = self.get_ack()
                
        
        '''
        3) Set timezone, date, and time (p109)
        '''

        '''
        a) set TIMEZONE
        Set the number of hours by which your local time differs from UTC. 
        If your local time is earlier than UTC set a positive value, 
        if later than UTC set a negative value. The time difference has to be set before setting the calendar date (SC) and local time (SL), since the Real Time Clock is running at UTC
        => :SG{+-}hh#        
        '''
        res = self.get_timezone()
        print("Current timezone is", res)
        res = self.set_timezone('+00')
        #if res != '1': raise UnexpectedCommandReturnCode(res)
        if not res.ok: raise UnexpectedCommandReturnCode(res)
        res = self.get_timezone()
        if res.txt != '+00': raise UnexpectedCommandReturnCode(res)
        print("NEW timezone set is", res)
        

        '''
        b) set DATE
        Set Calendar Date: 
        months mm, days dd, year yy of the civil time according to the timezone set. 
        The internal calendar/clock uses GMT
        :SC<mm>/<dd>/<yy>#
        0 if invalid 
        or
        TODO:
        1Updating planetary data#<24 blanks>#            
        '''
        res = self.get_date()
        print("Current date is", res)
        # format is 2018-09-26T17:50:21
        d = self.get_utc_date()
        # format to mm/dd/yy
        now_utc_mm_dd_yy = d[5:7] + '/' + d[8:10] + '/' + d[2:4]
        #print("date is", now_utc_mm_dd_yy)
        res = self.set_date(now_utc_mm_dd_yy)
        #res = self.set_DATE(self.get_utc_date())
        #if res[0] != '1': raise UnexpectedCommandReturnCode(res)
        #if not res.startswith('1Updating planetary data'): raise UnexpectedCommandReturnCode(res)
        if not res.ok: raise UnexpectedCommandReturnCode(res)
        res = self.get_date()
        if res.txt != now_utc_mm_dd_yy: raise UnexpectedCommandReturnCode(res)
        print("NEW DATE set is", res)

        '''
        c) set TIME
        Set RTC Time from the civil time hours hh, minutes mm and seconds ss. 
        The timezone must be set before using this command
        :SL<hh>:<mm>:<ss>#
        '''
        res = self.get_time()
        print("Current time is", res)
        _,now_utc_hh_mm_ss = d.split('T')
        #print("time is", now_utc_hh_mm_ss[:5])
        res = self.set_time(now_utc_hh_mm_ss)
        #if res != '1': raise UnexpectedCommandReturnCode(res)
        if not res.ok: raise UnexpectedCommandReturnCode(res)
        res = self.get_time()
        if res.txt[:5] != now_utc_hh_mm_ss[:5]: raise UnexpectedCommandReturnCode(res)
        print("NEW TIME set is", res)

            
        '''
        4) Set LOCATION (lat,long) (p103,110)
        Pour l'observatoire de Guitalens:
        Sg = 2.0375 E 
        St = 43.6443 N
        (attention, 2.0375 E = - 2.0375) 
        '''
        
        '''
        a) set Longitude
        Sets the longitude of the observing site to ddd degrees and mm minutes. 
        The longitude has to be specified positively for western latitudes 
        (west of Greenwich, the plus sign may be omitted) and negatively for eastern longitudes. 
        Alternatively, 360 degrees may be added to eastern longitudes.
        => :Sg{+-}<ddd>*<mm>#
        '''
        # TELE format is -002°02 (I convert it to -002:02)
        res = self.get_long()
        print("Current longitude is", res)
        
        # CELME format is -002:02:15
        res = self.get_celme_longitude("-2.0375")
        res_ddd_mm = res[:-3]
        #res_ddd_mm = res[:-3].replace(':','*')
        #res_ddd_mm = '-002:03'
        
        #print("celme longitude is", res)
        ddd,mm,ss = res.split(':')
        #dddmm = '-002*03'
        res = self.set_long(ddd+'*'+mm)
        #if res != '1': raise UnexpectedCommandReturnCode(res)
        if not res.ok: raise UnexpectedCommandReturnCode(res)
        res = self.get_long()
        if res.txt != res_ddd_mm: raise UnexpectedCommandReturnCode(res_ddd_mm, res.txt)
        print("NEW longitude set is", res)

        '''
        b) set Latitude
        Sets the latitude of the observing site to dd degrees, mm minutes. 
        The minus sign indicates southern latitudes, the positive sign may be omitted.
        => :St{+-}<dd>*<mm>#
        '''
        # TELE format is +43°38 (I convert it to +43:38)
        res = self.get_lat()
        print("Current latitude is", res)
        
