main_controller.py 31.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
import csv
import re
# from io import StringIO
from cStringIO import StringIO
from copy import deepcopy
from os import unlink
from os.path import join

import geopy
import pandas
import sqlalchemy
from flask import (
    Blueprint,
    Response,
    render_template,
    flash,
    redirect,
    url_for,
    abort,
    send_from_directory,
)
from pandas.compat import StringIO as PandasStringIO
from wtforms import validators
from yaml import safe_dump as yaml_dump

from flaskr.content import content, base_url
from flaskr.core import (
    get_emission_models,
    increment_hit_counter,
)
from flaskr.extensions import cache, send_email
from flaskr.forms import EstimateForm
from flaskr.geocoder import CachedGeocoder
from flaskr.models import db, Estimation, StatusEnum, ScenarioEnum

main = Blueprint('main', __name__)


OUT_ENCODING = 'utf-8'


# -----------------------------------------------------------------------------

pi_email = "didier.barret@gmail.com"  # todo: move to content YAML or .env
# pi_email = "goutte@protonmail.com"

# -----------------------------------------------------------------------------


@main.route('/favicon.ico')
@cache.cached(timeout=10000)
def favicon():  # we want it served from the root, not from static/
    return send_from_directory(
        join(main.root_path, '..', 'static', 'img'),
        'favicon.ico', mimetype='image/vnd.microsoft.icon'
    )


@main.route('/')
@main.route('/home')
@main.route('/home.html')
# @cache.cached(timeout=1000)
def home():
    models = get_emission_models()
    models_dict = {}
    for model in models:
        models_dict[model.slug] = model.__dict__
    increment_hit_counter()
    return render_template(
        'home.html',
        models=models_dict,
        colors=[model.color for model in models],
        labels=[model.name for model in models],
    )


def gather_addresses(from_list, from_file):
    """
    Gather a list of addresses from the provided list and file.
    If the file is provided the list is ignored.
    """
    addresses = []
    if from_file:
        file_mimetype = from_file.mimetype
        file_contents = from_file.read()

        rows_dicts = None

        if 'text/csv' == file_mimetype:

            rows_dicts = pandas \
                .read_csv(PandasStringIO(file_contents)) \
                .rename(str.lower, axis='columns') \
                .to_dict(orient="row")

        # Here are just *some* of the mimetypes that Microsoft's
        # garbage spreadsheet files may have.
        # application/vnd.ms-excel (official)
        # application/msexcel
        # application/x-msexcel
        # application/x-ms-excel
        # application/x-excel
        # application/x-dos_ms_excel
        # application/xls
        # application/x-xls
        # application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
        # ... Let's check extension instead.

        elif from_file.filename.endswith('xls') \
                or from_file.filename.endswith('xlsx'):

            rows_dicts = pandas \
                .read_excel(PandasStringIO(file_contents)) \
                .rename(str.lower, axis='columns') \
                .to_dict(orient="row")

        # Python 3.7 only
        # elif from_file.filename.endswith('ods'):
        #     rows_dicts = read_ods(PandasStringIO(file_contents), 1) \
        #         .rename(str.lower, axis='columns') \
        #         .to_dict(orient="row")

        if rows_dicts is not None:
            for row_dict in rows_dicts:
                if 'address' in row_dict:
                    addresses.append(row_dict['address'])
                    continue
                address = None
                if 'city' in row_dict:
                    address = row_dict['city']
                if 'country' in row_dict:
                    if address is None:
                        address = row_dict['country']
                    else:
                        address += "," + row_dict['country']
                if address is not None:
                    addresses.append(address)
                else:
                    raise validators.ValidationError(
                        "We could not find Address data in the spreadsheet."
                    )
        else:
            raise validators.ValidationError(
                "We could not find any data in the spreadsheet."
            )

    else:
        addresses = from_list.replace("\r", '').split("\n")

    clean_addresses = []
    # Ignore inevitable copy/paste bloopers
    to_ignore = re.compile(r"City\s*,\s*Country", re.I & re.U)
    for address in addresses:
        if not address:
            continue
        if type(address).__name__ == 'str':
            address = unicode(address, 'utf-8')
        if to_ignore.match(address) is not None:
            continue
        clean_addresses.append(address)
    addresses = clean_addresses

    # Remove empty lines (if any) and white characters
    addresses = [a.strip() for a in addresses if a]

    return "\n".join(addresses)


