frames.tf 56.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
KPL/FK

Generic Frame Definition Kernel File for IMPEx
===========================================================================

   This frame kernel defines a number of mission independent frames that
   could be used by any of the users of 3DView IMPEx,
   and that are not ``built'' in the SPICE toolkit.


Version and Date
========================================================================

   Version 0.0 -- July 5, 2013 -- Laurent Beigbeder, GFI Informatique

      Initial version.

   Version 0.1 -- December 11, 2013 -- Laurent Beigbeder, GFI Informatique

      Saturn, Jupiter, Earth and small bodies frames added

   Version 0.2 -- April 29, 2015 -- Laurent Beigbeder, GFI Informatique

      JSM frame correction on dipole axis

References
========================================================================

   1. Frames Required Reading
   2. Kernel Pool Required Reading
   3. http://impex.latmos.ipsl.fr/doc/impex+spase_latest.xsd
   4. Khurana, 2004, pp. 3-5
   5. Russel, 1993, p. 694
   6. Zarka, 2005, pp. 375 377
   7. Seidelmann, P.K., Abalakin, V.K., Bursa, M., Davies, M.E., Bergh, C
      de, Lieske, J.H., Oberst, J., Simon, J.L., Standish, E.M., Stooke,
      and Thomas, P.C. (2002). ``Report of the IAU/IAG Working Group on
      Cartographic Coordinates and Rotational Elements of the Planets and
      Satellites: 2000'' Celestial Mechanics and Dynamical Astronomy, v.8
      Issue 1, pp. 83-111.
   8.   "Geophysical Coordinate Transformations", Christopher T. Russel,
           at: http://www-ssc.igpp.ucla.edu/personnel/
           russell/papers/gct1.html/#s3.4



Contact Information
========================================================================

   Laurent Beigbeder, GFI Informatique, laurent.beigbeder@gfi.fr


Implementation Notes
========================================================================

   This file is used by the SPICE system as follows: programs that make
   use of this frame kernel must 'load' the kernel, normally during
   program initialization. The SPICELIB routine FURNSH, the CSPICE
   function furnsh_c and the ICY function cspice_furnsh load a kernel
   file into the kernel pool as shown below.

      CALL FURNSH   ( 'frame_kernel_name' )
      furnsh_c      ( "frame_kernel_name" );
      cspice_furnsh ( 'frame_kernel_name' )

   This file was created and may be updated with a text editor or word
   processor.

   All frames of date are implemented with IAU 2000 report constants [7].


IMPEx Generic Frame Names and NAIF ID Codes
========================================================================
 
   The following names and NAIF ID codes are assigned to the generic
   frames defined in this kernel file:

      Frame Name     NAIF ID    Center   Description
      ------------   -------    -------  -------------------------------

   Frames list:

      MEME            1600199    JUPITER      EME2000 centered on Jupiter
      MECLIP          1601199    JUPITER      ECLIPJ2000 centered on Jupiter
      MESO            1603199    JUPITER

      JEME            1600599    JUPITER      EME2000 centered on Jupiter
      JECLIP          1601599    JUPITER      ECLIPJ2000 centered on Jupiter
      JSM             1602599    JUPITER
      JSO             1603599    JUPITER

      KEME            1600699    SATURN      EME2000 centered on Saturn
      KECLIP          1601699    SATURN      ECLIPJ2000 centered on Saturn
      KSM             1602699    SATURN      
      KSO             1603699    SATURN      

      67PCG_EME      161000012    67P/CG      EME2000 centered on comet 67P/CG
      LUTETIA_EME    162000021    LUTETIA     EME2000 centered on asteroid LUTETIA
      STEINS_EME     162002867    STEINS      EME2000 centered on asteroid STEINS
      HALLEY_EME     161000036    STEINS      EME2000 centered on asteroid HALLEY
      GRIGGSKELL_EME 161000034    STEINS      EME2000 centered on asteroid GRIGG-SKJELLERUP


     ------------------------------------------------------------------


   From RSSSD0002.TF with new ids and all of date J2000:

      Frame Name     NAIF ID    Center   Description
      ------------   -------    -------  -------------------------------
      HEE            1600010    SUN      Heliocentric Earth Ecliptic
      HEEQ           1601010    SUN      Heliocentric Earth Equatorial
      HCI            1602010    SUN      Heliocentric Inertial
      ------------------------------------------------------------------
      VSO            1600299    VENUS    Venus-centric Solar Orbital
      VME            1601299    VENUS    Venus Mean Equator
      ------------------------------------------------------------------
      GSE            1600399    EARTH    Geocentric Solar Ecliptic
      EME            1601399    EARTH    Earth Mean Equator and Equinox
      GSEQ           1602399    EARTH    Geocentric Solar Equatorial
      ECLIPDATE      1603399    EARTH    Earth Mean Ecliptic and Equinox
      ------------------------------------------------------------------
      LSE            1600301    MOON     Moon-centric Solar Ecliptic
      LME            1601301    MOON     Moon Mean Equator
      ------------------------------------------------------------------
      MME            1600499    MARS     Mars Mean Equator
      MSO            1602499    MARS     Mars-centric Solar Orbital


   From RBSP spice kernels http://rbsp.space.umn.edu/data/rbsp/teams/spice/fk/rbsp_general011.tf

      Frame Name     NAIF ID    Center   Description
      ------------   -------    -------  -------------------------------
      MAG            1604399    EARTH    geomagnetic coordinate system
      GSM            1605399    EARTH    geocentric solar magnetospheric system
      SM             1606399    EARTH    solar magnetic coordinates



   Frames are based on planetary constants, therefore a PCK file containing
   the orientation constants for planets has to be loaded before.

General Notes About This File
========================================================================

   About Required Data:
   --------------------

   Most of the dynamic frames defined in this file require at least one
   of the following kernels to be loaded prior to their evaluation, 
   normally during program initialization:

     - Planetary ephemeris data (SPK), i.e. DE405, DE421, etc.
     - Planetary Constants data (PCK), i.e. PCK00007.TPC, PCK00008.TPC.

   Note that loading different kernels will lead to different
   implementations of the same frame, providing different results from
   each other, in terms of state vectors referred to these frames.

   

       
Generic Dynamic Frames
========================================================================

   This section contains the definition of the Generic Dynamic Frames.

---------------------------------------------------------------
---------------------------------------------------------------
SUN
---------------------------------------------------------------
---------------------------------------------------------------

Heliocentric Earth Ecliptic frame (HEE)
---------------------------------------

   Definition:
   -----------
   The Heliocentric Earth Ecliptic frame is defined as follows (from [3]):

      -  X-Y plane is defined by the Earth Mean Ecliptic plane of date,
         therefore, the +Z axis is the primary vector,and it defined as
         the normal vector to the Ecliptic plane that points toward the
         north pole of date;

      -  +X axis is the component of the Sun-Earth vector that is
         orthogonal to the +Z axis;

      -  +Y axis completes the right-handed system;

      -  the origin of this frame is the Sun's center of mass.

   All vectors are geometric: no aberration corrections are used.



