main_controller.py 23 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
import traceback
from copy import deepcopy

import geopy
import sqlalchemy

from flask import Blueprint, render_template, flash, request, redirect, \
    url_for, abort, send_from_directory, Response
from os.path import join

from flaskr.extensions import cache, basic_auth
from flaskr.forms import LoginForm, EstimateForm
from flaskr.models import db, User, Estimation, StatusEnum, ScenarioEnum
from flaskr.geocoder import CachedGeocoder

from flaskr.core import generate_unique_id, \
    get_emission_models, increment_hit_counter
from flaskr.content import content

from wtforms import validators

from yaml import safe_dump as yaml_dump

import csv
# from io import StringIO
from cStringIO import StringIO

import pandas
from pandas.compat import StringIO as PandasStringIO

main = Blueprint('main', __name__)


OUT_ENCODING = 'utf-8'


# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------


@main.route('/favicon.ico')
@cache.cached(timeout=10000)
def favicon():  # we want it served from the root, not from static/
    return send_from_directory(
        join(main.root_path, '..', 'static', 'img'),
        'favicon.ico', mimetype='image/vnd.microsoft.icon'
    )


@main.route('/')
@main.route('/home')
@main.route('/home.html')
# @cache.cached(timeout=1000)
def home():
    models = get_emission_models()
    models_dict = {}
    for model in models:
        models_dict[model.slug] = model.__dict__
    increment_hit_counter()
    return render_template(
        'home.html',
        models=models_dict,
        colors=[model.color for model in models],
        labels=[model.name for model in models],
    )


def gather_addresses(from_list, from_file):
    addresses = []
    if from_file:
        file_mimetype = from_file.mimetype
        file_contents = from_file.read()

        rows_dicts = None

        if 'text/csv' == file_mimetype:

            rows_dicts = pandas \
                .read_csv(PandasStringIO(file_contents)) \
                .rename(str.lower, axis='columns') \
                .to_dict(orient="row")

        # Here are just *some* of the mimetypes that Microsoft's
        # garbage spreadsheet files may have.
        # application/vnd.ms-excel (official)
        # application/msexcel
        # application/x-msexcel
        # application/x-ms-excel
        # application/x-excel
        # application/x-dos_ms_excel
        # application/xls
        # application/x-xls
        # application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
        # ... Let's check extension instead.

        elif from_file.filename.endswith('xls') \
                or from_file.filename.endswith('xlsx'):

            rows_dicts = pandas \
                .read_excel(PandasStringIO(file_contents)) \
                .rename(str.lower, axis='columns') \
                .to_dict(orient="row")

        # Python 3.7 only
        # elif from_file.filename.endswith('ods'):
        #
        #     rows_dicts = read_ods(PandasStringIO(file_contents), 1) \
        #         .rename(str.lower, axis='columns') \
        #         .to_dict(orient="row")

        if rows_dicts is not None:
            for row_dict in rows_dicts:
                if 'address' in row_dict:
                    addresses.append(row_dict['address'])
                    continue
                address = None
                if 'city' in row_dict:
                    address = row_dict['city']
                if 'country' in row_dict:
                    if address is None:
                        address = row_dict['country']
                    else:
                        address += "," + row_dict['country']
                if address is not None:
                    addresses.append(address)
                else:
                    raise validators.ValidationError(
                        "We could not find Address data in the spreadsheet."
                    )
        else:
            raise validators.ValidationError(
                "We could not find any data in the spreadsheet."
            )

    else:
        addresses = from_list.replace("\r", '').split("\n")

    clean_addresses = []
    for address in addresses:
        if not address:
            continue
        elif type(address).__name__ == 'str':
            clean_addresses.append(unicode(address, 'utf-8'))
        else:
            clean_addresses.append(address)
    addresses = clean_addresses

    # Remove empty lines (if any) and white characters
    addresses = [a.strip() for a in addresses if a]

    return "\n".join(addresses)