@main.route("/estimate", methods=["GET", "POST"])
@main.route("/estimate.html", methods=["GET", "POST"])
def estimate():  # register new estimation request, more accurately
    maximum_travels_to_compute = 1000000
    models = get_emission_models()
    form = EstimateForm()

    def show_form():
        return render_template("estimation-request.html", form=form, models=models)

    if form.validate_on_submit():

        estimation = Estimation()
        # estimation.email = form.email.data
        estimation.run_name = form.run_name.data
        estimation.first_name = form.first_name.data
        estimation.last_name = form.last_name.data
        estimation.institution = form.institution.data
        estimation.status = StatusEnum.pending

        try:
            estimation.origin_addresses = gather_addresses(
                form.origin_addresses.data,
                form.origin_addresses_file.data
            )
        except validators.ValidationError as e:
            form.origin_addresses_file.errors.append(e.message)
            return show_form()

        try:
            estimation.destination_addresses = gather_addresses(
                form.destination_addresses.data,
                form.destination_addresses_file.data
            )
        except validators.ValidationError as e:
            form.destination_addresses_file.errors.append(e.message)
            return show_form()

        estimation.use_train_below_km = form.use_train_below_km.data

        models_slugs = []
        models_count = 0
        for model in models:
            if getattr(form, 'use_model_%s' % model.slug).data:
                models_slugs.append(model.slug)
                models_count += 1
        estimation.models_slugs = u"\n".join(models_slugs)

        travels_to_compute = \
            models_count * \
            (estimation.origin_addresses.count("\n") + 1) * \
            (estimation.destination_addresses.count("\n") + 1)
        if travels_to_compute > maximum_travels_to_compute:
            message = """
            Too many travels to compute. (%d > %d)
            We're working on increasing this limitation.
            Please contact us directly if you wish to boost this issue
            or get a dedicated estimation.
            """ % (travels_to_compute, maximum_travels_to_compute)
            form.origin_addresses.errors.append(message)
            form.destination_addresses.errors.append(message)
            # form.origin_addresses_file.errors.append(message)
            # form.destination_addresses_file.errors.append(message)
            return show_form()

        db.session.add(estimation)
        db.session.commit()

        send_email(
            to_recipient=pi_email,
            subject="[TCFM] New Estimation Request: %s" % estimation.public_id,
            message=render_template(
                'email/run_requested.html',
                base_url=base_url,
                estimation=estimation,
            )
        )

        flash("Estimation request submitted successfully.", "success")
        return redirect(url_for(
            endpoint=".consult_estimation",
            public_id=estimation.public_id,
            extension='html'
        ))
        # return render_template("estimate-debrief.html", form=form)

    return show_form()


@main.route("/invalidate")
@main.route("/invalidate.html")
def invalidate():
    stuck_estimations = Estimation.query \
        .filter_by(status=StatusEnum.working) \
        .all()

    for estimation in stuck_estimations:
        estimation.status = StatusEnum.failure
        estimation.errors = "Invalidated. Try again."
        db.session.commit()

    return "Estimations invalidated: %d" % len(stuck_estimations)


@main.route("/invalidate-geocache")
@main.route("/invalidate-geocache.html")
def invalidate_geocache():
    geocache = 'geocache.db'

    unlink(geocache)

    return "Geocache invalidated."


@main.route("/compute")
def compute():  # process the queue of estimation requests

    # maximum_addresses_to_compute = 30000

    def _respond(_msg):
        return "<pre>%s</pre>" % _msg

    def _handle_failure(_estimation, _failure_message):
        _estimation.status = StatusEnum.failure
        _estimation.errors = _failure_message
        db.session.commit()
        send_email(
            to_recipient=pi_email,
            subject="[TCFM] Run failed: %s" % _estimation.public_id,
            message=render_template(
                'email/run_failed.html',
                base_url=base_url,
                estimation=_estimation,
            )
        )

    def _handle_warning(_estimation, _warning_message):
        if not _estimation.warnings:
            _estimation.warnings = _warning_message
        else:
            _estimation.warnings += _warning_message
            # _estimation.warnings = u"%s\n%s" % \
            #                        (_estimation.warnings, _warning_message)
        db.session.commit()

    estimation = None
    try:
        response = ""

        count_working = Estimation.query \
            .filter_by(status=StatusEnum.working) \
            .count()

        if 0 < count_working:
            return _respond("Already working on estimation.")