  \begindata

      FRAME_HEE                     =  1600010
      FRAME_1600010_NAME            = 'HEE' 
      FRAME_1600010_CLASS           =  5
      FRAME_1600010_CLASS_ID        =  1600010
      FRAME_1600010_CENTER          =  10
      FRAME_1600010_RELATIVE        = 'J2000'
      FRAME_1600010_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1600010_FAMILY          = 'TWO-VECTOR'
      FRAME_1600010_PRI_AXIS        = 'Z'
      FRAME_1600010_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1600010_PRI_FRAME       = 'ECLIPDATE'
      FRAME_1600010_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1600010_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1600010_SEC_AXIS        = 'X'
      FRAME_1600010_SEC_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
      FRAME_1600010_SEC_OBSERVER    = 'SUN'
      FRAME_1600010_SEC_TARGET      = 'EARTH'
      FRAME_1600010_SEC_ABCORR      = 'NONE'

  \begintext



Heliocentric Earth Equatorial frame (HEEQ)
------------------------------------------

   Definition:
   -----------
   The Heliocentric Earth Equatorial frame is defined as follows:

      -  X-Y plane is the solar equator of date, therefore, the +Z axis 
         is the primary vector and it is aligned to the Sun's north pole
         of date;

      -  +X axis is defined by the intersection between the Sun equatorial
         plane and the solar central meridian of date as seen from the Earth.
         The solar central meridian of date is defined as the meridian of the
         Sun that is turned toward the Earth. Therefore, +X axis is the
         component of the Sun-Earth vector that is orthogonal to the +Z axis;

      -  +Y axis completes the right-handed system;

      -  the origin of this frame is the Sun's center of mass.

   All vectors are geometric: no aberration corrections are used.


  \begindata

      FRAME_HEEQ                    =  1601010
      FRAME_1601010_NAME            = 'HEEQ'
      FRAME_1601010_CLASS           =  5
      FRAME_1601010_CLASS_ID        =  1601010
      FRAME_1601010_CENTER          =  10
      FRAME_1601010_RELATIVE        = 'J2000'
      FRAME_1601010_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1601010_FAMILY          = 'TWO-VECTOR'
      FRAME_1601010_PRI_AXIS        = 'Z'
      FRAME_1601010_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1601010_PRI_FRAME       = 'IAU_SUN'
      FRAME_1601010_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1601010_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1601010_SEC_AXIS        = 'X'
      FRAME_1601010_SEC_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
      FRAME_1601010_SEC_OBSERVER    = 'SUN'
      FRAME_1601010_SEC_TARGET      = 'EARTH'
      FRAME_1601010_SEC_ABCORR      = 'NONE'

  \begintext


Heliocentric Inertial frame (HCI)
------------------------------------------------------

   The Heliocentric Inertial Frame is defined as follows (from [3]):

    -  X-Y plane is defined by the Sun's equator of epoch J2000: the +Z
       axis, primary vector, is parallel to the Sun's rotation axis of
       epoch J2000, pointing toward the Sun's north pole;

    -  +X axis is defined by the ascending node of the Sun's equatorial
       plane on the ecliptic plane of J2000;

    -  +Y completes the right-handed frame;

    -  the origin of this frame is the Sun's center of mass.

   Note that even when the original frame defined in [3] is referenced
   to the orientation of the Solar equator in J1900, the HCI frame is
   based on J2000 instead.

   It is possible to define this frame as a dynamic frame frozen at
   J2000 epoch, using the following set of keywords:

      FRAME_HCI                     =  1602010
      FRAME_1602010_NAME            = 'HCI' 
      FRAME_1602010_CLASS           =  5
      FRAME_1602010_CLASS_ID        =  1602010
      FRAME_1602010_CENTER          =  10
      FRAME_1602010_RELATIVE        = 'J2000'
      FRAME_1602010_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1602010_FAMILY          = 'TWO-VECTOR'
      FRAME_1602010_PRI_AXIS        = 'Z'
      FRAME_1602010_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1602010_PRI_FRAME       = 'IAU_SUN'
      FRAME_1602010_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1602010_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1602010_SEC_AXIS        = 'Y'
      FRAME_1602010_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_1602010_SEC_FRAME       = 'ECLIPJ2000'
      FRAME_1602010_SEC_SPEC        = 'RECTANGULAR'
      FRAME_1602010_SEC_VECTOR      = ( 0, 0, 1 )

   In the above implementation of this frame, the primary vector is
   defined as a constant vector in the IAU_SUN frame, which is a
   PCK-based frame, therefore a PCK file containing the orientation
   constants for the Sun has to be loaded before using this frame.

   Due to the fact that the transformation between the HCI frame and J2000
   frame is fixed and time independent, the HCI frame can be implemented
   as a fixed offset frame relative to the J2000 frame. The rotation matrix
   provided in the definition was computed using the following PXFORM call:

      CALL PXFORM( 'HCI', 'J2000', 0.D0, MATRIX )

   using the implementation of the frame given above, and the following PCK:

      PCK00008.TPC

   which contains the following constants for the SUN (from [5]):

      BODY10_POLE_RA         = (  286.13       0.          0. )
      BODY10_POLE_DEC        = (   63.87       0.          0. )

   This new implementation of the frame is preferred for computing efficiency
   reasons.

  \begindata

      FRAME_HCI                     = 1602010
      FRAME_1602010_NAME            = 'HCI'         
      FRAME_1602010_CLASS           = 4
      FRAME_1602010_CLASS_ID        = 1602010
      FRAME_1602010_CENTER          = 10 
      TKFRAME_1602010_SPEC          = 'MATRIX'
      TKFRAME_1602010_RELATIVE      = 'J2000'
      TKFRAME_1602010_MATRIX        = (

         0.2458856764679510       0.8893142951159845       0.3855649343628876
        -0.9615455562494245       0.1735802308455697       0.2128380762847277
         0.1223534934723278      -0.4230720836476433       0.8977971010607901

                                     )

  \begintext

---------------------------------------------------------------
---------------------------------------------------------------
MERCURY
---------------------------------------------------------------


  \begindata

      FRAME_MEME                    =  1600199
      FRAME_1600199_NAME            = 'MEME'
      FRAME_1600199_CLASS           =  5
      FRAME_1600199_CLASS_ID        =  1600199
      FRAME_1600199_CENTER          =  199
      FRAME_1600199_RELATIVE        = 'J2000'
      FRAME_1600199_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1600199_FAMILY          = 'TWO-VECTOR'
      FRAME_1600199_PRI_AXIS        = 'Z'
      FRAME_1600199_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1600199_PRI_FRAME       = 'J2000'
      FRAME_1600199_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1600199_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1600199_SEC_AXIS        = 'X'
      FRAME_1600199_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_1600199_SEC_FRAME       = 'J2000'
      FRAME_1600199_SEC_SPEC        = 'RECTANGULAR'
      FRAME_1600199_SEC_VECTOR      = ( 1, 0, 0 )


  \begintext

  \begindata

      FRAME_MECLIP                  =  1601199
      FRAME_1601199_NAME            = 'MECLIP'
      FRAME_1601199_CLASS           =  5
      FRAME_1601199_CLASS_ID        =  1600199
      FRAME_1601199_CENTER          =  199
      FRAME_1601199_RELATIVE        = 'J2000'
      FRAME_1601199_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1601199_FAMILY          = 'TWO-VECTOR'
      FRAME_1601199_PRI_AXIS        = 'Z'
      FRAME_1601199_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1601199_PRI_FRAME       = 'ECLIPDATE'
      FRAME_1601199_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1601199_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1601199_SEC_AXIS        = 'X'
      FRAME_1601199_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_1601199_SEC_FRAME       = 'ECLIPDATE'
      FRAME_1601199_SEC_SPEC        = 'RECTANGULAR'
      FRAME_1601199_SEC_VECTOR      = ( 1, 0, 0 )

  \begintext

---------------------------------------------------------------
Mercury-centric Solar Orbital frame (MESO)
----------------------------------------
   
   Definition:
   -----------
   The Mercury-centric Solar Orbital frame is defined as follows:

      -  The position of the Sun relative to Mercury is the primary vector:
         +X axis points from Mercury to the Sun;

      -  The inertially referenced velocity of the Sun relative to Mercury
         is the secondary vector: +Y axis is the component of this
         velocity vector orthogonal to the +X axis;

      -  +Z axis completes the right-handed system;

      -  the origin of this frame is Mercury center of mass.

