frames.tf
56.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
KPL/FK
Generic Frame Definition Kernel File for IMPEx
===========================================================================
This frame kernel defines a number of mission independent frames that
could be used by any of the users of 3DView IMPEx,
and that are not ``built'' in the SPICE toolkit.
Version and Date
========================================================================
Version 0.0 -- July 5, 2013 -- Laurent Beigbeder, GFI Informatique
Initial version.
Version 0.1 -- December 11, 2013 -- Laurent Beigbeder, GFI Informatique
Saturn, Jupiter, Earth and small bodies frames added
Version 0.2 -- April 29, 2015 -- Laurent Beigbeder, GFI Informatique
JSM frame correction on dipole axis
References
========================================================================
1. Frames Required Reading
2. Kernel Pool Required Reading
3. http://impex.latmos.ipsl.fr/doc/impex+spase_latest.xsd
4. Khurana, 2004, pp. 3-5
5. Russel, 1993, p. 694
6. Zarka, 2005, pp. 375 377
7. Seidelmann, P.K., Abalakin, V.K., Bursa, M., Davies, M.E., Bergh, C
de, Lieske, J.H., Oberst, J., Simon, J.L., Standish, E.M., Stooke,
and Thomas, P.C. (2002). ``Report of the IAU/IAG Working Group on
Cartographic Coordinates and Rotational Elements of the Planets and
Satellites: 2000'' Celestial Mechanics and Dynamical Astronomy, v.8
Issue 1, pp. 83-111.
8. "Geophysical Coordinate Transformations", Christopher T. Russel,
at: http://www-ssc.igpp.ucla.edu/personnel/
russell/papers/gct1.html/#s3.4
Contact Information
========================================================================
Laurent Beigbeder, GFI Informatique, laurent.beigbeder@gfi.fr
Implementation Notes
========================================================================
This file is used by the SPICE system as follows: programs that make
use of this frame kernel must 'load' the kernel, normally during
program initialization. The SPICELIB routine FURNSH, the CSPICE
function furnsh_c and the ICY function cspice_furnsh load a kernel
file into the kernel pool as shown below.
CALL FURNSH ( 'frame_kernel_name' )
furnsh_c ( "frame_kernel_name" );
cspice_furnsh ( 'frame_kernel_name' )
This file was created and may be updated with a text editor or word
processor.
All frames of date are implemented with IAU 2000 report constants [7].
IMPEx Generic Frame Names and NAIF ID Codes
========================================================================
The following names and NAIF ID codes are assigned to the generic
frames defined in this kernel file:
Frame Name NAIF ID Center Description
------------ ------- ------- -------------------------------
Frames list:
MEME 1600199 JUPITER EME2000 centered on Jupiter
MECLIP 1601199 JUPITER ECLIPJ2000 centered on Jupiter
MESO 1603199 JUPITER
JEME 1600599 JUPITER EME2000 centered on Jupiter
JECLIP 1601599 JUPITER ECLIPJ2000 centered on Jupiter
JSM 1602599 JUPITER
JSO 1603599 JUPITER
KEME 1600699 SATURN EME2000 centered on Saturn
KECLIP 1601699 SATURN ECLIPJ2000 centered on Saturn
KSM 1602699 SATURN
KSO 1603699 SATURN
67PCG_EME 161000012 67P/CG EME2000 centered on comet 67P/CG
LUTETIA_EME 162000021 LUTETIA EME2000 centered on asteroid LUTETIA
STEINS_EME 162002867 STEINS EME2000 centered on asteroid STEINS
HALLEY_EME 161000036 STEINS EME2000 centered on asteroid HALLEY
GRIGGSKELL_EME 161000034 STEINS EME2000 centered on asteroid GRIGG-SKJELLERUP
------------------------------------------------------------------
From RSSSD0002.TF with new ids and all of date J2000:
Frame Name NAIF ID Center Description
------------ ------- ------- -------------------------------
HEE 1600010 SUN Heliocentric Earth Ecliptic
HEEQ 1601010 SUN Heliocentric Earth Equatorial
HCI 1602010 SUN Heliocentric Inertial
------------------------------------------------------------------
VSO 1600299 VENUS Venus-centric Solar Orbital
VME 1601299 VENUS Venus Mean Equator
------------------------------------------------------------------
GSE 1600399 EARTH Geocentric Solar Ecliptic
EME 1601399 EARTH Earth Mean Equator and Equinox
GSEQ 1602399 EARTH Geocentric Solar Equatorial
ECLIPDATE 1603399 EARTH Earth Mean Ecliptic and Equinox
------------------------------------------------------------------
LSE 1600301 MOON Moon-centric Solar Ecliptic
LME 1601301 MOON Moon Mean Equator
------------------------------------------------------------------
MME 1600499 MARS Mars Mean Equator
MSO 1602499 MARS Mars-centric Solar Orbital
From RBSP spice kernels http://rbsp.space.umn.edu/data/rbsp/teams/spice/fk/rbsp_general011.tf
Frame Name NAIF ID Center Description
------------ ------- ------- -------------------------------
MAG 1604399 EARTH geomagnetic coordinate system
GSM 1605399 EARTH geocentric solar magnetospheric system
SM 1606399 EARTH solar magnetic coordinates
Frames are based on planetary constants, therefore a PCK file containing
the orientation constants for planets has to be loaded before.
