travel_emission_linear_fit.py
4.86 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
from geopy.distance import great_circle
from flaskr.laws import BaseEmissionModel
class EmissionModel(BaseEmissionModel):
# @abc
def compute_travel_footprint(
self,
origin_latitude, # degrees
origin_longitude, # degrees
destination_latitude, # degrees
destination_longitude, # degrees
extra_config=None,
):
footprint = 0.0
distance = 0.0
#############################################
# TODO (?): find closest airport(s) and pick one
# We're going to need caching here as well.
from collections import namedtuple
origin_airport = namedtuple('Position', [
'latitude',
'longitude',
'address', # perhaps
])
origin_airport.latitude = origin_latitude
origin_airport.longitude = origin_longitude
destination_airport = namedtuple('Position', [
'latitude',
'longitude',
'address', # perhaps
])
destination_airport.latitude = destination_latitude
destination_airport.longitude = destination_longitude
#############################################
#############################################
# Let's start by computing the distance between the locations
great_circle_distance = self.get_distance_between(
origin_latitude=origin_airport.latitude,
origin_longitude=origin_airport.longitude,
destination_latitude=destination_airport.latitude,
destination_longitude=destination_airport.longitude,
)
distance += great_circle_distance
use_train = False
use_plane = False
if distance < extra_config['use_train_below_distance']:
use_train = True
else:
use_plane = True
# I.a Train travel footprint
if use_train:
footprint += self.compute_train_footprint(
distance=great_circle_distance
)
# I.b Airplane travel footprint
elif use_plane:
footprint += self.compute_airplane_footprint(
distance=great_circle_distance
)
# II.a Double it up since it's a round-trip
footprint *= 2.0
distance *= 2.0
return {
'distance_km': distance,
'co2eq_kg': footprint,
'train_trips': 1 if use_train else 0, # amount of round trips
'plane_trips': 1 if use_plane else 0, # amount of round trips
}
def compute_train_footprint(self, distance):
gcd_to_road_correction = 1.30 # See issue #32
train_emission = 0.023 # kg/km
return gcd_to_road_correction * distance * train_emission
def compute_airplane_footprint(
self,
distance
):
config = self.config.plane_emission_linear_fit
distance = config.connecting_flights_scale * distance
footprint = self.compute_airplane_distance_footprint(distance, config)
return footprint
def compute_airplane_distance_footprint(self, distance, config=None):
"""
:param distance: in km
:param config:
:return:
"""
if config is None:
config = self.config.plane_emission_linear_fit
distance = distance * config.scale_before + config.offset_before
footprint = self.apply_scaling_law(distance, config)
# We can totally ignore RFI in config by commenting the line below
footprint = self.adjust_footprint_for_rfi(footprint, config)
return footprint
def adjust_footprint_for_rfi(self, footprint, config):
return config.rfi * footprint
def apply_scaling_law(self, distance, config):
"""
:param distance: in km
:param config:
:return: float
"""
footprint = distance
for interval in config.intervals:
if interval.dmin <= distance < interval.dmax:
offset = interval.offset if interval.offset else 0
scale = interval.scale if interval.scale else 1
footprint = footprint * scale + offset
break
return footprint
def get_distance_between(
self,
origin_latitude,
origin_longitude,
destination_latitude,
destination_longitude
):
"""
:param origin_latitude:
:param origin_longitude:
:param destination_latitude:
:param destination_longitude:
:return: Distance in kilometers between the two locations,
along Earth's great circles.
"""
return great_circle(
(np.float(origin_latitude), np.float(origin_longitude)),
(np.float(destination_latitude), np.float(destination_longitude))
).kilometers