        try:
            estimation = Estimation.query \
                .filter_by(status=StatusEnum.pending) \
                .order_by(Estimation.id.asc()) \
                .first()
        except sqlalchemy.orm.exc.NoResultFound:
            return _respond("No estimation in the queue.")
        except Exception as e:
            return _respond("Database error: %s" % (e,))

        if not estimation:
            return _respond("No estimation in the queue.")

        estimation.status = StatusEnum.working
        db.session.commit()

        response += u"Processing estimation `%s`...\n" % (
            estimation.public_id
        )

        # GEOCODE ADDRESSES ###################################################

        failed_addresses = []
        geocoder = CachedGeocoder()

        # GEOCODE ORIGINS #####################################################

        origins_addresses = estimation.origin_addresses.strip().split("\n")
        origins_addresses_count = len(origins_addresses)
        origins = []

        # if origins_addresses_count > maximum_addresses_to_compute:
        #     errmsg = u"Too many origins. (%d > %d) \n" \
        #              u"Please contact us " \
        #              u"for support of more origins." % \
        #              (origins_addresses_count, maximum_addresses_to_compute)
        #     _handle_failure(estimation, errmsg)
        #     return _respond(errmsg)

        for i in range(origins_addresses_count):

            origin_address = origins_addresses[i].strip()

            if not origin_address:
                continue

            if origin_address in failed_addresses:
                continue

            try:
                origin = geocoder.geocode(origin_address.encode('utf-8'))
            except geopy.exc.GeopyError as e:
                warning = u"Ignoring origin `%s` " \
                          u"since we failed to geocode it.\n%s\n" % (
                            origin_address, e,
                )
                response += warning
                _handle_warning(estimation, warning)
                failed_addresses.append(origin_address)
                continue

            if origin is None:
                warning = u"Ignoring origin `%s` " \
                          u"since we failed to geocode it.\n" % (
                            origin_address,
                )
                response += warning
                _handle_warning(estimation, warning)
                failed_addresses.append(origin_address)
                continue

            origins.append(origin)

            response += u"Origin `%s` geocoded to `%s` (%f, %f).\n" % (
                origin_address, origin.address,
                origin.latitude, origin.longitude,
            )

        # GEOCODE DESTINATIONS ################################################

        destinations_addresses = estimation.destination_addresses.strip().split("\n")
        destinations_addresses_count = len(destinations_addresses)
        destinations = []

        # if destinations_addresses_count > maximum_addresses_to_compute:
        #     errmsg = u"Too many destinations. (%d > %d) \n" \
        #              u"Please contact us " \
        #              u"for support of that many destinations." \
        #              % (
        #                  destinations_addresses_count,
        #                  maximum_addresses_to_compute,
        #              )
        #     _handle_failure(estimation, errmsg)
        #     return _respond(errmsg)

        for i in range(destinations_addresses_count):

            destination_address = destinations_addresses[i].strip()

            if not destination_address:
                continue

            if destination_address in failed_addresses:
                continue

            try:
                destination = geocoder.geocode(
                    destination_address.encode('utf-8')
                )
            except geopy.exc.GeopyError as e:
                warning = u"Ignoring destination `%s` " \
                          u"since we failed to geocode it.\n%s\n" % (
                            destination_address, e,
                )
                response += warning
                _handle_warning(estimation, warning)
                failed_addresses.append(destination_address)
                continue

            if destination is None:
                warning = u"Ignoring destination `%s` " \
                          u"since we failed to geocode it.\n" % (
                            destination_address,
                )
                response += warning
                _handle_warning(estimation, warning)
                failed_addresses.append(destination_address)
                continue

            # print(repr(destination.raw))

            destinations.append(destination)

            response += u"Destination `%s` geocoded to `%s` (%f, %f).\n" % (
                destination_address, destination.address,
                destination.latitude, destination.longitude,
            )

        geocoder.close()

        # GTFO IF NO ORIGINS OR NO DESTINATIONS ###############################

        if 0 == len(origins):
            response += u"Failed to geocode ALL the origin(s).\n"
            _handle_failure(estimation, response)
            return _respond(response)
        if 0 == len(destinations):
            response += u"Failed to geocode ALL the destination(s).\n"
            _handle_failure(estimation, response)
            return _respond(response)

        # GRAB AND CONFIGURE THE EMISSION MODELS ##############################

        emission_models = estimation.get_models()
        # print(emission_models)

        extra_config = {
            'use_train_below_distance': estimation.use_train_below_km,
            # 'use_train_below_distance': 300,
        }