General Notes About This File
========================================================================
About Required Data:
--------------------
Most of the dynamic frames defined in this file require at least one
of the following kernels to be loaded prior to their evaluation,
normally during program initialization:
- Planetary ephemeris data (SPK), i.e. DE405, DE421, etc.
- Planetary Constants data (PCK), i.e. PCK00007.TPC, PCK00008.TPC.
Note that loading different kernels will lead to different
implementations of the same frame, providing different results from
each other, in terms of state vectors referred to these frames.
Generic Dynamic Frames
========================================================================
This section contains the definition of the Generic Dynamic Frames.
---------------------------------------------------------------
---------------------------------------------------------------
SUN
---------------------------------------------------------------
---------------------------------------------------------------
Heliocentric Earth Ecliptic frame (HEE)
---------------------------------------
Definition:
-----------
The Heliocentric Earth Ecliptic frame is defined as follows (from [3]):
- X-Y plane is defined by the Earth Mean Ecliptic plane of date,
therefore, the +Z axis is the primary vector,and it defined as
the normal vector to the Ecliptic plane that points toward the
north pole of date;
- +X axis is the component of the Sun-Earth vector that is
orthogonal to the +Z axis;
- +Y axis completes the right-handed system;
- the origin of this frame is the Sun's center of mass.
All vectors are geometric: no aberration corrections are used.
\begindata
FRAME_HEE = 1600010
FRAME_1600010_NAME = 'HEE'
FRAME_1600010_CLASS = 5
FRAME_1600010_CLASS_ID = 1600010
FRAME_1600010_CENTER = 10
FRAME_1600010_RELATIVE = 'J2000'
FRAME_1600010_DEF_STYLE = 'PARAMETERIZED'
FRAME_1600010_FAMILY = 'TWO-VECTOR'
FRAME_1600010_PRI_AXIS = 'Z'
FRAME_1600010_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1600010_PRI_FRAME = 'ECLIPDATE'
FRAME_1600010_PRI_SPEC = 'RECTANGULAR'
FRAME_1600010_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1600010_SEC_AXIS = 'X'
FRAME_1600010_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1600010_SEC_OBSERVER = 'SUN'
FRAME_1600010_SEC_TARGET = 'EARTH'
FRAME_1600010_SEC_ABCORR = 'NONE'
\begintext
Heliocentric Earth Equatorial frame (HEEQ)
------------------------------------------
Definition:
-----------
The Heliocentric Earth Equatorial frame is defined as follows:
- X-Y plane is the solar equator of date, therefore, the +Z axis
is the primary vector and it is aligned to the Sun's north pole
of date;
- +X axis is defined by the intersection between the Sun equatorial
plane and the solar central meridian of date as seen from the Earth.
The solar central meridian of date is defined as the meridian of the
Sun that is turned toward the Earth. Therefore, +X axis is the
component of the Sun-Earth vector that is orthogonal to the +Z axis;
- +Y axis completes the right-handed system;
- the origin of this frame is the Sun's center of mass.
All vectors are geometric: no aberration corrections are used.
\begindata
FRAME_HEEQ = 1601010
FRAME_1601010_NAME = 'HEEQ'
FRAME_1601010_CLASS = 5
FRAME_1601010_CLASS_ID = 1601010
FRAME_1601010_CENTER = 10
FRAME_1601010_RELATIVE = 'J2000'
FRAME_1601010_DEF_STYLE = 'PARAMETERIZED'
FRAME_1601010_FAMILY = 'TWO-VECTOR'
FRAME_1601010_PRI_AXIS = 'Z'
FRAME_1601010_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1601010_PRI_FRAME = 'IAU_SUN'
FRAME_1601010_PRI_SPEC = 'RECTANGULAR'
FRAME_1601010_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1601010_SEC_AXIS = 'X'
FRAME_1601010_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1601010_SEC_OBSERVER = 'SUN'
FRAME_1601010_SEC_TARGET = 'EARTH'
FRAME_1601010_SEC_ABCORR = 'NONE'
\begintext
Heliocentric Inertial frame (HCI)
------------------------------------------------------
The Heliocentric Inertial Frame is defined as follows (from [3]):
- X-Y plane is defined by the Sun's equator of epoch J2000: the +Z
axis, primary vector, is parallel to the Sun's rotation axis of
epoch J2000, pointing toward the Sun's north pole;
- +X axis is defined by the ascending node of the Sun's equatorial
plane on the ecliptic plane of J2000;
- +Y completes the right-handed frame;
- the origin of this frame is the Sun's center of mass.