@main.route("/estimate", methods=["GET", "POST"])
@main.route("/estimate.html", methods=["GET", "POST"])
def estimate():
    models = get_emission_models()
    form = EstimateForm()

    def show_form():
        return render_template("estimate.html", form=form, models=models)

    if form.validate_on_submit():

        id = generate_unique_id()

        estimation = Estimation()
        # estimation.email = form.email.data
        estimation.first_name = form.first_name.data
        estimation.last_name = form.last_name.data
        estimation.institution = form.institution.data
        estimation.status = StatusEnum.pending

        try:
            estimation.origin_addresses = gather_addresses(
                form.origin_addresses.data,
                form.origin_addresses_file.data
            )
        except validators.ValidationError as e:
            form.origin_addresses_file.errors.append(e.message)
            return show_form()

        try:
            estimation.destination_addresses = gather_addresses(
                form.destination_addresses.data,
                form.destination_addresses_file.data
            )
        except validators.ValidationError as e:
            form.destination_addresses_file.errors.append(e.message)
            return show_form()

        estimation.use_train_below_km = form.use_train_below_km.data

        models_slugs = []
        for model in models:
            if getattr(form, 'use_model_%s' % model.slug).data:
                models_slugs.append(model.slug)
        estimation.models_slugs = "\n".join(models_slugs)

        db.session.add(estimation)
        db.session.commit()

        flash("Estimation request submitted successfully.", "success")
        return redirect(url_for(
            endpoint=".consult_estimation",
            public_id=estimation.public_id,
            extension='html'
        ))
        # return render_template("estimate-debrief.html", form=form)

    return show_form()


@main.route("/invalidate")
@main.route("/invalidate.html")
def invalidate():
    stuck_estimations = Estimation.query \
        .filter_by(status=StatusEnum.working) \
        .all()

    for estimation in stuck_estimations:
        estimation.status = StatusEnum.failure
        estimation.errors = "Invalidated. Try again."
        db.session.commit()

    return ""


@main.route("/compute")
def compute():  # process the queue of estimation requests

    maximum_addresses_to_compute = 30000

    def _respond(_msg):
        return "<pre>%s</pre>" % _msg

    def _handle_failure(_estimation, _failure_message):
        _estimation.status = StatusEnum.failure
        _estimation.errors = _failure_message
        db.session.commit()

    def _handle_warning(_estimation, _warning_message):
        _estimation.warnings = _warning_message
        db.session.commit()

    try:
        response = ""

        count_working = Estimation.query \
            .filter_by(status=StatusEnum.working) \
            .count()

        if 0 < count_working:
            return _respond("Already working on estimation.")

        try:
            estimation = Estimation.query \
                .filter_by(status=StatusEnum.pending) \
                .order_by(Estimation.id.asc()) \
                .first()
        except sqlalchemy.orm.exc.NoResultFound:
            return _respond("No estimation in the queue.")
        except Exception as e:
            return _respond("Database error: %s" % (e,))

        if not estimation:
            return _respond("No estimation in the queue.")

        estimation.status = StatusEnum.working
        db.session.commit()

        response += u"Processing estimation `%s`...\n" % (
            estimation.public_id
        )

        failed_addresses = []
        geocoder = CachedGeocoder()

        # GEOCODE ORIGINS #########################################################

        origins_addresses = estimation.origin_addresses.strip().split("\n")
        origins_addresses_count = len(origins_addresses)
        origins = []

        if origins_addresses_count > maximum_addresses_to_compute:
            errmsg = u"Too many origins. (%d > %d)  Please contact us for support of that many origins." % (origins_addresses_count, maximum_addresses_to_compute)
            _handle_failure(estimation, errmsg)
            return _respond(errmsg)

        for i in range(origins_addresses_count):

            origin_address = origins_addresses[i].strip()
            if origin_address in failed_addresses:
                continue

