main_controller.py 15.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
import geopy
import sqlalchemy

from flask import Blueprint, render_template, flash, request, redirect, \
    url_for, abort, send_from_directory, Response
from os.path import join

from flaskr.extensions import cache, basic_auth
from flaskr.forms import LoginForm, EstimateForm
from flaskr.models import db, User, Estimation, StatusEnum
from flaskr.geocoder import CachedGeocoder

from flaskr.core import generate_unique_id, get_emission_models
from flaskr.content import content

from yaml import safe_dump as yaml_dump

import csv
# from io import StringIO
from cStringIO import StringIO

main = Blueprint('main', __name__)


OUT_ENCODING = 'utf-8'


# -----------------------------------------------------------------------------
# refactor this outta here, like in core?


# -----------------------------------------------------------------------------


@main.route('/favicon.ico')
@cache.cached(timeout=10000)
def favicon():  # we want it served from the root, not from static/
    return send_from_directory(
        join(main.root_path, '..', 'static', 'img'),
        'favicon.ico', mimetype='image/vnd.microsoft.icon'
    )


@main.route('/')
@cache.cached(timeout=1000)
def home():
    models = get_emission_models()
    return render_template(
        'home.html',
        models=models,
        colors=[model.color for model in models],
    )


@main.route("/estimate", methods=["GET", "POST"])
def estimate():
    models = get_emission_models()
    form = EstimateForm()

    if form.validate_on_submit():

        id = generate_unique_id()

        estimation = Estimation()
        # estimation.email = form.email.data
        estimation.first_name = form.first_name.data
        estimation.last_name = form.last_name.data
        estimation.institution = form.institution.data
        estimation.status = StatusEnum.pending
        estimation.origin_addresses = form.origin_addresses.data
        estimation.destination_addresses = form.destination_addresses.data
        # estimation.compute_optimal_destination = form.compute_optimal_destination.data
        models_slugs = []
        for model in models:
            if getattr(form, 'use_model_%s' % model.slug).data:
                models_slugs.append(model.slug)
        estimation.models_slugs = "\n".join(models_slugs)

        db.session.add(estimation)
        db.session.commit()

        flash("Estimation request submitted successfully.", "success")
        return redirect(url_for(
            endpoint=".consult_estimation",
            public_id=estimation.public_id,
            extension='html'
        ))
        # return render_template("estimate-debrief.html", form=form)

    return render_template("estimate.html", form=form, models=models)


@main.route("/invalidate")
def invalidate():
    stuck_estimations = Estimation.query \
        .filter_by(status=StatusEnum.working) \
        .all()

    for estimation in stuck_estimations:
        estimation.status = StatusEnum.failure
        estimation.errors = "Invalidated. Try again."
        db.session.commit()

    return ""


@main.route("/compute")
def compute():  # process the queue of estimation requests

    def _respond(_msg):
        return "<pre>%s</pre>" % _msg

    def _handle_failure(_estimation, _failure_message):
        _estimation.status = StatusEnum.failure
        _estimation.errors = _failure_message
        db.session.commit()

    def _handle_warning(_estimation, _warning_message):
        _estimation.warnings = _warning_message
        db.session.commit()

    response = ""

    count_working = Estimation.query \
        .filter_by(status=StatusEnum.working) \
        .count()

    if 0 < count_working:
        return _respond("Already working on estimation.")

    try:
        estimation = Estimation.query \
            .filter_by(status=StatusEnum.pending) \
            .order_by(Estimation.id.asc()) \
            .first()
    except sqlalchemy.orm.exc.NoResultFound:
        return _respond("No estimation in the queue.")
    except Exception as e:
        return _respond("Database error: %s" % (e,))

    if not estimation:
        return _respond("No estimation in the queue.")

    estimation.status = StatusEnum.working
    db.session.commit()

    response += u"Processing estimation `%s`...\n" % (
        estimation.public_id
    )

    geocoder = CachedGeocoder()

    # GEOCODE ORIGINS #########################################################

    origins_addresses = estimation.origin_addresses.strip().split("\n")
    origins = []

    for i in range(len(origins_addresses)):

        origin_address = origins_addresses[i].strip()

        try:
            origin = geocoder.geocode(origin_address.encode('utf-8'))
        except geopy.exc.GeopyError as e:
            response += u"Failed to geocode origin `%s`.\n%s" % (
                origin_address, e,
            )
            _handle_warning(estimation, response)
            continue

        if origin is None:
            response += u"Failed to geocode origin `%s`." % (
                origin_address,
            )
            _handle_warning(estimation, response)
            continue

        origins.append(origin)

        response += u"Origin: %s == %s (%f, %f)\n" % (
            origin_address, origin.address,
            origin.latitude, origin.longitude,
        )

