main_controller.py
27.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
import traceback
from copy import deepcopy
import geopy
import sqlalchemy
from os.path import join
from os import unlink, getenv
from flask import (
Blueprint,
Response,
render_template,
flash,
request,
redirect,
url_for,
abort,
send_from_directory,
)
from flaskr.extensions import cache, basic_auth, mail, send_email
from flaskr.forms import LoginForm, EstimateForm
from flaskr.models import db, User, Estimation, StatusEnum, ScenarioEnum
from flaskr.geocoder import CachedGeocoder
from flaskr.core import (
generate_unique_id,
get_emission_models,
increment_hit_counter,
)
from flaskr.content import content, base_url
from wtforms import validators
from yaml import safe_dump as yaml_dump
import csv
# from io import StringIO
from cStringIO import StringIO
import pandas
from pandas.compat import StringIO as PandasStringIO
main = Blueprint('main', __name__)
OUT_ENCODING = 'utf-8'
# -----------------------------------------------------------------------------
pi_email = "didier.barret@gmail.com" # todo: move to content YAML or .env
# pi_email = "goutte@protonmail.com"
# -----------------------------------------------------------------------------
@main.route('/favicon.ico')
@cache.cached(timeout=10000)
def favicon(): # we want it served from the root, not from static/
return send_from_directory(
join(main.root_path, '..', 'static', 'img'),
'favicon.ico', mimetype='image/vnd.microsoft.icon'
)
@main.route('/')
@main.route('/home')
@main.route('/home.html')
# @cache.cached(timeout=1000)
def home():
models = get_emission_models()
models_dict = {}
for model in models:
models_dict[model.slug] = model.__dict__
increment_hit_counter()
return render_template(
'home.html',
models=models_dict,
colors=[model.color for model in models],
labels=[model.name for model in models],
)
def gather_addresses(from_list, from_file):
"""
Gather a list of addresses from the provided list and file.
If the file is provided the list is ignored.
"""
addresses = []
if from_file:
file_mimetype = from_file.mimetype
file_contents = from_file.read()
rows_dicts = None
if 'text/csv' == file_mimetype:
rows_dicts = pandas \
.read_csv(PandasStringIO(file_contents)) \
.rename(str.lower, axis='columns') \
.to_dict(orient="row")
# Here are just *some* of the mimetypes that Microsoft's
# garbage spreadsheet files may have.
# application/vnd.ms-excel (official)
# application/msexcel
# application/x-msexcel
# application/x-ms-excel
# application/x-excel
# application/x-dos_ms_excel
# application/xls
# application/x-xls
# application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
# ... Let's check extension instead.
elif from_file.filename.endswith('xls') \
or from_file.filename.endswith('xlsx'):
rows_dicts = pandas \
.read_excel(PandasStringIO(file_contents)) \
.rename(str.lower, axis='columns') \
.to_dict(orient="row")
# Python 3.7 only
# elif from_file.filename.endswith('ods'):
# rows_dicts = read_ods(PandasStringIO(file_contents), 1) \
# .rename(str.lower, axis='columns') \
# .to_dict(orient="row")
if rows_dicts is not None:
for row_dict in rows_dicts:
if 'address' in row_dict:
addresses.append(row_dict['address'])
continue
address = None
if 'city' in row_dict:
address = row_dict['city']
if 'country' in row_dict:
if address is None:
address = row_dict['country']
else:
address += "," + row_dict['country']
if address is not None:
addresses.append(address)
else:
raise validators.ValidationError(
"We could not find Address data in the spreadsheet."
)
else:
raise validators.ValidationError(
"We could not find any data in the spreadsheet."