   All vectors are geometric: no corrections are used.

  \begindata

      FRAME_MESO                     =  1603199
      FRAME_1603199_NAME            = 'MESO'
      FRAME_1603199_CLASS           =  5
      FRAME_1603199_CLASS_ID        =  1603199
      FRAME_1603199_CENTER          =  199
      FRAME_1603199_RELATIVE        = 'J2000'
      FRAME_1603199_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1603199_FAMILY          = 'TWO-VECTOR'
      FRAME_1603199_PRI_AXIS        = 'X'
      FRAME_1603199_PRI_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
      FRAME_1603199_PRI_OBSERVER    = 'MERCURY'
      FRAME_1603199_PRI_TARGET      = 'SUN'
      FRAME_1603199_PRI_ABCORR      = 'NONE'
      FRAME_1603199_SEC_AXIS        = 'Y'
      FRAME_1603199_SEC_VECTOR_DEF  = 'OBSERVER_TARGET_VELOCITY'
      FRAME_1603199_SEC_OBSERVER    = 'MERCURY'
      FRAME_1603199_SEC_TARGET      = 'SUN'
      FRAME_1603199_SEC_ABCORR      = 'NONE'
      FRAME_1603199_SEC_FRAME       = 'J2000'

  \begintext

---------------------------------------------------------------
---------------------------------------------------------------
VENUS
---------------------------------------------------------------
---------------------------------------------------------------
Venus-centric Solar Orbital frame (VSO)
----------------------------------------
   
   Definition:
   -----------
   The Venus-centric Solar Orbital frame is defined as follows:

      -  The position of the Sun relative to Venus is the primary vector:
         +X axis points from Venus to the Sun;

      -  The inertially referenced velocity of the Sun relative to Venus
         is the secondary vector: +Y axis is the component of this
         velocity vector orthogonal to the +X axis;

      -  +Z axis completes the right-handed system;

      -  the origin of this frame is Venus' center of mass.

   All vectors are geometric: no corrections are used.

  \begindata

      FRAME_VSO                     =  1600299
      FRAME_1600299_NAME            = 'VSO' 
      FRAME_1600299_CLASS           =  5
      FRAME_1600299_CLASS_ID        =  1600299
      FRAME_1600299_CENTER          =  299
      FRAME_1600299_RELATIVE        = 'J2000'
      FRAME_1600299_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1600299_FAMILY          = 'TWO-VECTOR'
      FRAME_1600299_PRI_AXIS        = 'X'
      FRAME_1600299_PRI_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
      FRAME_1600299_PRI_OBSERVER    = 'VENUS'
      FRAME_1600299_PRI_TARGET      = 'SUN'
      FRAME_1600299_PRI_ABCORR      = 'NONE'
      FRAME_1600299_SEC_AXIS        = 'Y'
      FRAME_1600299_SEC_VECTOR_DEF  = 'OBSERVER_TARGET_VELOCITY'
      FRAME_1600299_SEC_OBSERVER    = 'VENUS'
      FRAME_1600299_SEC_TARGET      = 'SUN'
      FRAME_1600299_SEC_ABCORR      = 'NONE'
      FRAME_1600299_SEC_FRAME       = 'J2000'

  \begintext


Venus Mean Equator of Date frame (VME)
--------------------------------------

   Definition:
   -----------   
   The Venus Mean Equatorial of Date frame (also known as Venus Mean
   Equator and IAU vector of Date frame) is defined as follows (from [5]):

      -  X-Y plane is defined by the Venus equator of date, and
         the +Z axis is parallel to the Venus' rotation axis of date,
         pointing toward the North side of the invariant plane;

      -  +X axis is defined by the intersection of the Venus' equator
         of date with the Earth Mean Equator of J2000;

      -  +Y axis completes the right-handed system;

      -  the origin of this frame is Venus' center of mass.

   All vectors are geometric: no corrections are used.


  \begindata

      FRAME_VME                     =  1601299
      FRAME_1601299_NAME            = 'VME' 
      FRAME_1601299_CLASS           =  5
      FRAME_1601299_CLASS_ID        =  1601299
      FRAME_1601299_CENTER          =  299
      FRAME_1601299_RELATIVE        = 'J2000'
      FRAME_1601299_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1601299_FAMILY          = 'TWO-VECTOR'
      FRAME_1601299_PRI_AXIS        = 'Z'
      FRAME_1601299_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1601299_PRI_FRAME       = 'IAU_VENUS' 
      FRAME_1601299_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1601299_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1601299_SEC_AXIS        = 'Y'
      FRAME_1601299_SEC_VECTOR_DEF  = 'CONSTANT'                
      FRAME_1601299_SEC_FRAME       = 'J2000'
      FRAME_1601299_SEC_SPEC        = 'RECTANGULAR'
      FRAME_1601299_SEC_VECTOR      = ( 0, 0, 1 )

  \begintext



---------------------------------------------------------------
---------------------------------------------------------------
EARTH
---------------------------------------------------------------
---------------------------------------------------------------
Geocentric Solar Ecliptic frame (GSE)
---------------------------------------

   Definition:
   -----------
   The Geocentric Solar Ecliptic frame is defined as follows (from [3]):

      -  X-Y plane is defined by the Earth Mean Ecliptic plane of date:
         the +Z axis, primary vector, is the normal vector to this plane,
         always pointing toward the North side of the invariant plane;

      -  +X axis is the component of the Earth-Sun vector that is orthogonal
         to the +Z axis;

      -  +Y axis completes the right-handed system;

      -  the origin of this frame is the Sun's center of mass.

   All the vectors are geometric: no aberration corrections are used.

  \begindata

      FRAME_GSE                     =  1600399
      FRAME_1600399_NAME            = 'GSE' 
      FRAME_1600399_CLASS           =  5
      FRAME_1600399_CLASS_ID        =  1600399
      FRAME_1600399_CENTER          =  399
      FRAME_1600399_RELATIVE        = 'J2000'
      FRAME_1600399_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1600399_FAMILY          = 'TWO-VECTOR'
      FRAME_1600399_PRI_AXIS        = 'Z'
      FRAME_1600399_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1600399_PRI_FRAME       = 'ECLIPDATE'
      FRAME_1600399_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1600399_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1600399_SEC_AXIS        = 'X'
      FRAME_1600399_SEC_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
      FRAME_1600399_SEC_OBSERVER    = 'EARTH'
      FRAME_1600399_SEC_TARGET      = 'SUN'  
      FRAME_1600399_SEC_ABCORR      = 'NONE'

  \begintext

Earth Mean Equator and Equinox of Date frame (EME)
--------------------------------------------------

   Definition:
   -----------
   The Earth Mean Equator and Equinox of Date frame is defined as follows:

      -  +Z axis is aligned with the north-pointing vector normal to the
         mean equatorial plane of the Earth;

      -  +X axis points along the ``mean equinox'', which is defined as the
         intersection of the Earth's mean orbital plane with the Earth's mean
         equatorial plane. It is aligned with the cross product of the
         north-pointing vectors normal to the Earth's mean equator and mean
         orbit plane of date;

      -  +Y axis is the cross product of the Z and X axes and completes the
         right-handed frame;

      -  the origin of this frame is the Earth's center of mass.