    # GEOCODE DESTINATIONS ####################################################

    destinations_addresses = estimation.destination_addresses.strip().split("\n")
    destinations = []

    for i in range(len(destinations_addresses)):

        destination_address = destinations_addresses[i].strip()

        try:
            destination = geocoder.geocode(destination_address.encode('utf-8'))
        except geopy.exc.GeopyError as e:
            response += u"Failed to geocode destination `%s`.\n%s" % (
                destination_address, e,
            )
            _handle_warning(estimation, response)
            continue

        if destination is None:
            response += u"Failed to geocode destination `%s`." % (
                destination_address,
            )
            _handle_warning(estimation, response)
            continue

        # print(repr(destination.raw))

        destinations.append(destination)

        response += u"Destination: %s == %s (%f, %f)\n" % (
            destination_address, destination.address,
            destination.latitude, destination.longitude,
        )

    # GTFO IF NO ORIGINS OR NO DESTINATIONS ###################################

    if 0 == len(origins):
        response += u"Failed to geocode all the origin(s)."
        _handle_failure(estimation, response)
        return _respond(response)
    if 0 == len(destinations):
        response += u"Failed to geocode all the destination(s)."
        _handle_failure(estimation, response)
        return _respond(response)

    # GRAB AND CONFIGURE THE EMISSION MODELS ##################################

    mdl_slugs = estimation.models_slugs.split("\n")
    emission_models = [m for m in get_emission_models() if m.slug in mdl_slugs]
    # print(emission_models)

    # PREPARE RESULT DICTIONARY THAT WILL BE STORED ###########################

    results = {}

    # UTILITY PRIVATE FUNCTION(S) #############################################

    def get_city_key(_location):

        return _location.address.split(',')[0]

        # _city_key = _location.address
        # # if 'address100' in _location.raw['address']:
        # #     _city_key = _location.raw['address']['address100']
        # if 'city' in _location.raw['address']:
        #     _city_key = _location.raw['address']['city']
        # elif 'state' in _location.raw['address']:
        #     _city_key = _location.raw['address']['state']
        # return _city_key

    def compute_one_to_many(
            _origin,
            _destinations,
            use_train_below=0.0
    ):
        _results = {}
        footprints = {}

        destinations_by_city_key = {}

        cities_sum_foot = {}
        cities_sum_dist = {}
        for model in emission_models:
            cities_dict = {}
            for _destination in _destinations:
                footprint = model.compute_travel_footprint(
                    origin_latitude=_origin.latitude,
                    origin_longitude=_origin.longitude,
                    destination_latitude=_destination.latitude,
                    destination_longitude=_destination.longitude,
                )

                city_key = get_city_key(_destination)

                destinations_by_city_key[city_key] = _destination

                if city_key not in cities_dict:
                    cities_dict[city_key] = {
                        'city': city_key,
                        'address': _destination.address,
                        'footprint': 0.0,
                        'distance': 0.0,
                    }
                cities_dict[city_key]['footprint'] += footprint['co2eq_kg']
                cities_dict[city_key]['distance'] += footprint['distance']
                if city_key not in cities_sum_foot:
                    cities_sum_foot[city_key] = 0.0
                cities_sum_foot[city_key] += footprint['co2eq_kg']
                if city_key not in cities_sum_dist:
                    cities_sum_dist[city_key] = 0.0
                cities_sum_dist[city_key] += footprint['distance']

            cities = [cities_dict[k] for k in cities_dict.keys()]
            cities = sorted(cities, key=lambda c: c['footprint'])

            footprints[model.slug] = {
                'cities': cities,
            }

        _results['footprints'] = footprints

        total_foot = 0.0
        total_dist = 0.0

        cities_mean_dict = {}
        for city in cities_sum_foot.keys():
            city_mean_foot = 1.0 * cities_sum_foot[city] / len(emission_models)
            city_mean_dist = 1.0 * cities_sum_dist[city] / len(emission_models)
            cities_mean_dict[city] = {
                'address': destinations_by_city_key[city].address,
                'city': city,
                'footprint': city_mean_foot,
                'distance': city_mean_dist,
            }
            total_foot += city_mean_foot
            total_dist += city_mean_dist

        cities_mean = [cities_mean_dict[k] for k in cities_mean_dict.keys()]
        cities_mean = sorted(cities_mean, key=lambda c: c['footprint'])