Note that even when the original frame defined in [3] is referenced
to the orientation of the Solar equator in J1900, the HCI frame is
based on J2000 instead.
It is possible to define this frame as a dynamic frame frozen at
J2000 epoch, using the following set of keywords:
FRAME_HCI = 1602010
FRAME_1602010_NAME = 'HCI'
FRAME_1602010_CLASS = 5
FRAME_1602010_CLASS_ID = 1602010
FRAME_1602010_CENTER = 10
FRAME_1602010_RELATIVE = 'J2000'
FRAME_1602010_DEF_STYLE = 'PARAMETERIZED'
FRAME_1602010_FAMILY = 'TWO-VECTOR'
FRAME_1602010_PRI_AXIS = 'Z'
FRAME_1602010_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1602010_PRI_FRAME = 'IAU_SUN'
FRAME_1602010_PRI_SPEC = 'RECTANGULAR'
FRAME_1602010_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1602010_SEC_AXIS = 'Y'
FRAME_1602010_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1602010_SEC_FRAME = 'ECLIPJ2000'
FRAME_1602010_SEC_SPEC = 'RECTANGULAR'
FRAME_1602010_SEC_VECTOR = ( 0, 0, 1 )
In the above implementation of this frame, the primary vector is
defined as a constant vector in the IAU_SUN frame, which is a
PCK-based frame, therefore a PCK file containing the orientation
constants for the Sun has to be loaded before using this frame.
Due to the fact that the transformation between the HCI frame and J2000
frame is fixed and time independent, the HCI frame can be implemented
as a fixed offset frame relative to the J2000 frame. The rotation matrix
provided in the definition was computed using the following PXFORM call:
CALL PXFORM( 'HCI', 'J2000', 0.D0, MATRIX )
using the implementation of the frame given above, and the following PCK:
PCK00008.TPC
which contains the following constants for the SUN (from [5]):
BODY10_POLE_RA = ( 286.13 0. 0. )
BODY10_POLE_DEC = ( 63.87 0. 0. )
This new implementation of the frame is preferred for computing efficiency
reasons.
\begindata
FRAME_HCI = 1602010
FRAME_1602010_NAME = 'HCI'
FRAME_1602010_CLASS = 4
FRAME_1602010_CLASS_ID = 1602010
FRAME_1602010_CENTER = 10
TKFRAME_1602010_SPEC = 'MATRIX'
TKFRAME_1602010_RELATIVE = 'J2000'
TKFRAME_1602010_MATRIX = (
0.2458856764679510 0.8893142951159845 0.3855649343628876
-0.9615455562494245 0.1735802308455697 0.2128380762847277
0.1223534934723278 -0.4230720836476433 0.8977971010607901
)
\begintext
---------------------------------------------------------------
---------------------------------------------------------------
MERCURY
---------------------------------------------------------------
\begindata
FRAME_MEME = 1600199
FRAME_1600199_NAME = 'MEME'
FRAME_1600199_CLASS = 5
FRAME_1600199_CLASS_ID = 1600199
FRAME_1600199_CENTER = 199
FRAME_1600199_RELATIVE = 'J2000'
FRAME_1600199_DEF_STYLE = 'PARAMETERIZED'
FRAME_1600199_FAMILY = 'TWO-VECTOR'
FRAME_1600199_PRI_AXIS = 'Z'
FRAME_1600199_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1600199_PRI_FRAME = 'J2000'
FRAME_1600199_PRI_SPEC = 'RECTANGULAR'
FRAME_1600199_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1600199_SEC_AXIS = 'X'
FRAME_1600199_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1600199_SEC_FRAME = 'J2000'
FRAME_1600199_SEC_SPEC = 'RECTANGULAR'
FRAME_1600199_SEC_VECTOR = ( 1, 0, 0 )
\begintext
\begindata
FRAME_MECLIP = 1601199
FRAME_1601199_NAME = 'MECLIP'
FRAME_1601199_CLASS = 5
FRAME_1601199_CLASS_ID = 1600199
FRAME_1601199_CENTER = 199
FRAME_1601199_RELATIVE = 'J2000'
FRAME_1601199_DEF_STYLE = 'PARAMETERIZED'
FRAME_1601199_FAMILY = 'TWO-VECTOR'
FRAME_1601199_PRI_AXIS = 'Z'
FRAME_1601199_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1601199_PRI_FRAME = 'ECLIPDATE'
FRAME_1601199_PRI_SPEC = 'RECTANGULAR'
FRAME_1601199_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1601199_SEC_AXIS = 'X'
FRAME_1601199_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1601199_SEC_FRAME = 'ECLIPDATE'
FRAME_1601199_SEC_SPEC = 'RECTANGULAR'
FRAME_1601199_SEC_VECTOR = ( 1, 0, 0 )
\begintext
---------------------------------------------------------------
Mercury-centric Solar Orbital frame (MESO)
----------------------------------------
Definition:
-----------
The Mercury-centric Solar Orbital frame is defined as follows:
- The position of the Sun relative to Mercury is the primary vector:
+X axis points from Mercury to the Sun;
- The inertially referenced velocity of the Sun relative to Mercury
is the secondary vector: +Y axis is the component of this
velocity vector orthogonal to the +X axis;
- +Z axis completes the right-handed system;
- the origin of this frame is Mercury center of mass.