   The mathematical model used to obtain the orientation of the Earth's mean
   equator and equinox of date frame is the 1976 IAU precession model, built
   into SPICE.

   The base frame for the 1976 IAU precession model is J2000.


   Remarks:
   --------
   None.


  \begindata

      FRAME_EME                     =  1601399
      FRAME_1601399_NAME            =  'EME'        
      FRAME_1601399_CLASS           =  5
      FRAME_1601399_CLASS_ID        =  1601399
      FRAME_1601399_CENTER          =  399
      FRAME_1601399_RELATIVE        = 'J2000'
      FRAME_1601399_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1601399_FAMILY          = 'MEAN_EQUATOR_AND_EQUINOX_OF_DATE'
      FRAME_1601399_PREC_MODEL      = 'EARTH_IAU_1976'
      FRAME_1601399_ROTATION_STATE  = 'ROTATING'        
 
  \begintext


Geocentric Solar Equatorial frame (GSEQ)
----------------------------------------

   Definition:
   -----------
   The Geocentric Solar Equatorial frame is defined as follows (from [7]):

      -  +X axis is the position of the Sun relative to the Earth; it's
         the primary vector and points from the Earth to the Sun;

      -  +Z axis is the component of the Sun's north pole of date orthogonal
         to the +X axis;

      -  +Y axis completes the right-handed reference frame;

      -  the origin of this frame is the Earth's center of mass.

   All the vectors are geometric: no aberration corrections are used.

  \begindata

      FRAME_GSEQ                    =  1602399
      FRAME_1602399_NAME            = 'GSEQ'
      FRAME_1602399_CLASS           =  5
      FRAME_1602399_CLASS_ID        =  1602399
      FRAME_1602399_CENTER          =  399
      FRAME_1602399_RELATIVE        = 'J2000'
      FRAME_1602399_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1602399_FAMILY          = 'TWO-VECTOR'
      FRAME_1602399_PRI_AXIS        = 'X'
      FRAME_1602399_PRI_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
      FRAME_1602399_PRI_OBSERVER    = 'EARTH'
      FRAME_1602399_PRI_TARGET      = 'SUN'
      FRAME_1602399_PRI_ABCORR      = 'NONE'
      FRAME_1602399_SEC_AXIS        = 'Z'
      FRAME_1602399_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_1602399_SEC_FRAME       = 'IAU_SUN'
      FRAME_1602399_SEC_SPEC        = 'RECTANGULAR'
      FRAME_1602399_SEC_VECTOR      = ( 0, 0, 1 )

  \begintext

Earth Mean Ecliptic and Equinox of Date frame (ECLIPDATE)
---------------------------------------------------------

   Definition:
   -----------
   The Earth Mean Ecliptic and Equinox of Date frame is defined as follows:

      -  +Z axis is aligned with the north-pointing vector normal to the
         mean orbital plane of the Earth;

      -  +X axis points along the ``mean equinox'', which is defined as the
         intersection of the Earth's mean orbital plane with the Earth's mean
         equatorial plane. It is aligned with the cross product of the
         north-pointing vectors normal to the Earth's mean equator and mean
         orbit plane of date;

      -  +Y axis is the cross product of the Z and X axes and completes the
         right-handed frame;

      -  the origin of this frame is the Earth's center of mass.

   The mathematical model used to obtain the orientation of the Earth's mean
   equator and equinox of date frame is the 1976 IAU precession model, built
   into SPICE.

   The mathematical model used to obtain the mean orbital plane of the Earth
   is the 1980 IAU obliquity model, also built into SPICE.

   The base frame for the 1976 IAU precession model is J2000.

   Required Data:
   --------------
   The usage of this frame does not require additional data since both the
   precession and the obliquity models used to define this frame are already
   built into SPICE.


   Remarks:
   --------
   None.


  \begindata

      FRAME_ECLIPDATE                =  1603399   
      FRAME_1603399_NAME             = 'ECLIPDATE'
      FRAME_1603399_CLASS            =  5
      FRAME_1603399_CLASS_ID         =  1603399
      FRAME_1603399_CENTER           =  399
      FRAME_1603399_RELATIVE         = 'J2000'
      FRAME_1603399_DEF_STYLE        = 'PARAMETERIZED'
      FRAME_1603399_FAMILY           = 'MEAN_ECLIPTIC_AND_EQUINOX_OF_DATE'
      FRAME_1603399_PREC_MODEL       = 'EARTH_IAU_1976'
      FRAME_1603399_OBLIQ_MODEL      = 'EARTH_IAU_1980'
      FRAME_1603399_ROTATION_STATE   = 'ROTATING'
 
  \begintext



      MAG Frame:
      ---------------------------------------------------------

      Definition From [8]:

      Geomagnetic - geocentric. Z axis is parallel to the geomagnetic
      dipole axis, positive north. X is in the plane defined by the Z axis
      and the Earth's rotation axis. If N is a unit vector from the Earth's
      center to the north geographic pole, the signs of the X and Y axes are
      given by Y = N x Z, X = Y x Z.. See Russell, 1971, and
      <http://cdpp.cnes.fr/00428.pdf>
      

      The implementation of this frame is complicated in that the definition
      of the IGRF dipole is a function of time and the IGRF model cannot be
      directly incorporated into Spice. However, Spice does allow one to define
      time dependent Euler angles. Meaning, you can define an Euler angle
      that rotates GEO to MAG for a given ephemeris time t:

         V           = r(t) * V
          GEI                  MAG
      
      where r(t) is a time dependent Euler angle representation of a
      rotation. Spice allows for the time dependence to be represented by a
      polynomial expansion. This expansion can be fit using the IGRF model,
      thus representing the IGRF dipole axis.

      IGRF-11 (the 11th version) was fit for the period of 1990-2020, which
      should encompass the mission and will also make this kernel useful for
      performing Magnetic dipole frame transformations for the 1990's and
      the 2000's. However, IGRF-11 is not as accurate for this entire time
      interval. The years between 1945-2005 are labeled definitive, although
      only back to 1990 was used in the polynomial fit. 2005-2010 is
      provisional, and may change with IGRF-12. 2010-2015 was only a
      prediction. Beyond 2015, the predict is so far in the future as to not
      be valid. So to make the polynomials behave nicely in this region (in
      case someone does try to use this frame during that time), the
      2015 prediction was extended until 2020. So for low precision, this
      kernel can be used for the years 2015-2020. Any times less than 1990
      and greater than 2020 were not used in the fit, and therefore may be
      vastly incorrect as the polynomials may diverge outside of this region.
      These coefficients will be refit when IGRF-12 is released.
      
      Also, since the rest of the magnetic dipole frames are defined from
      this one, similar time ranges should be used for those frames.

                  Definitive           Provisional   Predict    Not Valid
       |------------------------------|+++++++++++|###########|???????????|
     1990                           2005        2010        2015        2020

      In addition to the error inherit in the model itself, the polynomial
      expansion cannot perfectly be fit the IGRF dipole. The maximum error
      on the fit is .2 milliradians, or .01 degrees. 