        # PREPARE RESULT DICTIONARY THAT WILL BE STORED #######################

        results = {}

        # UTILITY PRIVATE FUNCTION(S) #########################################

        def _get_city_key(_location):
            return _location.address.split(',')[0]

            # _city_key = _location.address
            # # if 'address100' in _location.raw['address']:
            # #     _city_key = _location.raw['address']['address100']
            # if 'city' in _location.raw['address']:
            #     _city_key = _location.raw['address']['city']
            # elif 'state' in _location.raw['address']:
            #     _city_key = _location.raw['address']['state']
            # return _city_key

        def _get_country_key(_location):
            return _location.address.split(',')[-1]

        def compute_one_to_many(
                _origin,
                _destinations,
                _extra_config=None
        ):
            _results = {}
            footprints = {}

            destinations_by_city_key = {}

            cities_sum_foot = {}
            cities_sum_dist = {}
            cities_dict_first_model = None
            for model in emission_models:
                cities_dict = {}
                for _destination in _destinations:
                    footprint = model.compute_travel_footprint(
                        origin_latitude=_origin.latitude,
                        origin_longitude=_origin.longitude,
                        destination_latitude=_destination.latitude,
                        destination_longitude=_destination.longitude,
                        extra_config=_extra_config,
                    )

                    _key = _get_city_key(_destination)

                    destinations_by_city_key[_key] = _destination

                    if _key not in cities_dict:
                        cities_dict[_key] = {
                            'city': _key,
                            'country': _get_country_key(_destination),
                            'address': _destination.address,
                            'footprint': 0.0,
                            'distance': 0.0,
                            'train_trips': 0,
                            'plane_trips': 0,
                        }
                    cities_dict[_key]['footprint'] += footprint['co2eq_kg']
                    cities_dict[_key]['distance'] += footprint['distance_km']
                    cities_dict[_key]['train_trips'] += footprint['train_trips']
                    cities_dict[_key]['plane_trips'] += footprint['plane_trips']
                    if _key not in cities_sum_foot:
                        cities_sum_foot[_key] = 0.0
                    cities_sum_foot[_key] += footprint['co2eq_kg']
                    if _key not in cities_sum_dist:
                        cities_sum_dist[_key] = 0.0
                    cities_sum_dist[_key] += footprint['distance_km']

                cities = sorted(cities_dict.values(), key=lambda c: c['footprint'])

                footprints[model.slug] = {
                    'cities': cities,
                }

                if cities_dict_first_model is None:
                    cities_dict_first_model = deepcopy(cities_dict)

            _results['footprints'] = footprints

            total_foot = 0.0
            total_dist = 0.0
            total_train_trips = 0
            total_plane_trips = 0

            cities_mean_dict = {}
            for city in cities_sum_foot.keys():
                city_mean_foot = 1.0 * cities_sum_foot[city] / len(emission_models)
                city_mean_dist = 1.0 * cities_sum_dist[city] / len(emission_models)
                city_train_trips = cities_dict_first_model[city]['train_trips']
                city_plane_trips = cities_dict_first_model[city]['plane_trips']
                cities_mean_dict[city] = {
                    'address': destinations_by_city_key[city].address,
                    'city': city,
                    'country': _get_country_key(destinations_by_city_key[city]),
                    'footprint': city_mean_foot,
                    'distance': city_mean_dist,
                    'train_trips': city_train_trips,
                    'plane_trips': city_plane_trips,
                }
                total_foot += city_mean_foot
                total_dist += city_mean_dist
                total_train_trips += city_train_trips
                total_plane_trips += city_plane_trips

            cities_mean = [cities_mean_dict[k] for k in cities_mean_dict.keys()]
            cities_mean = sorted(cities_mean, key=lambda c: c['footprint'])

            _results['mean_footprint'] = {  # DEPRECATED?
                'cities': cities_mean
            }
            _results['cities'] = cities_mean

            _results['total'] = total_foot  # DEPRECATED
            _results['footprint'] = total_foot

            _results['distance'] = total_dist
            _results['train_trips'] = total_train_trips
            _results['plane_trips'] = total_plane_trips

            return _results

        # SCENARIO A : One Origin, At Least One Destination ###################
        #
        # We compute the sum of each of the travels' footprint,
        # for each of the Emission Models, and present a mean of all Models.
        #
        if 1 == len(origins):
            estimation.scenario = ScenarioEnum.one_to_many
            results = compute_one_to_many(
                _origin=origins[0],
                _destinations=destinations,
                _extra_config=extra_config,
            )