All vectors are geometric: no corrections are used.
\begindata
FRAME_MESO = 1603199
FRAME_1603199_NAME = 'MESO'
FRAME_1603199_CLASS = 5
FRAME_1603199_CLASS_ID = 1603199
FRAME_1603199_CENTER = 199
FRAME_1603199_RELATIVE = 'J2000'
FRAME_1603199_DEF_STYLE = 'PARAMETERIZED'
FRAME_1603199_FAMILY = 'TWO-VECTOR'
FRAME_1603199_PRI_AXIS = 'X'
FRAME_1603199_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1603199_PRI_OBSERVER = 'MERCURY'
FRAME_1603199_PRI_TARGET = 'SUN'
FRAME_1603199_PRI_ABCORR = 'NONE'
FRAME_1603199_SEC_AXIS = 'Y'
FRAME_1603199_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY'
FRAME_1603199_SEC_OBSERVER = 'MERCURY'
FRAME_1603199_SEC_TARGET = 'SUN'
FRAME_1603199_SEC_ABCORR = 'NONE'
FRAME_1603199_SEC_FRAME = 'J2000'
\begintext
---------------------------------------------------------------
---------------------------------------------------------------
VENUS
---------------------------------------------------------------
---------------------------------------------------------------
Venus-centric Solar Orbital frame (VSO)
----------------------------------------
Definition:
-----------
The Venus-centric Solar Orbital frame is defined as follows:
- The position of the Sun relative to Venus is the primary vector:
+X axis points from Venus to the Sun;
- The inertially referenced velocity of the Sun relative to Venus
is the secondary vector: +Y axis is the component of this
velocity vector orthogonal to the +X axis;
- +Z axis completes the right-handed system;
- the origin of this frame is Venus' center of mass.
All vectors are geometric: no corrections are used.
\begindata
FRAME_VSO = 1600299
FRAME_1600299_NAME = 'VSO'
FRAME_1600299_CLASS = 5
FRAME_1600299_CLASS_ID = 1600299
FRAME_1600299_CENTER = 299
FRAME_1600299_RELATIVE = 'J2000'
FRAME_1600299_DEF_STYLE = 'PARAMETERIZED'
FRAME_1600299_FAMILY = 'TWO-VECTOR'
FRAME_1600299_PRI_AXIS = 'X'
FRAME_1600299_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1600299_PRI_OBSERVER = 'VENUS'
FRAME_1600299_PRI_TARGET = 'SUN'
FRAME_1600299_PRI_ABCORR = 'NONE'
FRAME_1600299_SEC_AXIS = 'Y'
FRAME_1600299_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY'
FRAME_1600299_SEC_OBSERVER = 'VENUS'
FRAME_1600299_SEC_TARGET = 'SUN'
FRAME_1600299_SEC_ABCORR = 'NONE'
FRAME_1600299_SEC_FRAME = 'J2000'
\begintext
Venus Mean Equator of Date frame (VME)
--------------------------------------
Definition:
-----------
The Venus Mean Equatorial of Date frame (also known as Venus Mean
Equator and IAU vector of Date frame) is defined as follows (from [5]):
- X-Y plane is defined by the Venus equator of date, and
the +Z axis is parallel to the Venus' rotation axis of date,
pointing toward the North side of the invariant plane;
- +X axis is defined by the intersection of the Venus' equator
of date with the Earth Mean Equator of J2000;
- +Y axis completes the right-handed system;
- the origin of this frame is Venus' center of mass.
All vectors are geometric: no corrections are used.