      The MAG frame is achieved by first rotating the GEO frame about Z by
      the longitude degrees, and then rotating about the Y axis by the
      amount of latitude. This matches the new frame to Russell's definition.

      \begindata

      FRAME_MAG                    = 1604399
      FRAME_1604399_NAME           = 'MAG'
      FRAME_1604399_CLASS          = 5
      FRAME_1604399_CLASS_ID       = 1604399
      FRAME_1604399_CENTER         = 399
      FRAME_1604399_RELATIVE       = 'IAU_EARTH'
      FRAME_1604399_DEF_STYLE      = 'PARAMETERIZED'
      FRAME_1604399_FAMILY         = 'EULER'
      FRAME_1604399_EPOCH          = @2010-JAN-1/00:00:00
      FRAME_1604399_AXES           = ( 3,  2,  1 )
      FRAME_1604399_UNITS          = 'DEGREES'
      FRAME_1604399_ANGLE_1_COEFFS = ( +72.19592169505606
                                        +2.6506950233619764E-9
                                        +1.6897777301495875E-18
                                        -3.725022474684048E-27
                                        -6.395891803742159E-36 )
      FRAME_1604399_ANGLE_2_COEFFS = (  -9.98363089063021
                                        +1.7304386827492741E-9 
                                        +5.686537610447754E-19 
                                        -5.208835662700353E-28
                                        -9.569975244363123E-37 )
      FRAME_1604399_ANGLE_3_COEFFS = ( 0 )

      \begintext


      GSM Frame:
      ---------------------------------------------------------

      Definition From [8]:

      Geocentric Solar Magnetospheric - A coordinate system where
      the X axis is from Earth to Sun, Z axis is northward in a plane
      containing the X axis and the geomagnetic dipole axis.
      See Russell, 1971

      Thus, +X is identical as GSE +X and is the primary, and +Z is the
      secondary and is the MAG +Z.

      \begindata

      FRAME_GSM                    =  1605399
      FRAME_1605399_NAME           = 'GSM'
      FRAME_1605399_CLASS          = 5
      FRAME_1605399_CLASS_ID       = 1605399
      FRAME_1605399_CENTER         = 399
      FRAME_1605399_RELATIVE       = 'J2000'
      FRAME_1605399_DEF_STYLE      = 'PARAMETERIZED'
      FRAME_1605399_FAMILY         = 'TWO-VECTOR'
      FRAME_1605399_PRI_AXIS       = 'X'
      FRAME_1605399_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
      FRAME_1605399_PRI_OBSERVER   = 'EARTH'
      FRAME_1605399_PRI_TARGET     = 'SUN'
      FRAME_1605399_PRI_ABCORR     = 'NONE'
      FRAME_1605399_SEC_AXIS       = 'Z'
      FRAME_1605399_SEC_VECTOR_DEF = 'CONSTANT'
      FRAME_1605399_SEC_SPEC       = 'RECTANGULAR'
      FRAME_1605399_SEC_FRAME      = 'MAG'
      FRAME_1605399_SEC_VECTOR     = (0, 0, 1)

      \begintext


      SM Frame:
      ---------------------------------------------------------

      Definition From [8]:

      Solar Magnetic - A geocentric coordinate system where the
      Z axis is northward along Earth's dipole axis,
      X axis is in plane of z axis and Earth-Sun line, positive sunward.
      See Russell, 1971.

      Thus, this is much like GSM, except that now the +Z axis is the
      primary, meaning it is parallel to the dipole vector, and +X is the
      secondary. Since the X-Z plane is the same as GSM's X-Z plane, the Y
      axis is the same as GSM.

      \begindata

      FRAME_SM                     =  1606399
      FRAME_1606399_NAME           = 'SM'
      FRAME_1606399_CLASS          = 5
      FRAME_1606399_CLASS_ID       = 1606399
      FRAME_1606399_CENTER         = 399
      FRAME_1606399_RELATIVE       = 'J2000'
      FRAME_1606399_DEF_STYLE      = 'PARAMETERIZED'
      FRAME_1606399_FAMILY         = 'TWO-VECTOR'
      FRAME_1606399_PRI_AXIS       = 'Z'
      FRAME_1606399_PRI_VECTOR_DEF = 'CONSTANT'
      FRAME_1606399_PRI_SPEC       = 'RECTANGULAR'
      FRAME_1606399_PRI_FRAME      = 'MAG'
      FRAME_1606399_PRI_VECTOR     = (0, 0, 1)     
      FRAME_1606399_SEC_AXIS       = 'X'
      FRAME_1606399_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
      FRAME_1606399_SEC_OBSERVER   = 'EARTH'
      FRAME_1606399_SEC_TARGET     = 'SUN'
      FRAME_1606399_SEC_ABCORR     = 'NONE'

      \begintext

---------------------------------------------------------------
MOON
---------------------------------------------------------------
Moon-centric Solar Ecliptic frame (LSE)
---------------------------------------

   Definition:
   -----------     
   The Moon-centric Solar Ecliptic frame is defined as follows:

      -  The position of the Sun relative to Moon is the primary vector:
         +X axis points from Moon to the Sun;
 
      -  The inertially referenced velocity of the Sun relative to Moon
         is the secondary vector: +Y axis is the component of this
         velocity vector orthogonal to the +X axis;

      -  +Z axis completes the right-handed system;

      -  the origin of this frame is Moon's center of mass.

   All vectors are geometric: no corrections are used.

  \begindata

      FRAME_LSE                     =  1600301
      FRAME_1600301_NAME            = 'LSE'
      FRAME_1600301_CLASS           =  5
      FRAME_1600301_CLASS_ID        =  1600301
      FRAME_1600301_CENTER          =  301
      FRAME_1600301_RELATIVE        = 'J2000'
      FRAME_1600301_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1600301_FAMILY          = 'TWO-VECTOR'
      FRAME_1600301_PRI_AXIS        = 'X'
      FRAME_1600301_PRI_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
      FRAME_1600301_PRI_OBSERVER    = 'MOON' 
      FRAME_1600301_PRI_TARGET      = 'SUN'
      FRAME_1600301_PRI_ABCORR      = 'NONE'
      FRAME_1600301_SEC_AXIS        = 'Y'
      FRAME_1600301_SEC_VECTOR_DEF  = 'OBSERVER_TARGET_VELOCITY'
      FRAME_1600301_SEC_OBSERVER    = 'MOON' 
      FRAME_1600301_SEC_TARGET      = 'SUN'
      FRAME_1600301_SEC_ABCORR      = 'NONE'
      FRAME_1600301_SEC_FRAME       = 'J2000'

  \begintext


Moon Mean Equator of Date frame (LME)
-------------------------------------

   Definition:
   -----------   
   The Moon Mean Equator of Date frame (also known as Moon Mean Equator
   and IAU vector of Date frame) is defined as follows (from [5]):

      -  X-Y plane is defined by the Moon equator of date, and the
         +Z axis, primary vector of this frame, is parallel to the
         Moon's rotation axis of date, pointing toward the North side
         of the invariant plane;

      -  +X axis is defined by the intersection of the Moon's equator
         of date with the Earth Mean Equator of J2000;

      -  +Y axis completes the right-handed system;

      -  the origin of this frame is Moon's center of mass.