        # CELME format is +43:38:15
        res = self.get_celme_latitude("+43.6443")
        res_dd_mm = res[:-3]
        #res_dd_mm = res[:-3].replace(':','*')
        print("res is", res)
        #res_dd_mm = '+43:50'
        
        #print("celme longitude is", res)
        dd,mm,ss = res.split(':')
        ddmm = dd+'*'+mm
        #ddmm = '+43*50'
        res = self.set_lat(ddmm)
        #if res != '1': raise UnexpectedCommandReturnCode(res)
        if not res.ok: raise UnexpectedCommandReturnCode(res)
        res = self.get_lat()
        if res.txt != res_dd_mm: raise UnexpectedCommandReturnCode(res_dd_mm,res.txt)
        print("NEW latitude set is", res)


        '''
        5) Send cde ':p3#' : Precession & Refraction (see page 107)
        Ask Gemini to do Precession calculation 
        Coordinates transferred to the Gemini refer to the standard epoch J2000.0. 
        Refraction is calculated (From L4, V1.0 up)
        ''' 
        self.do_prec_refr()
        
        return GenericResult("OK")

    
    # @abstract
    def set_speed(self, speed_rate):
        pass


    ''' GOTO (p105)
        - GOTO(position, blocking=Y/N):
            (MS = move start)
            = Goto RA=18h23m45s Dec=+34d00m00s J2000
        - radec.goto()
    '''
    # MACRO generic command
    def do_goto(self, ra, dec, speed_rate=None):
        
        # 1) set speed
        if speed_rate: self.set_speed(speed_rate)
        
        radec = self.get_radec()
        print("Current position is", radec)

        # 2) set RA-DEC
        '''
        :Sr18:23:45#:Sd+34:00:00#:MS#
        '''
        res = self.set_ra(ra)
        #if res != '1': raise UnexpectedCommandReturnCode(res)
        if res.ko: raise UnexpectedCommandReturnCode(res)
        res = self.set_dec(dec)
        #if res != '1': raise UnexpectedCommandReturnCode(res)
        if res.ko: raise UnexpectedCommandReturnCode(res)
        
        # 3) MOVE (non blocking by default for GEMINI)
        self.do_move()
        
        # 4) Test velocity until it is "Tracking"
        '''
        After MOVE, test velocity with ':Gv#' (p103) : we should have 'S', then 'C', then 'T'
            - N (for "no tracking") 
            - T (for Tracking)
            - G (for Guiding)
            - C (for Centering)
            - S (for Slewing)
        '''
        vel = None
        while vel != 'T':
            v = self.get_vel()
            vel = v.txt
            print("Velocity is", v)
            time.sleep(2)
        
        time.sleep(2)
        radec= self.get_radec()
        print("Current position is", radec)
        
        return GenericResult("OK")

    
    # @abstract MACRO
    def do_move_dir(self, dir, nbsec, speed_rate=None):
        dir = dir.upper()
        if speed_rate: self.set_speed(speed_rate)
        if dir=="NORTH": self.do_movenorth() 
        elif dir=="SOUTH": self.do_movesouth() 
        elif dir=="WEST": self.do_movewest() 
        elif dir=="EAST": self.do_moveeast()
        else: raise UnknownCommandException(dir) 
        time.sleep(int(nbsec))
        self.do_stop()
        return GenericResult("OK")




    
    
# TODO: empecher de creer une instance de cette classe abstraite
# Avec ABC ?

'''
if __name__ == "__main__":
    
    #HOST, PORT = "localhost", 9999
    #HOST, PORT = "localhost", 20001
    HOST, PORT = "localhost", 11110

    # Classic usage:
    #tsock = SocketClient_UDP_TCP(HOST, PORT, "UDP")
    # More elegant usage, using "with":
    with SocketClient_ABSTRACT(HOST, PORT, "UDP") as tsock:
        
        # 0) CONNECT to server (only for TCP, does nothing for UDP)
        tsock._connect_to_server()
        
        while True:
            
            # 1) SEND REQUEST data to server
            # saisie de la requête au clavier et suppression des espaces des 2 côtés
            data = input("REQUEST TO SERVER [ex: ':GD#' (Get Dec), ':GR#' (Get RA)']: ").strip()
            # test d'arrêt
            if data=="": break
            #data_to_send = bytes(data + "\n", "utf-8")
            tsock.send_data(data)
            #mysock.sendto("%s" % data, (HOST, PORT))
            #print("Sent: {}".format(data))
    
            # 2) RECEIVE REPLY data from server
            data_received = tsock.receive_data()
            #reponse, adr = mysock.recvfrom(buf)
            #print("Received: {}".format(data_received))
            #print("Useful data received: {}".format(data_useful))
            print('\n')

        #tsock.close()
'''