)
else:
addresses = from_list.replace("\r", '').split("\n")
clean_addresses = []
for address in addresses:
if not address:
continue
elif type(address).__name__ == 'str':
clean_addresses.append(unicode(address, 'utf-8'))
else:
clean_addresses.append(address)
addresses = clean_addresses
# Remove empty lines (if any) and white characters
addresses = [a.strip() for a in addresses if a]
return "\n".join(addresses)
@main.route("/estimate", methods=["GET", "POST"])
@main.route("/estimate.html", methods=["GET", "POST"])
def estimate(): # register new estimation request, more accurately
maximum_travels_to_compute = 1000000
models = get_emission_models()
form = EstimateForm()
def show_form():
return render_template("estimate.html", form=form, models=models)
if form.validate_on_submit():
estimation = Estimation()
# estimation.email = form.email.data
estimation.run_name = form.run_name.data
estimation.first_name = form.first_name.data
estimation.last_name = form.last_name.data
estimation.institution = form.institution.data
estimation.status = StatusEnum.pending
try:
estimation.origin_addresses = gather_addresses(
form.origin_addresses.data,
form.origin_addresses_file.data
)
except validators.ValidationError as e:
form.origin_addresses_file.errors.append(e.message)
return show_form()
try:
estimation.destination_addresses = gather_addresses(
form.destination_addresses.data,
form.destination_addresses_file.data
)
except validators.ValidationError as e:
form.destination_addresses_file.errors.append(e.message)
return show_form()
estimation.use_train_below_km = form.use_train_below_km.data
models_slugs = []
models_count = 0
for model in models:
if getattr(form, 'use_model_%s' % model.slug).data:
models_slugs.append(model.slug)
models_count += 1
estimation.models_slugs = u"\n".join(models_slugs)
travels_to_compute = \
models_count * \
(estimation.origin_addresses.count("\n") + 1) * \
(estimation.destination_addresses.count("\n") + 1)
if travels_to_compute > maximum_travels_to_compute:
message = """
Too many travels to compute. (%d > %d)
We're working on increasing this limitation.
Please contact us directly if you wish to boost this issue
or get a dedicated estimation.
""" % (travels_to_compute, maximum_travels_to_compute)
form.origin_addresses.errors.append(message)
form.destination_addresses.errors.append(message)
# form.origin_addresses_file.errors.append(message)
# form.destination_addresses_file.errors.append(message)
return show_form()
db.session.add(estimation)
db.session.commit()
send_email(
to_recipient=pi_email,
subject="[TCFM] New Estimation Request: %s" % estimation.public_id,
message=render_template(
'email/run_requested.html',
base_url=base_url,
estimation=estimation,
)
)
flash("Estimation request submitted successfully.", "success")
return redirect(url_for(
endpoint=".consult_estimation",
public_id=estimation.public_id,
extension='html'
))
# return render_template("estimate-debrief.html", form=form)
return show_form()
@main.route("/invalidate")
@main.route("/invalidate.html")
def invalidate():
stuck_estimations = Estimation.query \
.filter_by(status=StatusEnum.working) \
.all()
for estimation in stuck_estimations:
estimation.status = StatusEnum.failure
estimation.errors = "Invalidated. Try again."
db.session.commit()
return "Estimations invalidated: %d" % len(stuck_estimations)
@main.route("/invalidate-geocache")
@main.route("/invalidate-geocache.html")
def invalidate_geocache():
geocache = 'geocache.db'
unlink(geocache)
return "Geocache invalidated."
@main.route("/compute")
def compute(): # process the queue of estimation requests
# maximum_addresses_to_compute = 30000
def _respond(_msg):
return "<pre>%s</pre>" % _msg
def _handle_failure(_estimation, _failure_message):
_estimation.status = StatusEnum.failure
_estimation.errors = _failure_message
db.session.commit()
send_email(
to_recipient=pi_email,
subject="[TCFM] Run failed: %s" % _estimation.public_id,
message=render_template(
'email/run_failed.html',
base_url=base_url,
estimation=_estimation,
)
)
def _handle_warning(_estimation, _warning_message):
if not _estimation.warnings:
_estimation.warnings = _warning_message
else:
_estimation.warnings += _warning_message
# _estimation.warnings = u"%s\n%s" % \
# (_estimation.warnings, _warning_message)
db.session.commit()
estimation = None
try:
response = ""
count_working = Estimation.query \
.filter_by(status=StatusEnum.working) \
.count()
if 0 < count_working:
return _respond("Already working on estimation.")
try:
estimation = Estimation.query \
.filter_by(status=StatusEnum.pending) \
.order_by(Estimation.id.asc()) \
.first()
except sqlalchemy.orm.exc.NoResultFound:
return _respond("No estimation in the queue.")
except Exception as e:
return _respond("Database error: %s" % (e,))
if not estimation:
return _respond("No estimation in the queue.")