\begindata
FRAME_VME = 1601299
FRAME_1601299_NAME = 'VME'
FRAME_1601299_CLASS = 5
FRAME_1601299_CLASS_ID = 1601299
FRAME_1601299_CENTER = 299
FRAME_1601299_RELATIVE = 'J2000'
FRAME_1601299_DEF_STYLE = 'PARAMETERIZED'
FRAME_1601299_FAMILY = 'TWO-VECTOR'
FRAME_1601299_PRI_AXIS = 'Z'
FRAME_1601299_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1601299_PRI_FRAME = 'IAU_VENUS'
FRAME_1601299_PRI_SPEC = 'RECTANGULAR'
FRAME_1601299_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1601299_SEC_AXIS = 'Y'
FRAME_1601299_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1601299_SEC_FRAME = 'J2000'
FRAME_1601299_SEC_SPEC = 'RECTANGULAR'
FRAME_1601299_SEC_VECTOR = ( 0, 0, 1 )
\begintext
---------------------------------------------------------------
---------------------------------------------------------------
EARTH
---------------------------------------------------------------
---------------------------------------------------------------
Geocentric Solar Ecliptic frame (GSE)
---------------------------------------
Definition:
-----------
The Geocentric Solar Ecliptic frame is defined as follows (from [3]):
- X-Y plane is defined by the Earth Mean Ecliptic plane of date:
the +Z axis, primary vector, is the normal vector to this plane,
always pointing toward the North side of the invariant plane;
- +X axis is the component of the Earth-Sun vector that is orthogonal
to the +Z axis;
- +Y axis completes the right-handed system;
- the origin of this frame is the Sun's center of mass.
All the vectors are geometric: no aberration corrections are used.
\begindata
FRAME_GSE = 1600399
FRAME_1600399_NAME = 'GSE'
FRAME_1600399_CLASS = 5
FRAME_1600399_CLASS_ID = 1600399
FRAME_1600399_CENTER = 399
FRAME_1600399_RELATIVE = 'J2000'
FRAME_1600399_DEF_STYLE = 'PARAMETERIZED'
FRAME_1600399_FAMILY = 'TWO-VECTOR'
FRAME_1600399_PRI_AXIS = 'Z'
FRAME_1600399_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1600399_PRI_FRAME = 'ECLIPDATE'
FRAME_1600399_PRI_SPEC = 'RECTANGULAR'
FRAME_1600399_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1600399_SEC_AXIS = 'X'
FRAME_1600399_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1600399_SEC_OBSERVER = 'EARTH'
FRAME_1600399_SEC_TARGET = 'SUN'
FRAME_1600399_SEC_ABCORR = 'NONE'
\begintext
Earth Mean Equator and Equinox of Date frame (EME)
--------------------------------------------------
Definition:
-----------
The Earth Mean Equator and Equinox of Date frame is defined as follows:
- +Z axis is aligned with the north-pointing vector normal to the
mean equatorial plane of the Earth;
- +X axis points along the ``mean equinox'', which is defined as the
intersection of the Earth's mean orbital plane with the Earth's mean
equatorial plane. It is aligned with the cross product of the
north-pointing vectors normal to the Earth's mean equator and mean
orbit plane of date;
- +Y axis is the cross product of the Z and X axes and completes the
right-handed frame;
- the origin of this frame is the Earth's center of mass.
The mathematical model used to obtain the orientation of the Earth's mean
equator and equinox of date frame is the 1976 IAU precession model, built
into SPICE.
The base frame for the 1976 IAU precession model is J2000.
Remarks:
--------
None.
\begindata
FRAME_EME = 1601399
FRAME_1601399_NAME = 'EME'
FRAME_1601399_CLASS = 5
FRAME_1601399_CLASS_ID = 1601399
FRAME_1601399_CENTER = 399
FRAME_1601399_RELATIVE = 'J2000'
FRAME_1601399_DEF_STYLE = 'PARAMETERIZED'
FRAME_1601399_FAMILY = 'MEAN_EQUATOR_AND_EQUINOX_OF_DATE'
FRAME_1601399_PREC_MODEL = 'EARTH_IAU_1976'
FRAME_1601399_ROTATION_STATE = 'ROTATING'
\begintext
Geocentric Solar Equatorial frame (GSEQ)
----------------------------------------
Definition:
-----------
The Geocentric Solar Equatorial frame is defined as follows (from [7]):
- +X axis is the position of the Sun relative to the Earth; it's
the primary vector and points from the Earth to the Sun;
- +Z axis is the component of the Sun's north pole of date orthogonal
to the +X axis;
- +Y axis completes the right-handed reference frame;
- the origin of this frame is the Earth's center of mass.
All the vectors are geometric: no aberration corrections are used.