        # SCENARIO B : At Least One Origin, One Destination ###################
        #
        # Same as A for now.
        #
        elif 1 == len(destinations):
            estimation.scenario = ScenarioEnum.many_to_one
            results = compute_one_to_many(
                _origin=destinations[0],
                _destinations=origins,
                _extra_config=extra_config,
            )

        # SCENARIO C : At Least One Origin, At Least One Destination ##########
        #
        # Run Scenario A for each Destination, and expose optimum Destination.
        #
        else:
            estimation.scenario = ScenarioEnum.many_to_many
            unique_city_keys = []
            result_cities = []
            for destination in destinations:
                city_key = _get_city_key(destination)
                country_key = _get_country_key(destination)

                if city_key in unique_city_keys:
                    continue
                else:
                    unique_city_keys.append(city_key)

                city_results = compute_one_to_many(
                    _origin=destination,
                    _destinations=origins,
                    _extra_config=extra_config,
                )
                city_results['city'] = city_key
                city_results['country'] = country_key
                city_results['address'] = destination.address
                result_cities.append(city_results)

            result_cities = sorted(result_cities, key=lambda c: int(c['footprint']))
            results = {
                'cities': result_cities,
            }

        # WRITE RESULTS INTO THE DATABASE #####################################

        estimation.status = StatusEnum.success
        # Don't use YAML, it is too slow for big data.
        # estimation.output_yaml = u"%s" % yaml_dump(results)
        estimation.informations = response
        estimation.set_output_dict(results)
        db.session.commit()

        # SEND AN EMAIL #######################################################

        send_email(
            to_recipient=pi_email,
            subject="[TCFM] Run completed: %s" % estimation.public_id,
            message=render_template(
                'email/run_completed.html',
                base_url=base_url,
                estimation=estimation,
            )
        )

        # FINALLY, RESPOND ####################################################

        # YAML is too expensive, let's not
        # response += yaml_dump(results) + "\n"

        return _respond(response)

    except Exception as e:
        errmsg = u"Computation failed : %s" % (e,)
        # errmsg = u"%s\n\n%s" % (errmsg, traceback.format_exc())
        if estimation:
            _handle_failure(estimation, errmsg)
        return _respond(errmsg)


unavailable_statuses = [StatusEnum.pending, StatusEnum.working]


@main.route("/estimation/<public_id>.<extension>")
def consult_estimation(public_id, extension):
    try:
        estimation = Estimation.query \
            .filter_by(public_id=public_id) \
            .one()
    except sqlalchemy.orm.exc.NoResultFound:
        return abort(404)
    except Exception as e:
        # TODO: log?
        return abort(500)

    # allowed_formats = ['html']
    # if format not in allowed_formats:
    #     abort(404)

    if extension in ['xhtml', 'html', 'htm']:

        if estimation.status in unavailable_statuses:
            return render_template(
                "estimation-queue-wait.html",
                estimation=estimation
            )
        else:
            estimation_output = estimation.get_output_dict()
            estimation_sum = 0
            if estimation_output:
                for city in estimation_output['cities']:
                    estimation_sum += city['footprint']

            return render_template(
                "estimation.html",
                estimation=estimation,
                estimation_output=estimation_output,
                estimation_sum=estimation_sum,
            )

    elif extension in ['yaml', 'yml']:

        if estimation.status in unavailable_statuses:
            abort(404)

        return u"%s" % yaml_dump(estimation.get_output_dict())
        # return estimation.output_yaml

    elif 'csv' == extension:

        if estimation.status in unavailable_statuses:
            abort(404)

        si = StringIO()
        cw = csv.writer(si, quoting=csv.QUOTE_ALL)
        cw.writerow([
            u"city", u"country", u"address",
            u"co2_kg",
            u"distance_km",
            u"plane trips_amount",
            u'train trips_amount',
        ])

        results = estimation.get_output_dict()
        for city in results['cities']:
            cw.writerow([
                city['city'].encode(OUT_ENCODING),
                city['country'].encode(OUT_ENCODING),
                city['address'].encode(OUT_ENCODING),
                round(city['footprint'], 3),
                round(city['distance'], 3),
                city['plane_trips'],
                city['train_trips'],
            ])