estimation.status = StatusEnum.working
db.session.commit()
response += u"Processing estimation `%s`...\n" % (
estimation.public_id
)
# GEOCODE ADDRESSES ###################################################
failed_addresses = []
geocoder = CachedGeocoder()
# GEOCODE ORIGINS #####################################################
origins_addresses = estimation.origin_addresses.strip().split("\n")
origins_addresses_count = len(origins_addresses)
origins = []
# if origins_addresses_count > maximum_addresses_to_compute:
# errmsg = u"Too many origins. (%d > %d) \n" \
# u"Please contact us " \
# u"for support of more origins." % \
# (origins_addresses_count, maximum_addresses_to_compute)
# _handle_failure(estimation, errmsg)
# return _respond(errmsg)
for i in range(origins_addresses_count):
origin_address = origins_addresses[i].strip()
if not origin_address:
continue
if origin_address in failed_addresses:
continue
try:
origin = geocoder.geocode(origin_address.encode('utf-8'))
except geopy.exc.GeopyError as e:
warning = u"Ignoring origin `%s` " \
u"since we failed to geocode it.\n%s\n" % (
origin_address, e,
)
response += warning
_handle_warning(estimation, warning)
failed_addresses.append(origin_address)
continue
if origin is None:
warning = u"Ignoring origin `%s` " \
u"since we failed to geocode it.\n" % (
origin_address,
)
response += warning
_handle_warning(estimation, warning)
failed_addresses.append(origin_address)
continue
origins.append(origin)
response += u"Origin `%s` geocoded to `%s` (%f, %f).\n" % (
origin_address, origin.address,
origin.latitude, origin.longitude,
)
# GEOCODE DESTINATIONS ################################################
destinations_addresses = estimation.destination_addresses.strip().split("\n")
destinations_addresses_count = len(destinations_addresses)
destinations = []
# if destinations_addresses_count > maximum_addresses_to_compute:
# errmsg = u"Too many destinations. (%d > %d) \n" \
# u"Please contact us " \
# u"for support of that many destinations." \
# % (
# destinations_addresses_count,
# maximum_addresses_to_compute,
# )
# _handle_failure(estimation, errmsg)
# return _respond(errmsg)
for i in range(destinations_addresses_count):
destination_address = destinations_addresses[i].strip()
if not destination_address:
continue
if destination_address in failed_addresses:
continue
try:
destination = geocoder.geocode(
destination_address.encode('utf-8')
)
except geopy.exc.GeopyError as e:
warning = u"Ignoring destination `%s` " \
u"since we failed to geocode it.\n%s\n" % (
destination_address, e,
)
response += warning
_handle_warning(estimation, warning)
failed_addresses.append(destination_address)
continue
if destination is None:
warning = u"Ignoring destination `%s` " \
u"since we failed to geocode it.\n" % (
destination_address,
)
response += warning
_handle_warning(estimation, warning)
failed_addresses.append(destination_address)
continue
# print(repr(destination.raw))
destinations.append(destination)
response += u"Destination `%s` geocoded to `%s` (%f, %f).\n" % (
destination_address, destination.address,
destination.latitude, destination.longitude,
)
geocoder.close()
# GTFO IF NO ORIGINS OR NO DESTINATIONS ###############################
if 0 == len(origins):
response += u"Failed to geocode ALL the origin(s).\n"
_handle_failure(estimation, response)
return _respond(response)
if 0 == len(destinations):
response += u"Failed to geocode ALL the destination(s).\n"
_handle_failure(estimation, response)
return _respond(response)
# GRAB AND CONFIGURE THE EMISSION MODELS ##############################
emission_models = estimation.get_models()
# print(emission_models)
extra_config = {
'use_train_below_distance': estimation.use_train_below_km,
# 'use_train_below_distance': 300,
}
# PREPARE RESULT DICTIONARY THAT WILL BE STORED #######################
results = {}
# UTILITY PRIVATE FUNCTION(S) #########################################
def _get_city_key(_location):