        _results['mean_footprint'] = {  # DEPRECATED?
            'cities': cities_mean
        }
        _results['cities'] = cities_mean

        _results['total'] = total_foot  # DEPRECATED
        _results['footprint'] = total_foot

        _results['distance'] = total_dist

        return _results

    # SCENARIO A : One Origin, At Least One Destination #######################
    #
    # In this scenario, we compute the sum of each of the travels' footprint,
    # for each of the Emission Models, and present a mean of all Models.
    #
    if 1 == len(origins):
        results = compute_one_to_many(
            _origin=origins[0],
            _destinations=destinations,
            use_train_below=0,
        )

    # SCENARIO B : At Least One Origin, One Destination #######################
    #
    # Same as A for now.
    #
    elif 1 == len(destinations):
        results = compute_one_to_many(
            _origin=destinations[0],
            _destinations=origins,
            use_train_below=0,
        )

    # SCENARIO C : At Least One Origin, At Least One Destination ##############
    #
    # Run Scenario A for each Destination, and expose optimum Destination.
    #
    else:
        unique_city_keys = []
        result_cities = []
        for destination in destinations:
            city_key = get_city_key(destination)

            if city_key in unique_city_keys:
                continue
            else:
                unique_city_keys.append(city_key)

            city_results = compute_one_to_many(
                _origin=destination,
                _destinations=origins,
                use_train_below=0,
            )
            city_results['city'] = city_key
            city_results['address'] = destination.address
            result_cities.append(city_results)

        result_cities = sorted(result_cities, key=lambda c: int(c['total']))
        results = {
            'cities': result_cities,
        }

    # WRITE RESULTS INTO THE DATABASE #########################################

    estimation.status = StatusEnum.success
    estimation.output_yaml = yaml_dump(results)
    db.session.commit()

    # FINALLY, RESPOND ########################################################

    response += yaml_dump(results) + "\n"

    return _respond(response)


@main.route("/estimation/<public_id>.<extension>")
def consult_estimation(public_id, extension):
    try:
        estimation = Estimation.query \
            .filter_by(public_id=public_id) \
            .one()
    except sqlalchemy.orm.exc.NoResultFound:
        return abort(404)
    except Exception as e:
        # TODO: log
        return abort(500)

    # allowed_formats = ['html']
    # if format not in allowed_formats:
    #     abort(404)

    unavailable_statuses = [StatusEnum.pending, StatusEnum.working]

    if extension in ['xhtml', 'html', 'htm']:

        if estimation.status in unavailable_statuses:
            return render_template(
                "estimation-queue-wait.html",
                estimation=estimation
            )
        else:
            return render_template(
                "estimation.html",
                estimation=estimation,
                estimation_output=estimation.get_output_dict(),
            )

    elif extension in ['yaml', 'yml']:

        if estimation.status in unavailable_statuses:
            abort(404)

        return estimation.output_yaml

    elif 'csv' == extension:

        if estimation.status in unavailable_statuses:
            abort(404)

        si = StringIO()
        cw = csv.writer(si, quoting=csv.QUOTE_ALL)
        cw.writerow([u"city", u"address", u"co2 (kg)", u"distance (km)"])

        results = estimation.get_output_dict()
        for city in results['cities']:
            cw.writerow([
                city['city'].encode(OUT_ENCODING),
                city['address'].encode(OUT_ENCODING),
                round(city['footprint'], 3),
                round(city['distance'], 3),
            ])

        # return si.getvalue().strip('\r\n')
        return Response(
            response=si.getvalue().strip('\r\n'),
            headers={
                'Content-type': 'text/csv',
                'Content-disposition': "attachment; filename=%s.csv"%public_id,
            },
        )

    else:
        abort(404)


@main.route("/scaling_laws.csv")
def get_scaling_laws_csv():
    distances = content.laws_plot.distances
    models = get_emission_models()

    si = StringIO()
    cw = csv.writer(si, quoting=csv.QUOTE_ALL)

    header = ['distance'] + [model.slug for model in models]
    cw.writerow(header)

    for distance in distances:
        row = [distance]
        for model in models:
            row.append(model.compute_airplane_distance_footprint(distance))
        cw.writerow(row)

    return Response(
        response=si.getvalue().strip('\r\n'),
        headers={
            'Content-type': 'text/csv',
            'Content-disposition': 'attachment; filename=scaling_laws.csv',
        },
    )


@main.route("/test")
@basic_auth.required
def dev_test():
    import os

    return os.getenv('ADMIN_USERNAME')