   All vectors are geometric: no corrections are used.

  \begindata

      FRAME_LME                     =  1601301
      FRAME_1601301_NAME            = 'LME' 
      FRAME_1601301_CLASS           =  5
      FRAME_1601301_CLASS_ID        =  1601301
      FRAME_1601301_CENTER          =  301
      FRAME_1601301_RELATIVE        = 'J2000'
      FRAME_1601301_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1601301_FAMILY          = 'TWO-VECTOR'
      FRAME_1601301_PRI_AXIS        = 'Z'
      FRAME_1601301_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1601301_PRI_FRAME       = 'IAU_MOON'  
      FRAME_1601301_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1601301_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1601301_SEC_AXIS        = 'Y'
      FRAME_1601301_SEC_VECTOR_DEF  = 'CONSTANT'                
      FRAME_1601301_SEC_FRAME       = 'J2000'
      FRAME_1601301_SEC_SPEC        = 'RECTANGULAR'
      FRAME_1601301_SEC_VECTOR      = ( 0, 0, 1 )

  \begintext


---------------------------------------------------------------
---------------------------------------------------------------
MARS
---------------------------------------------------------------
---------------------------------------------------------------
Mars Mean Equator of Date frame (MME)
-------------------------------------

   Definition:
   -----------   
   The Mars Mean Equator of Date frame (also known as Mars Mean Equator
   and IAU vector of Date frame) is defined as follows (from [5]):

      -  X-Y plane is defined by the Mars equator of date: the
         +Z axis, primary vector, is parallel to the Mars' rotation
         axis of date, pointing toward the North side of the invariant
         plane;

      -  +X axis is defined by the intersection of the Mars' equator of
         date with the J2000 equator;

      -  +Y axis completes the right-handed system;

      -  the origin of this frame is Mars' center of mass.


   All vectors are geometric: no corrections are used.


  \begindata

      FRAME_MME                     =  1600499
      FRAME_1600499_NAME            = 'MME' 
      FRAME_1600499_CLASS           =  5
      FRAME_1600499_CLASS_ID        =  1600499
      FRAME_1600499_CENTER          =  499
      FRAME_1600499_RELATIVE        = 'J2000'
      FRAME_1600499_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1600499_FAMILY          = 'TWO-VECTOR'
      FRAME_1600499_PRI_AXIS        = 'Z'
      FRAME_1600499_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1600499_PRI_FRAME       = 'IAU_MARS' 
      FRAME_1600499_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1600499_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1600499_SEC_AXIS        = 'Y'
      FRAME_1600499_SEC_VECTOR_DEF  = 'CONSTANT'                
      FRAME_1600499_SEC_FRAME       = 'J2000'
      FRAME_1600499_SEC_SPEC        = 'RECTANGULAR'
      FRAME_1600499_SEC_VECTOR      = ( 0, 0, 1 )

  \begintext


Mars-centric Solar Orbital frame (MSO)
--------------------------------------------------------

   Definition:
   -----------      
   The Mars-centric Solar Orbital frame is defined as follows:

      -  The position of the Sun relative to Mars is the primary vector:
         +X axis points from Mars to the Sun;

      -  The inertially referenced velocity of the Sun relative to Mars
         is the secondary vector: +Y axis is the component of this
         velocity vector orthogonal to the +X axis;

      -  +Z axis completes the right-handed system;

      -  the origin of this frame is Mars' center of mass.

   All vectors are geometric: no corrections are used.


  \begindata

      FRAME_MSO                     =  1601499
      FRAME_1601499_NAME            = 'MSO'
      FRAME_1601499_CLASS           =  5
      FRAME_1601499_CLASS_ID        =  1601499
      FRAME_1601499_CENTER          =  499
      FRAME_1601499_RELATIVE        = 'J2000'
      FRAME_1601499_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1601499_FAMILY          = 'TWO-VECTOR'
      FRAME_1601499_PRI_AXIS        = 'X'
      FRAME_1601499_PRI_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
      FRAME_1601499_PRI_OBSERVER    = 'MARS' 
      FRAME_1601499_PRI_TARGET      = 'SUN'
      FRAME_1601499_PRI_ABCORR      = 'NONE'
      FRAME_1601499_SEC_AXIS        = 'Y'
      FRAME_1601499_SEC_VECTOR_DEF  = 'OBSERVER_TARGET_VELOCITY'
      FRAME_1601499_SEC_OBSERVER    = 'MARS' 
      FRAME_1601499_SEC_TARGET      = 'SUN'
      FRAME_1601499_SEC_ABCORR      = 'NONE'
      FRAME_1601499_SEC_FRAME       = 'J2000'

  \begintext





---------------------------------------------------------------
---------------------------------------------------------------
JUPITER
---------------------------------------------------------------
---------------------------------------------------------------

  \begindata

      FRAME_JEME                    =  1600599
      FRAME_1600599_NAME            = 'JEME'
      FRAME_1600599_CLASS           =  5
      FRAME_1600599_CLASS_ID        =  1600599
      FRAME_1600599_CENTER          =  599
      FRAME_1600599_RELATIVE        = 'J2000'
      FRAME_1600599_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1600599_FAMILY          = 'TWO-VECTOR'
      FRAME_1600599_PRI_AXIS        = 'Z'
      FRAME_1600599_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1600599_PRI_FRAME       = 'J2000'
      FRAME_1600599_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1600599_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1600599_SEC_AXIS        = 'X'
      FRAME_1600599_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_1600599_SEC_FRAME       = 'J2000'
      FRAME_1600599_SEC_SPEC        = 'RECTANGULAR'
      FRAME_1600599_SEC_VECTOR      = ( 1, 0, 0 )

  \begintext


  \begindata

      FRAME_JECLIP                  =  1601599
      FRAME_1601599_NAME            = 'JECLIP'
      FRAME_1601599_CLASS           =  5
      FRAME_1601599_CLASS_ID        =  1600599
      FRAME_1601599_CENTER          =  599
      FRAME_1601599_RELATIVE        = 'J2000'
      FRAME_1601599_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1601599_FAMILY          = 'TWO-VECTOR'
      FRAME_1601599_PRI_AXIS        = 'Z'
      FRAME_1601599_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1601599_PRI_FRAME       = 'ECLIPDATE'
      FRAME_1601599_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1601599_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1601599_SEC_AXIS        = 'X'
      FRAME_1601599_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_1601599_SEC_FRAME       = 'ECLIPDATE'
      FRAME_1601599_SEC_SPEC        = 'RECTANGULAR'
      FRAME_1601599_SEC_VECTOR      = ( 1, 0, 0 )

  \begintext



   The JSM frame is defined in [3] as follows:

      Jovian Solar Magnetospheric (JSM)
      ---------------------------------------------------
      A coordinate system where the X axis is from Jupiter to Sun,
      Z axis is northward in a plane containing the X axis and the Jovian dipole axis.

   Dipole is 159 longitude and 80 latitude from [4][5][6] documents.