\begindata
FRAME_GSEQ = 1602399
FRAME_1602399_NAME = 'GSEQ'
FRAME_1602399_CLASS = 5
FRAME_1602399_CLASS_ID = 1602399
FRAME_1602399_CENTER = 399
FRAME_1602399_RELATIVE = 'J2000'
FRAME_1602399_DEF_STYLE = 'PARAMETERIZED'
FRAME_1602399_FAMILY = 'TWO-VECTOR'
FRAME_1602399_PRI_AXIS = 'X'
FRAME_1602399_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1602399_PRI_OBSERVER = 'EARTH'
FRAME_1602399_PRI_TARGET = 'SUN'
FRAME_1602399_PRI_ABCORR = 'NONE'
FRAME_1602399_SEC_AXIS = 'Z'
FRAME_1602399_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1602399_SEC_FRAME = 'IAU_SUN'
FRAME_1602399_SEC_SPEC = 'RECTANGULAR'
FRAME_1602399_SEC_VECTOR = ( 0, 0, 1 )
\begintext
Earth Mean Ecliptic and Equinox of Date frame (ECLIPDATE)
---------------------------------------------------------
Definition:
-----------
The Earth Mean Ecliptic and Equinox of Date frame is defined as follows:
- +Z axis is aligned with the north-pointing vector normal to the
mean orbital plane of the Earth;
- +X axis points along the ``mean equinox'', which is defined as the
intersection of the Earth's mean orbital plane with the Earth's mean
equatorial plane. It is aligned with the cross product of the
north-pointing vectors normal to the Earth's mean equator and mean
orbit plane of date;
- +Y axis is the cross product of the Z and X axes and completes the
right-handed frame;
- the origin of this frame is the Earth's center of mass.
The mathematical model used to obtain the orientation of the Earth's mean
equator and equinox of date frame is the 1976 IAU precession model, built
into SPICE.
The mathematical model used to obtain the mean orbital plane of the Earth
is the 1980 IAU obliquity model, also built into SPICE.
The base frame for the 1976 IAU precession model is J2000.
Required Data:
--------------
The usage of this frame does not require additional data since both the
precession and the obliquity models used to define this frame are already
built into SPICE.
Remarks:
--------
None.
\begindata
FRAME_ECLIPDATE = 1603399
FRAME_1603399_NAME = 'ECLIPDATE'
FRAME_1603399_CLASS = 5
FRAME_1603399_CLASS_ID = 1603399
FRAME_1603399_CENTER = 399
FRAME_1603399_RELATIVE = 'J2000'
FRAME_1603399_DEF_STYLE = 'PARAMETERIZED'
FRAME_1603399_FAMILY = 'MEAN_ECLIPTIC_AND_EQUINOX_OF_DATE'
FRAME_1603399_PREC_MODEL = 'EARTH_IAU_1976'
FRAME_1603399_OBLIQ_MODEL = 'EARTH_IAU_1980'
FRAME_1603399_ROTATION_STATE = 'ROTATING'
\begintext
MAG Frame:
---------------------------------------------------------
Definition From [8]:
Geomagnetic - geocentric. Z axis is parallel to the geomagnetic
dipole axis, positive north. X is in the plane defined by the Z axis
and the Earth's rotation axis. If N is a unit vector from the Earth's
center to the north geographic pole, the signs of the X and Y axes are
given by Y = N x Z, X = Y x Z.. See Russell, 1971, and
<http://cdpp.cnes.fr/00428.pdf>
The implementation of this frame is complicated in that the definition
of the IGRF dipole is a function of time and the IGRF model cannot be
directly incorporated into Spice. However, Spice does allow one to define
time dependent Euler angles. Meaning, you can define an Euler angle
that rotates GEO to MAG for a given ephemeris time t:
V = r(t) * V
GEI MAG
where r(t) is a time dependent Euler angle representation of a
rotation. Spice allows for the time dependence to be represented by a
polynomial expansion. This expansion can be fit using the IGRF model,
thus representing the IGRF dipole axis.
IGRF-11 (the 11th version) was fit for the period of 1990-2020, which
should encompass the mission and will also make this kernel useful for
performing Magnetic dipole frame transformations for the 1990's and
the 2000's. However, IGRF-11 is not as accurate for this entire time
interval. The years between 1945-2005 are labeled definitive, although
only back to 1990 was used in the polynomial fit. 2005-2010 is
provisional, and may change with IGRF-12. 2010-2015 was only a
prediction. Beyond 2015, the predict is so far in the future as to not
be valid. So to make the polynomials behave nicely in this region (in
case someone does try to use this frame during that time), the
2015 prediction was extended until 2020. So for low precision, this
kernel can be used for the years 2015-2020. Any times less than 1990
and greater than 2020 were not used in the fit, and therefore may be
vastly incorrect as the polynomials may diverge outside of this region.
These coefficients will be refit when IGRF-12 is released.
Also, since the rest of the magnetic dipole frames are defined from
this one, similar time ranges should be used for those frames.
Definitive Provisional Predict Not Valid
|------------------------------|+++++++++++|###########|???????????|
1990 2005 2010 2015 2020
In addition to the error inherit in the model itself, the polynomial
expansion cannot perfectly be fit the IGRF dipole. The maximum error
on the fit is .2 milliradians, or .01 degrees.
The MAG frame is achieved by first rotating the GEO frame about Z by
the longitude degrees, and then rotating about the Y axis by the
amount of latitude. This matches the new frame to Russell's definition.