return _location.address.split(',')[0]
# _city_key = _location.address
# # if 'address100' in _location.raw['address']:
# # _city_key = _location.raw['address']['address100']
# if 'city' in _location.raw['address']:
# _city_key = _location.raw['address']['city']
# elif 'state' in _location.raw['address']:
# _city_key = _location.raw['address']['state']
# return _city_key
def _get_country_key(_location):
return _location.address.split(',')[-1]
def compute_one_to_many(
_origin,
_destinations,
_extra_config=None
):
_results = {}
footprints = {}
destinations_by_city_key = {}
cities_sum_foot = {}
cities_sum_dist = {}
cities_dict_first_model = None
for model in emission_models:
cities_dict = {}
for _destination in _destinations:
footprint = model.compute_travel_footprint(
origin_latitude=_origin.latitude,
origin_longitude=_origin.longitude,
destination_latitude=_destination.latitude,
destination_longitude=_destination.longitude,
extra_config=_extra_config,
)
_key = _get_city_key(_destination)
destinations_by_city_key[_key] = _destination
if _key not in cities_dict:
cities_dict[_key] = {
'city': _key,
'country': _get_country_key(_destination),
'address': _destination.address,
'footprint': 0.0,
'distance': 0.0,
'train_trips': 0,
'plane_trips': 0,
}
cities_dict[_key]['footprint'] += footprint['co2eq_kg']
cities_dict[_key]['distance'] += footprint['distance_km']
cities_dict[_key]['train_trips'] += footprint['train_trips']
cities_dict[_key]['plane_trips'] += footprint['plane_trips']
if _key not in cities_sum_foot:
cities_sum_foot[_key] = 0.0
cities_sum_foot[_key] += footprint['co2eq_kg']
if _key not in cities_sum_dist:
cities_sum_dist[_key] = 0.0
cities_sum_dist[_key] += footprint['distance_km']
cities = sorted(cities_dict.values(), key=lambda c: c['footprint'])
footprints[model.slug] = {
'cities': cities,
}
if cities_dict_first_model is None:
cities_dict_first_model = deepcopy(cities_dict)
_results['footprints'] = footprints
total_foot = 0.0
total_dist = 0.0
total_train_trips = 0
total_plane_trips = 0
cities_mean_dict = {}
for city in cities_sum_foot.keys():
city_mean_foot = 1.0 * cities_sum_foot[city] / len(emission_models)
city_mean_dist = 1.0 * cities_sum_dist[city] / len(emission_models)
city_train_trips = cities_dict_first_model[city]['train_trips']
city_plane_trips = cities_dict_first_model[city]['plane_trips']
cities_mean_dict[city] = {
'address': destinations_by_city_key[city].address,
'city': city,
'country': _get_country_key(destinations_by_city_key[city]),
'footprint': city_mean_foot,
'distance': city_mean_dist,
'train_trips': city_train_trips,
'plane_trips': city_plane_trips,
}
total_foot += city_mean_foot
total_dist += city_mean_dist
total_train_trips += city_train_trips
total_plane_trips += city_plane_trips
cities_mean = [cities_mean_dict[k] for k in cities_mean_dict.keys()]
cities_mean = sorted(cities_mean, key=lambda c: c['footprint'])
_results['mean_footprint'] = { # DEPRECATED?
'cities': cities_mean
}
_results['cities'] = cities_mean
_results['total'] = total_foot # DEPRECATED
_results['footprint'] = total_foot
_results['distance'] = total_dist
_results['train_trips'] = total_train_trips
_results['plane_trips'] = total_plane_trips
return _results
# SCENARIO A : One Origin, At Least One Destination ###################
#
# We compute the sum of each of the travels' footprint,
# for each of the Emission Models, and present a mean of all Models.
#
if 1 == len(origins):
estimation.scenario = ScenarioEnum.one_to_many
results = compute_one_to_many(
_origin=origins[0],
_destinations=destinations,
_extra_config=extra_config,
)
# SCENARIO B : At Least One Origin, One Destination ###################
#
# Same as A for now.
#
elif 1 == len(destinations):
estimation.scenario = ScenarioEnum.many_to_one
results = compute_one_to_many(
_origin=destinations[0],
_destinations=origins,
_extra_config=extra_config,
)