   
      \begindata

         FRAME_JSM                     = 1602599
         FRAME_1602599_NAME            = 'JSM'
         FRAME_1602599_CLASS           = 5
         FRAME_1602599_CLASS_ID        = 1602599
         FRAME_1602599_CENTER          = 599
         FRAME_1602599_RELATIVE        = 'J2000'
         FRAME_1602599_DEF_STYLE       = 'PARAMETERIZED'
         FRAME_1602599_FAMILY          = 'TWO-VECTOR'
         FRAME_1602599_PRI_AXIS        = 'X'
         FRAME_1602599_PRI_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
         FRAME_1602599_PRI_OBSERVER    = 'JUPITER'
         FRAME_1602599_PRI_TARGET      = 'SUN'
         FRAME_1602599_PRI_ABCORR      = 'NONE'
         FRAME_1602599_SEC_AXIS        = 'Z'
         FRAME_1602599_SEC_VECTOR_DEF  = 'CONSTANT'
         FRAME_1602599_SEC_SPEC        = 'LATITUDINAL'
         FRAME_1602599_SEC_UNITS       = 'DEGREES'
         FRAME_1602599_SEC_LONGITUDE   = 159.00
         FRAME_1602599_SEC_LATITUDE    =  80.00
         FRAME_1602599_SEC_FRAME       = 'IAU_JUPITER'

      \begintext 

   The JSO frame is defined in [3] as follows:

      Jovian Solar Orbital Coordinates (JSO)
      ---------------------------------------------------
      Coordinate Sytem Related to Jupiter Jovian Solar Orbita
      (X anti-sunward, Y along the orbital velocity direction)

      \begindata

         FRAME_JSO                     = 1603599
         FRAME_1603599_NAME            = 'JSO'
         FRAME_1603599_CLASS           = 5
         FRAME_1603599_CLASS_ID        = 1603599
         FRAME_1603599_CENTER          = 599
         FRAME_1603599_RELATIVE        = 'J2000'
         FRAME_1603599_DEF_STYLE       = 'PARAMETERIZED'
         FRAME_1603599_FAMILY          = 'TWO-VECTOR'
         FRAME_1603599_PRI_AXIS        = 'X'
         FRAME_1603599_PRI_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
         FRAME_1603599_PRI_OBSERVER    = 'JUPITER' 
         FRAME_1603599_PRI_TARGET      = 'SUN'
         FRAME_1603599_PRI_ABCORR      = 'NONE'
         FRAME_1603599_SEC_AXIS        = 'Y'
         FRAME_1603599_SEC_VECTOR_DEF  = 'OBSERVER_TARGET_VELOCITY'
         FRAME_1603599_SEC_OBSERVER    = 'JUPITER' 
         FRAME_1603599_SEC_TARGET      = 'SUN'
         FRAME_1603599_SEC_ABCORR      = 'NONE'
         FRAME_1603599_SEC_FRAME       = 'J2000'

      \begintext 




---------------------------------------------------------------
GPHIO
---------------------------------------

   Definition:
   -----------
   the jovian plasma.
In this Cartesian coordinate system (referred to as GphiO),
X is along theflow direction, Y is along the Ganymede–Jupiter vector, and Z is along the spin axis.
These coordinates are analogous to the earth-centered GSE coordinates that relate to the direction of
flow of the solar wind onto Earth’s environment

   All the vectors are geometric: no aberration corrections are used.

  \begindata

      FRAME_GPHIO                     =  1604599
      FRAME_1604599_NAME            = 'GPHIO' 
      FRAME_1604599_CLASS           =  5
      FRAME_1604599_CLASS_ID        =  1604599
      FRAME_1604599_CENTER          =  503
      FRAME_1604599_RELATIVE        = 'J2000'
      FRAME_1604599_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1604599_FAMILY          = 'TWO-VECTOR'
      FRAME_1604599_PRI_AXIS        = 'Z'
      FRAME_1604599_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1604599_PRI_FRAME       = 'ECLIPDATE'
      FRAME_1604599_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1604599_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1604599_SEC_AXIS        = 'X'
      FRAME_1604599_SEC_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
      FRAME_1604599_SEC_OBSERVER    = 'GANYMEDE'
      FRAME_1604599_SEC_TARGET      = 'JUPITER'
      FRAME_1604599_SEC_ABCORR      = 'NONE'

  \begintext




---------------------------------------------------------------
SATURN
---------------------------------------------------------------


  \begindata

      FRAME_KEME                    =  1600699
      FRAME_1600699_NAME            = 'KEME'
      FRAME_1600699_CLASS           =  5
      FRAME_1600699_CLASS_ID        =  1600699
      FRAME_1600699_CENTER          =  699
      FRAME_1600699_RELATIVE        = 'J2000'
      FRAME_1600699_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1600699_FAMILY          = 'TWO-VECTOR'
      FRAME_1600699_PRI_AXIS        = 'Z'
      FRAME_1600699_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1600699_PRI_FRAME       = 'J2000'
      FRAME_1600699_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1600699_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1600699_SEC_AXIS        = 'X'
      FRAME_1600699_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_1600699_SEC_FRAME       = 'J2000'
      FRAME_1600699_SEC_SPEC        = 'RECTANGULAR'
      FRAME_1600699_SEC_VECTOR      = ( 1, 0, 0 )

  \begintext


  \begindata

      FRAME_KECLIP                  =  1601699
      FRAME_1601699_NAME            = 'KECLIP'
      FRAME_1601699_CLASS           =  5
      FRAME_1601699_CLASS_ID        =  1600699
      FRAME_1601699_CENTER          =  699
      FRAME_1601699_RELATIVE        = 'J2000'
      FRAME_1601699_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_1601699_FAMILY          = 'TWO-VECTOR'
      FRAME_1601699_PRI_AXIS        = 'Z'
      FRAME_1601699_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_1601699_PRI_FRAME       = 'ECLIPDATE'
      FRAME_1601699_PRI_SPEC        = 'RECTANGULAR'
      FRAME_1601699_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_1601699_SEC_AXIS        = 'X'
      FRAME_1601699_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_1601699_SEC_FRAME       = 'ECLIPDATE'
      FRAME_1601699_SEC_SPEC        = 'RECTANGULAR'
      FRAME_1601699_SEC_VECTOR      = ( 1, 0, 0 )

  \begintext



   The KSM frame is defined in [3] as follows:

      Kronocentric Solar Magnetospheric Coordinates (KSM)
      ---------------------------------------------------
      A coordinate system where the X axis is from Saturn to Sun,
      Z axis is northward in a plane containing the X axis and the
      Kronian dipole axis.

   Some sources refers magnetic dipole at 180 degrees longitude, 89.99 degrees latitude
   in the IAU_SATURN frame. Other source make assume that the dipole axis is 
   parallel to the spin axis.
   