\begindata
FRAME_MAG = 1604399
FRAME_1604399_NAME = 'MAG'
FRAME_1604399_CLASS = 5
FRAME_1604399_CLASS_ID = 1604399
FRAME_1604399_CENTER = 399
FRAME_1604399_RELATIVE = 'IAU_EARTH'
FRAME_1604399_DEF_STYLE = 'PARAMETERIZED'
FRAME_1604399_FAMILY = 'EULER'
FRAME_1604399_EPOCH = @2010-JAN-1/00:00:00
FRAME_1604399_AXES = ( 3, 2, 1 )
FRAME_1604399_UNITS = 'DEGREES'
FRAME_1604399_ANGLE_1_COEFFS = ( +72.19592169505606
+2.6506950233619764E-9
+1.6897777301495875E-18
-3.725022474684048E-27
-6.395891803742159E-36 )
FRAME_1604399_ANGLE_2_COEFFS = ( -9.98363089063021
+1.7304386827492741E-9
+5.686537610447754E-19
-5.208835662700353E-28
-9.569975244363123E-37 )
FRAME_1604399_ANGLE_3_COEFFS = ( 0 )
\begintext
GSM Frame:
---------------------------------------------------------
Definition From [8]:
Geocentric Solar Magnetospheric - A coordinate system where
the X axis is from Earth to Sun, Z axis is northward in a plane
containing the X axis and the geomagnetic dipole axis.
See Russell, 1971
Thus, +X is identical as GSE +X and is the primary, and +Z is the
secondary and is the MAG +Z.
\begindata
FRAME_GSM = 1605399
FRAME_1605399_NAME = 'GSM'
FRAME_1605399_CLASS = 5
FRAME_1605399_CLASS_ID = 1605399
FRAME_1605399_CENTER = 399
FRAME_1605399_RELATIVE = 'J2000'
FRAME_1605399_DEF_STYLE = 'PARAMETERIZED'
FRAME_1605399_FAMILY = 'TWO-VECTOR'
FRAME_1605399_PRI_AXIS = 'X'
FRAME_1605399_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1605399_PRI_OBSERVER = 'EARTH'
FRAME_1605399_PRI_TARGET = 'SUN'
FRAME_1605399_PRI_ABCORR = 'NONE'
FRAME_1605399_SEC_AXIS = 'Z'
FRAME_1605399_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1605399_SEC_SPEC = 'RECTANGULAR'
FRAME_1605399_SEC_FRAME = 'MAG'
FRAME_1605399_SEC_VECTOR = (0, 0, 1)
\begintext
SM Frame:
---------------------------------------------------------
Definition From [8]:
Solar Magnetic - A geocentric coordinate system where the
Z axis is northward along Earth's dipole axis,
X axis is in plane of z axis and Earth-Sun line, positive sunward.
See Russell, 1971.
Thus, this is much like GSM, except that now the +Z axis is the
primary, meaning it is parallel to the dipole vector, and +X is the
secondary. Since the X-Z plane is the same as GSM's X-Z plane, the Y
axis is the same as GSM.
\begindata
FRAME_SM = 1606399
FRAME_1606399_NAME = 'SM'
FRAME_1606399_CLASS = 5
FRAME_1606399_CLASS_ID = 1606399
FRAME_1606399_CENTER = 399
FRAME_1606399_RELATIVE = 'J2000'
FRAME_1606399_DEF_STYLE = 'PARAMETERIZED'
FRAME_1606399_FAMILY = 'TWO-VECTOR'
FRAME_1606399_PRI_AXIS = 'Z'
FRAME_1606399_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1606399_PRI_SPEC = 'RECTANGULAR'
FRAME_1606399_PRI_FRAME = 'MAG'
FRAME_1606399_PRI_VECTOR = (0, 0, 1)
FRAME_1606399_SEC_AXIS = 'X'
FRAME_1606399_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1606399_SEC_OBSERVER = 'EARTH'
FRAME_1606399_SEC_TARGET = 'SUN'
FRAME_1606399_SEC_ABCORR = 'NONE'
\begintext
---------------------------------------------------------------
MOON
---------------------------------------------------------------
Moon-centric Solar Ecliptic frame (LSE)
---------------------------------------
Definition:
-----------
The Moon-centric Solar Ecliptic frame is defined as follows:
- The position of the Sun relative to Moon is the primary vector:
+X axis points from Moon to the Sun;
- The inertially referenced velocity of the Sun relative to Moon
is the secondary vector: +Y axis is the component of this
velocity vector orthogonal to the +X axis;
- +Z axis completes the right-handed system;
- the origin of this frame is Moon's center of mass.
All vectors are geometric: no corrections are used.