# SCENARIO C : At Least One Origin, At Least One Destination ##########
#
# Run Scenario A for each Destination, and expose optimum Destination.
#
else:
estimation.scenario = ScenarioEnum.many_to_many
unique_city_keys = []
result_cities = []
for destination in destinations:
city_key = _get_city_key(destination)
country_key = _get_country_key(destination)
if city_key in unique_city_keys:
continue
else:
unique_city_keys.append(city_key)
city_results = compute_one_to_many(
_origin=destination,
_destinations=origins,
_extra_config=extra_config,
)
city_results['city'] = city_key
city_results['country'] = country_key
city_results['address'] = destination.address
result_cities.append(city_results)
result_cities = sorted(result_cities, key=lambda c: int(c['footprint']))
results = {
'cities': result_cities,
}
# WRITE RESULTS INTO THE DATABASE #####################################
estimation.status = StatusEnum.success
# Don't use YAML, it is too slow for big data.
# estimation.output_yaml = u"%s" % yaml_dump(results)
estimation.informations = response
estimation.set_output_dict(results)
db.session.commit()
# SEND AN EMAIL #######################################################
send_email(
to_recipient=pi_email,
subject="[TCFM] Run completed: %s" % estimation.public_id,
message=render_template(
'email/run_completed.html',
base_url=base_url,
estimation=estimation,
)
)
# FINALLY, RESPOND ####################################################
# YAML is too expensive, let's not
# response += yaml_dump(results) + "\n"
return _respond(response)
except Exception as e:
errmsg = u"Computation failed : %s" % (e,)
# errmsg = u"%s\n\n%s" % (errmsg, traceback.format_exc())
if estimation:
_handle_failure(estimation, errmsg)
return _respond(errmsg)
@main.route("/estimation/<public_id>.<extension>")
def consult_estimation(public_id, extension):
try:
estimation = Estimation.query \
.filter_by(public_id=public_id) \
.one()
except sqlalchemy.orm.exc.NoResultFound:
return abort(404)
except Exception as e:
# TODO: log?
return abort(500)
# allowed_formats = ['html']
# if format not in allowed_formats:
# abort(404)
unavailable_statuses = [StatusEnum.pending, StatusEnum.working]
if extension in ['xhtml', 'html', 'htm']:
if estimation.status in unavailable_statuses:
return render_template(
"estimation-queue-wait.html",
estimation=estimation
)
else:
estimation_output = estimation.get_output_dict()
estimation_sum = 0
if estimation_output:
for city in estimation_output['cities']:
estimation_sum += city['footprint']
return render_template(
"estimation.html",
estimation=estimation,
estimation_output=estimation_output,
estimation_sum=estimation_sum,
)
elif extension in ['yaml', 'yml']:
if estimation.status in unavailable_statuses:
abort(404)
return u"%s" % yaml_dump(estimation.get_output_dict())
# return estimation.output_yaml
elif 'csv' == extension:
if estimation.status in unavailable_statuses:
abort(404)
si = StringIO()
cw = csv.writer(si, quoting=csv.QUOTE_ALL)
cw.writerow([
u"city", u"country", u"address",
u"co2_kg",
u"distance_km",
u"plane trips_amount",
u'train trips_amount',
])
results = estimation.get_output_dict()
for city in results['cities']:
cw.writerow([
city['city'].encode(OUT_ENCODING),
city['country'].encode(OUT_ENCODING),
city['address'].encode(OUT_ENCODING),
round(city['footprint'], 3),
round(city['distance'], 3),
city['plane_trips'],
city['train_trips'],
])
# return si.getvalue().strip('\r\n')
return Response(
response=si.getvalue().strip('\r\n'),
headers={
'Content-type': 'text/csv',
'Content-disposition': "attachment; filename=%s.csv"%public_id,
},
)
else:
abort(404)
@main.route("/scaling_laws.csv")
def get_scaling_laws_csv():
distances = content.laws_plot.distances
models = get_emission_models()
si = StringIO()
cw = csv.writer(si, quoting=csv.QUOTE_ALL)
header = ['distance'] + [model.slug for model in models]
cw.writerow(header)
for distance in distances:
row = [distance]
for model in models:
row.append(model.compute_airplane_distance_footprint(distance))
cw.writerow(row)
return Response(
response=si.getvalue().strip('\r\n'),
headers={
'Content-type': 'text/csv',
'Content-disposition': 'attachment; filename=scaling_laws.csv',
},
)
@main.route("/test")
# @basic_auth.required
def dev_test():
import os
# email_content = render_template(
# 'email/run_completed.html',
# # run=run,
# )
# send_email(
# 'goutte@protonmail.com',
# subject=u"[TCFC] New run request",
# message=email_content
# )
return "ok"