      \begindata

         FRAME_KSM                     = 1602699
         FRAME_1602699_NAME            = 'KSM'
         FRAME_1602699_CLASS           = 5
         FRAME_1602699_CLASS_ID        = 1602699
         FRAME_1602699_CENTER          = 699
         FRAME_1602699_RELATIVE        = 'J2000'
         FRAME_1602699_DEF_STYLE       = 'PARAMETERIZED'
         FRAME_1602699_FAMILY          = 'TWO-VECTOR'
         FRAME_1602699_PRI_AXIS        = 'X'
         FRAME_1602699_PRI_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
         FRAME_1602699_PRI_OBSERVER    = 'SATURN'
         FRAME_1602699_PRI_TARGET      = 'SUN'
         FRAME_1602699_PRI_ABCORR      = 'NONE'
         FRAME_1602699_SEC_AXIS        = 'Z'
         FRAME_1602699_SEC_VECTOR_DEF  = 'CONSTANT'
         FRAME_1602699_SEC_SPEC        = 'LATITUDINAL'
         FRAME_1602699_SEC_UNITS       = 'DEGREES'
         FRAME_1602699_SEC_LONGITUDE   = 180.00
         FRAME_1602699_SEC_LATITUDE    =  89.99
         FRAME_1602699_SEC_FRAME       = 'IAU_SATURN'

      \begintext 

   The KSO frame is defined in [3] as follows:

      Kronocentric Solar Orbital Coordinates (KSO)
      ---------------------------------------------------
      Coordinate Sytem Related to Saturn Kronian Solar Orbital
      (X anti-sunward, Y along the orbital velocity direction)

      \begindata

         FRAME_KSO                     = 1603699
         FRAME_1603699_NAME            = 'KSO'
         FRAME_1603699_CLASS           = 5
         FRAME_1603699_CLASS_ID        = 1603699
         FRAME_1603699_CENTER          = 699
         FRAME_1603699_RELATIVE        = 'J2000'
         FRAME_1603699_DEF_STYLE       = 'PARAMETERIZED'
         FRAME_1603699_FAMILY          = 'TWO-VECTOR'
         FRAME_1603699_PRI_AXIS        = 'X'
         FRAME_1603699_PRI_VECTOR_DEF  = 'OBSERVER_TARGET_POSITION'
         FRAME_1603699_PRI_OBSERVER    = 'SATURN' 
         FRAME_1603699_PRI_TARGET      = 'SUN'
         FRAME_1603699_PRI_ABCORR      = 'NONE'
         FRAME_1603699_SEC_AXIS        = 'Y'
         FRAME_1603699_SEC_VECTOR_DEF  = 'OBSERVER_TARGET_VELOCITY'
         FRAME_1603699_SEC_OBSERVER    = 'SATURN' 
         FRAME_1603699_SEC_TARGET      = 'SUN'
         FRAME_1603699_SEC_ABCORR      = 'NONE'
         FRAME_1603699_SEC_FRAME       = 'J2000'

      \begintext 


---------------------------------------------------------------
Small bodies
---------------------------------------------------------------

Churyumov gerasimenko

  \begindata

      FRAME_67PCG_EME                 =  161000012
      FRAME_161000012_NAME            = '67PCG_EME'
      FRAME_161000012_CLASS           =  5
      FRAME_161000012_CLASS_ID        =  161000012
      FRAME_161000012_CENTER          =  1000012
      FRAME_161000012_RELATIVE        = 'J2000'
      FRAME_161000012_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_161000012_FAMILY          = 'TWO-VECTOR'
      FRAME_161000012_PRI_AXIS        = 'Z'
      FRAME_161000012_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_161000012_PRI_FRAME       = 'J2000'
      FRAME_161000012_PRI_SPEC        = 'RECTANGULAR'
      FRAME_161000012_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_161000012_SEC_AXIS        = 'X'
      FRAME_161000012_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_161000012_SEC_FRAME       = 'J2000'
      FRAME_161000012_SEC_SPEC        = 'RECTANGULAR'
      FRAME_161000012_SEC_VECTOR      = ( 1, 0, 0 )

  \begintext

Lutetia

  \begindata

      FRAME_LUTETIA_EME               =  162000021
      FRAME_162000021_NAME            = 'LUTETIA_EME'
      FRAME_162000021_CLASS           =  5
      FRAME_162000021_CLASS_ID        =  162000021
      FRAME_162000021_CENTER          =  2000021
      FRAME_162000021_RELATIVE        = 'J2000'
      FRAME_162000021_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_162000021_FAMILY          = 'TWO-VECTOR'
      FRAME_162000021_PRI_AXIS        = 'Z'
      FRAME_162000021_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_162000021_PRI_FRAME       = 'J2000'
      FRAME_162000021_PRI_SPEC        = 'RECTANGULAR'
      FRAME_162000021_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_162000021_SEC_AXIS        = 'X'
      FRAME_162000021_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_162000021_SEC_FRAME       = 'J2000'
      FRAME_162000021_SEC_SPEC        = 'RECTANGULAR'
      FRAME_162000021_SEC_VECTOR      = ( 1, 0, 0 )

  \begintext

Steins

  \begindata

      FRAME_STEINS_EME                =  162002867
      FRAME_162002867_NAME            = 'STEINS_EME'
      FRAME_162002867_CLASS           =  5
      FRAME_162002867_CLASS_ID        =  162002867
      FRAME_162002867_CENTER          =  2002867
      FRAME_162002867_RELATIVE        = 'J2000'
      FRAME_162002867_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_162002867_FAMILY          = 'TWO-VECTOR'
      FRAME_162002867_PRI_AXIS        = 'Z'
      FRAME_162002867_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_162002867_PRI_FRAME       = 'J2000'
      FRAME_162002867_PRI_SPEC        = 'RECTANGULAR'
      FRAME_162002867_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_162002867_SEC_AXIS        = 'X'
      FRAME_162002867_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_162002867_SEC_FRAME       = 'J2000'
      FRAME_162002867_SEC_SPEC        = 'RECTANGULAR'
      FRAME_162002867_SEC_VECTOR      = ( 1, 0, 0 )

  \begintext

Halley

  \begindata

      FRAME_HALLEY_EME                =  161000036
      FRAME_161000036_NAME            = 'HALLEY_EME'
      FRAME_161000036_CLASS           =  5
      FRAME_161000036_CLASS_ID        =  161000036
      FRAME_161000036_CENTER          =  1000036
      FRAME_161000036_RELATIVE        = 'J2000'
      FRAME_161000036_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_161000036_FAMILY          = 'TWO-VECTOR'
      FRAME_161000036_PRI_AXIS        = 'Z'
      FRAME_161000036_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_161000036_PRI_FRAME       = 'J2000'
      FRAME_161000036_PRI_SPEC        = 'RECTANGULAR'
      FRAME_161000036_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_161000036_SEC_AXIS        = 'X'
      FRAME_161000036_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_161000036_SEC_FRAME       = 'J2000'
      FRAME_161000036_SEC_SPEC        = 'RECTANGULAR'
      FRAME_161000036_SEC_VECTOR      = ( 1, 0, 0 )

  \begintext


GRIGG-SKJELLERUP

  \begindata

      FRAME_GRIGGSKELL_EME            =  161000034
      FRAME_161000034_NAME            = 'GRIGGSKELL_EME'
      FRAME_161000034_CLASS           =  5
      FRAME_161000034_CLASS_ID        =  161000034
      FRAME_161000034_CENTER          =  1000034
      FRAME_161000034_RELATIVE        = 'J2000'
      FRAME_161000034_DEF_STYLE       = 'PARAMETERIZED'
      FRAME_161000034_FAMILY          = 'TWO-VECTOR'
      FRAME_161000034_PRI_AXIS        = 'Z'
      FRAME_161000034_PRI_VECTOR_DEF  = 'CONSTANT'
      FRAME_161000034_PRI_FRAME       = 'J2000'
      FRAME_161000034_PRI_SPEC        = 'RECTANGULAR'
      FRAME_161000034_PRI_VECTOR      = ( 0, 0, 1 )
      FRAME_161000034_SEC_AXIS        = 'X'
      FRAME_161000034_SEC_VECTOR_DEF  = 'CONSTANT'
      FRAME_161000034_SEC_FRAME       = 'J2000'
      FRAME_161000034_SEC_SPEC        = 'RECTANGULAR'
      FRAME_161000034_SEC_VECTOR      = ( 1, 0, 0 )

  \begintext