            try:
                origin = geocoder.geocode(origin_address.encode('utf-8'))
            except geopy.exc.GeopyError as e:
                response += u"Failed to geocode origin `%s`.\n%s\n" % (
                    origin_address, e,
                )
                _handle_warning(estimation, response)
                failed_addresses.append(origin_address)
                continue

            if origin is None:
                response += u"Failed to geocode origin `%s`.\n" % (
                    origin_address,
                )
                _handle_warning(estimation, response)
                failed_addresses.append(origin_address)
                continue

            origins.append(origin)

            response += u"Origin: %s == %s (%f, %f)\n" % (
                origin_address, origin.address,
                origin.latitude, origin.longitude,
            )

        # GEOCODE DESTINATIONS ####################################################

        destinations_addresses = estimation.destination_addresses.strip().split("\n")
        destinations_addresses_count = len(destinations_addresses)
        destinations = []

        if destinations_addresses_count > maximum_addresses_to_compute:
            errmsg = u"Too many destinations. (%d > %d)  Please contact us for support of that many destinations." % (destinations_addresses_count, maximum_addresses_to_compute)
            _handle_failure(estimation, errmsg)
            return _respond(errmsg)

        for i in range(destinations_addresses_count):

            destination_address = destinations_addresses[i].strip()
            if destination_address in failed_addresses:
                continue

            try:
                destination = geocoder.geocode(destination_address.encode('utf-8'))
            except geopy.exc.GeopyError as e:
                response += u"Failed to geocode destination `%s`.\n%s\n" % (
                    destination_address, e,
                )
                _handle_warning(estimation, response)
                failed_addresses.append(destination_address)
                continue

            if destination is None:
                response += u"Failed to geocode destination `%s`.\n" % (
                    destination_address,
                )
                _handle_warning(estimation, response)
                failed_addresses.append(destination_address)
                continue

            # print(repr(destination.raw))

            destinations.append(destination)

            response += u"Destination: %s == %s (%f, %f)\n" % (
                destination_address, destination.address,
                destination.latitude, destination.longitude,
            )

        # GTFO IF NO ORIGINS OR NO DESTINATIONS ###################################

        if 0 == len(origins):
            response += u"Failed to geocode all the origin(s).\n"
            _handle_failure(estimation, response)
            return _respond(response)
        if 0 == len(destinations):
            response += u"Failed to geocode all the destination(s).\n"
            _handle_failure(estimation, response)
            return _respond(response)

        # GRAB AND CONFIGURE THE EMISSION MODELS ##################################

        emission_models = estimation.get_models()
        # print(emission_models)

        extra_config = {
            'use_train_below_distance': estimation.use_train_below_km,
            # 'use_train_below_distance': 300,
        }

        # PREPARE RESULT DICTIONARY THAT WILL BE STORED ###########################

        results = {}

        # UTILITY PRIVATE FUNCTION(S) #############################################

        def get_city_key(_location):
            # Will this hack hold?  Suspense...
            return _location.address.split(',')[0]

            # _city_key = _location.address
            # # if 'address100' in _location.raw['address']:
            # #     _city_key = _location.raw['address']['address100']
            # if 'city' in _location.raw['address']:
            #     _city_key = _location.raw['address']['city']
            # elif 'state' in _location.raw['address']:
            #     _city_key = _location.raw['address']['state']
            # return _city_key

        def compute_one_to_many(
                _origin,
                _destinations,
                _extra_config=None
        ):
            _results = {}
            footprints = {}

            destinations_by_city_key = {}

            cities_sum_foot = {}
            cities_sum_dist = {}
            cities_dict_first_model = None
            for model in emission_models:
                cities_dict = {}
                for _destination in _destinations:
                    footprint = model.compute_travel_footprint(
                        origin_latitude=_origin.latitude,
                        origin_longitude=_origin.longitude,
                        destination_latitude=_destination.latitude,
                        destination_longitude=_destination.longitude,
                        extra_config=_extra_config,
                    )