        # return si.getvalue().strip('\r\n')
        return Response(
            response=si.getvalue().strip('\r\n'),
            headers={
                'Content-type': 'text/csv',
                'Content-disposition': "attachment; filename=%s.csv"%public_id,
            },
        )

    else:
        abort(404)


def get_locations(addresses):
    geocoder = CachedGeocoder()

    warnings = []
    addresses_count = len(addresses)
    failed_addresses = []
    locations = []

    for i in range(addresses_count):

        address = addresses[i].strip()
        unicode_address = address.encode('utf-8')

        if not address:
            continue

        if address in failed_addresses:
            continue

        try:
            location = geocoder.geocode(unicode_address)
        except geopy.exc.GeopyError as e:
            warning = u"Ignoring address `%s` " \
                      u"since we failed to geocode it.\n%s\n" % (
                          address, e,
                      )
            warnings.append(warning)
            failed_addresses.append(address)
            continue

        if location is None:
            warning = u"Ignoring address `%s` " \
                      u"since we failed to geocode it.\n" % (
                          address,
                      )
            warnings.append(warning)
            failed_addresses.append(address)
            failed_addresses.append(address)
            continue

        print("Geocoded Location:\n", repr(location.raw))
        locations.append(location)

        # response += u"Location `%s` geocoded to `%s` (%f, %f).\n" % (
        #     location_address, location.address,
        #     location.latitude, location.longitude,
        # )

    return locations, warnings


@main.route("/estimation/<public_id>/trips_to_destination_<destination_index>.csv")
def get_trips_csv(public_id, destination_index=0):
    destination_index = int(destination_index)
    try:
        estimation = Estimation.query \
            .filter_by(public_id=public_id) \
            .one()
    except sqlalchemy.orm.exc.NoResultFound:
        return abort(404)
    except Exception as e:
        return abort(500)

    if estimation.status in unavailable_statuses:
        abort(404)

    si = StringIO()
    cw = csv.writer(si, quoting=csv.QUOTE_ALL)
    cw.writerow([
        u"origin_lon",
        u"origin_lat",
        u"destination_lon",
        u"destination_lat",
    ])
    results = estimation.get_output_dict()

    if not 'cities' in results:
        abort(500)

    cities_length = len(results['cities'])

    if 0 == cities_length:
        abort(500, Response("No cities in results."))

    destination_index = min(destination_index, cities_length - 1)
    destination_index = max(destination_index, 0)

    city = results['cities'][destination_index]
    # >>> yaml_dump(city)
    # address: Paris, Ile - de - France, Metropolitan
    # France, France
    # city: Paris
    # country: ' France'
    # distance: 1752.7481921181325
    # footprint: 824.9628320703453
    # plane_trips: 1
    # train_trips: 0

    geocoder = CachedGeocoder()
    try:
        city_location = geocoder.geocode(city['address'].encode('utf-8'))
    except geopy.exc.GeopyError as e:
        return Response(
            response=si.getvalue().strip('\r\n'),
        )

    other_locations, _warnings = get_locations(estimation.origin_addresses.split("\n"))
    # destination_locations = get_locations(estimation.destination_addresses.split("\n"))
    for other_location in other_locations:
        cw.writerow([
            u"%.8f" % city_location.longitude,
            u"%.8f" % city_location.latitude,
            u"%.8f" % other_location.longitude,
            u"%.8f" % other_location.latitude,
        ])

    filename = "trips_to_destination_%d.csv" % destination_index
    return Response(
        response=si.getvalue().strip('\r\n'),
        headers={
            'Content-type': 'text/csv',
            'Content-disposition': 'attachment; filename=%s' % filename,
        },
    )


@main.route("/scaling_laws.csv")
def get_scaling_laws_csv():
    distances = content.laws_plot.distances
    models = get_emission_models()

    si = StringIO()
    cw = csv.writer(si, quoting=csv.QUOTE_ALL)

    header = ['distance'] + [model.slug for model in models]
    cw.writerow(header)

    for distance in distances:
        row = [distance]
        for model in models:
            row.append(model.compute_airplane_distance_footprint(distance))
        cw.writerow(row)

    return Response(
        response=si.getvalue().strip('\r\n'),
        headers={
            'Content-type': 'text/csv',
            'Content-disposition': 'attachment; filename=scaling_laws.csv',
        },
    )


@main.route("/test")
# @basic_auth.required
def dev_test():
    # email_content = render_template(
    #     'email/run_completed.html',
    #     # run=run,
    # )
    # send_email(
    #     'goutte@protonmail.com',
    #     subject=u"[TCFC] New run request",
    #     message=email_content
    # )

    return "ok"