                    _key = get_city_key(_destination)

                    destinations_by_city_key[_key] = _destination

                    if _key not in cities_dict:
                        cities_dict[_key] = {
                            'city': _key,
                            'address': _destination.address,
                            'footprint': 0.0,
                            'distance': 0.0,
                            'train_trips': 0,
                            'plane_trips': 0,
                        }
                    cities_dict[_key]['footprint'] += footprint['co2eq_kg']
                    cities_dict[_key]['distance'] += footprint['distance_km']
                    cities_dict[_key]['train_trips'] += footprint['train_trips']
                    cities_dict[_key]['plane_trips'] += footprint['plane_trips']
                    if _key not in cities_sum_foot:
                        cities_sum_foot[_key] = 0.0
                    cities_sum_foot[_key] += footprint['co2eq_kg']
                    if _key not in cities_sum_dist:
                        cities_sum_dist[_key] = 0.0
                    cities_sum_dist[_key] += footprint['distance_km']

                cities = sorted(cities_dict.values(), key=lambda c: c['footprint'])

                footprints[model.slug] = {
                    'cities': cities,
                }

                if cities_dict_first_model is None:
                    cities_dict_first_model = deepcopy(cities_dict)

            _results['footprints'] = footprints

            total_foot = 0.0
            total_dist = 0.0
            total_train_trips = 0
            total_plane_trips = 0

            cities_mean_dict = {}
            for city in cities_sum_foot.keys():
                city_mean_foot = 1.0 * cities_sum_foot[city] / len(emission_models)
                city_mean_dist = 1.0 * cities_sum_dist[city] / len(emission_models)
                city_train_trips = cities_dict_first_model[city]['train_trips']
                city_plane_trips = cities_dict_first_model[city]['plane_trips']
                cities_mean_dict[city] = {
                    'address': destinations_by_city_key[city].address,
                    'city': city,
                    'footprint': city_mean_foot,
                    'distance': city_mean_dist,
                    'train_trips': city_train_trips,
                    'plane_trips': city_plane_trips,
                }
                total_foot += city_mean_foot
                total_dist += city_mean_dist
                total_train_trips += city_train_trips
                total_plane_trips += city_plane_trips

            cities_mean = [cities_mean_dict[k] for k in cities_mean_dict.keys()]
            cities_mean = sorted(cities_mean, key=lambda c: c['footprint'])

            _results['mean_footprint'] = {  # DEPRECATED?
                'cities': cities_mean
            }
            _results['cities'] = cities_mean

            _results['total'] = total_foot  # DEPRECATED
            _results['footprint'] = total_foot

            _results['distance'] = total_dist
            _results['train_trips'] = total_train_trips
            _results['plane_trips'] = total_plane_trips

            return _results

        # SCENARIO A : One Origin, At Least One Destination #######################
        #
        # In this scenario, we compute the sum of each of the travels' footprint,
        # for each of the Emission Models, and present a mean of all Models.
        #
        if 1 == len(origins):
            estimation.scenario = ScenarioEnum.one_to_many
            results = compute_one_to_many(
                _origin=origins[0],
                _destinations=destinations,
                _extra_config=extra_config,
            )

        # SCENARIO B : At Least One Origin, One Destination #######################
        #
        # Same as A for now.
        #
        elif 1 == len(destinations):
            estimation.scenario = ScenarioEnum.many_to_one
            results = compute_one_to_many(
                _origin=destinations[0],
                _destinations=origins,
                _extra_config=extra_config,
            )

        # SCENARIO C : At Least One Origin, At Least One Destination ##############
        #
        # Run Scenario A for each Destination, and expose optimum Destination.
        #
        else:
            estimation.scenario = ScenarioEnum.many_to_many
            unique_city_keys = []
            result_cities = []
            for destination in destinations:
                city_key = get_city_key(destination)

                if city_key in unique_city_keys:
                    continue
                else:
                    unique_city_keys.append(city_key)

                city_results = compute_one_to_many(
                    _origin=destination,
                    _destinations=origins,
                    _extra_config=extra_config,
                )
                city_results['city'] = city_key
                city_results['address'] = destination.address
                result_cities.append(city_results)

            result_cities = sorted(result_cities, key=lambda c: int(c['footprint']))
            results = {
                'cities': result_cities,
            }

        # WRITE RESULTS INTO THE DATABASE #########################################

        estimation.status = StatusEnum.success
        estimation.output_yaml = yaml_dump(results)
        db.session.commit()

        # FINALLY, RESPOND ########################################################

        response += yaml_dump(results) + "\n"

        return _respond(response)

    except Exception as e:
        errmsg = u"Computation failed : %s" % (e,)
        errmsg = u"%s\n\n%s" % (errmsg, traceback.format_exc())
        if estimation:
            _handle_failure(estimation, errmsg)
        return _respond(errmsg)


@main.route("/estimation/<public_id>.<extension>")
def consult_estimation(public_id, extension):
    try:
        estimation = Estimation.query \
            .filter_by(public_id=public_id) \
            .one()
    except sqlalchemy.orm.exc.NoResultFound:
        return abort(404)
    except Exception as e:
        # TODO: log?
        return abort(500)

    # allowed_formats = ['html']
    # if format not in allowed_formats:
    #     abort(404)

    unavailable_statuses = [StatusEnum.pending, StatusEnum.working]

    if extension in ['xhtml', 'html', 'htm']:

        if estimation.status in unavailable_statuses:
            return render_template(
                "estimation-queue-wait.html",
                estimation=estimation
            )
        else:
            estimation_output = estimation.get_output_dict()
            estimation_sum = 0
            if estimation_output:
                for city in estimation_output['cities']:
                    estimation_sum += city['footprint']

            return render_template(
                "estimation.html",
                estimation=estimation,
                estimation_output=estimation_output,
                estimation_sum=estimation_sum,
            )

    elif extension in ['yaml', 'yml']:

        if estimation.status in unavailable_statuses:
            abort(404)

        return estimation.output_yaml

    elif 'csv' == extension:

        if estimation.status in unavailable_statuses:
            abort(404)

        si = StringIO()
        cw = csv.writer(si, quoting=csv.QUOTE_ALL)
        cw.writerow([
            u"city", u"address",
            u"co2 (kg)", u"distance (km)",
            u"plane trips", u'train trips',
        ])

        results = estimation.get_output_dict()
        for city in results['cities']:
            cw.writerow([
                city['city'].encode(OUT_ENCODING),
                city['address'].encode(OUT_ENCODING),
                round(city['footprint'], 3),
                round(city['distance'], 3),
                city['plane_trips'],
                city['train_trips'],
            ])

        # return si.getvalue().strip('\r\n')
        return Response(
            response=si.getvalue().strip('\r\n'),
            headers={
                'Content-type': 'text/csv',
                'Content-disposition': "attachment; filename=%s.csv"%public_id,
            },
        )

    else:
        abort(404)


@main.route("/scaling_laws.csv")
def get_scaling_laws_csv():
    distances = content.laws_plot.distances
    models = get_emission_models()

    si = StringIO()
    cw = csv.writer(si, quoting=csv.QUOTE_ALL)

    header = ['distance'] + [model.slug for model in models]
    cw.writerow(header)

    for distance in distances:
        row = [distance]
        for model in models:
            row.append(model.compute_airplane_distance_footprint(distance))
        cw.writerow(row)

    return Response(
        response=si.getvalue().strip('\r\n'),
        headers={
            'Content-type': 'text/csv',
            'Content-disposition': 'attachment; filename=scaling_laws.csv',
        },
    )


@main.route("/test")
@basic_auth.required
def dev_test():
    import os

    return os.getenv('ADMIN_USERNAME')