\begindata
FRAME_LSE = 1600301
FRAME_1600301_NAME = 'LSE'
FRAME_1600301_CLASS = 5
FRAME_1600301_CLASS_ID = 1600301
FRAME_1600301_CENTER = 301
FRAME_1600301_RELATIVE = 'J2000'
FRAME_1600301_DEF_STYLE = 'PARAMETERIZED'
FRAME_1600301_FAMILY = 'TWO-VECTOR'
FRAME_1600301_PRI_AXIS = 'X'
FRAME_1600301_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1600301_PRI_OBSERVER = 'MOON'
FRAME_1600301_PRI_TARGET = 'SUN'
FRAME_1600301_PRI_ABCORR = 'NONE'
FRAME_1600301_SEC_AXIS = 'Y'
FRAME_1600301_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY'
FRAME_1600301_SEC_OBSERVER = 'MOON'
FRAME_1600301_SEC_TARGET = 'SUN'
FRAME_1600301_SEC_ABCORR = 'NONE'
FRAME_1600301_SEC_FRAME = 'J2000'
\begintext
Moon Mean Equator of Date frame (LME)
-------------------------------------
Definition:
-----------
The Moon Mean Equator of Date frame (also known as Moon Mean Equator
and IAU vector of Date frame) is defined as follows (from [5]):
- X-Y plane is defined by the Moon equator of date, and the
+Z axis, primary vector of this frame, is parallel to the
Moon's rotation axis of date, pointing toward the North side
of the invariant plane;
- +X axis is defined by the intersection of the Moon's equator
of date with the Earth Mean Equator of J2000;
- +Y axis completes the right-handed system;
- the origin of this frame is Moon's center of mass.
All vectors are geometric: no corrections are used.
\begindata
FRAME_LME = 1601301
FRAME_1601301_NAME = 'LME'
FRAME_1601301_CLASS = 5
FRAME_1601301_CLASS_ID = 1601301
FRAME_1601301_CENTER = 301
FRAME_1601301_RELATIVE = 'J2000'
FRAME_1601301_DEF_STYLE = 'PARAMETERIZED'
FRAME_1601301_FAMILY = 'TWO-VECTOR'
FRAME_1601301_PRI_AXIS = 'Z'
FRAME_1601301_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1601301_PRI_FRAME = 'IAU_MOON'
FRAME_1601301_PRI_SPEC = 'RECTANGULAR'
FRAME_1601301_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1601301_SEC_AXIS = 'Y'
FRAME_1601301_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1601301_SEC_FRAME = 'J2000'
FRAME_1601301_SEC_SPEC = 'RECTANGULAR'
FRAME_1601301_SEC_VECTOR = ( 0, 0, 1 )
\begintext
---------------------------------------------------------------
---------------------------------------------------------------
MARS
---------------------------------------------------------------
---------------------------------------------------------------
Mars Mean Equator of Date frame (MME)
-------------------------------------
Definition:
-----------
The Mars Mean Equator of Date frame (also known as Mars Mean Equator
and IAU vector of Date frame) is defined as follows (from [5]):
- X-Y plane is defined by the Mars equator of date: the
+Z axis, primary vector, is parallel to the Mars' rotation
axis of date, pointing toward the North side of the invariant
plane;
- +X axis is defined by the intersection of the Mars' equator of
date with the J2000 equator;
- +Y axis completes the right-handed system;
- the origin of this frame is Mars' center of mass.
All vectors are geometric: no corrections are used.
\begindata
FRAME_MME = 1600499
FRAME_1600499_NAME = 'MME'
FRAME_1600499_CLASS = 5
FRAME_1600499_CLASS_ID = 1600499
FRAME_1600499_CENTER = 499
FRAME_1600499_RELATIVE = 'J2000'
FRAME_1600499_DEF_STYLE = 'PARAMETERIZED'
FRAME_1600499_FAMILY = 'TWO-VECTOR'
FRAME_1600499_PRI_AXIS = 'Z'
FRAME_1600499_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1600499_PRI_FRAME = 'IAU_MARS'
FRAME_1600499_PRI_SPEC = 'RECTANGULAR'
FRAME_1600499_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1600499_SEC_AXIS = 'Y'
FRAME_1600499_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1600499_SEC_FRAME = 'J2000'
FRAME_1600499_SEC_SPEC = 'RECTANGULAR'
FRAME_1600499_SEC_VECTOR = ( 0, 0, 1 )
\begintext
Mars-centric Solar Orbital frame (MSO)
--------------------------------------------------------
Definition:
-----------
The Mars-centric Solar Orbital frame is defined as follows:
- The position of the Sun relative to Mars is the primary vector:
+X axis points from Mars to the Sun;
- The inertially referenced velocity of the Sun relative to Mars
is the secondary vector: +Y axis is the component of this
velocity vector orthogonal to the +X axis;
- +Z axis completes the right-handed system;
- the origin of this frame is Mars' center of mass.
All vectors are geometric: no corrections are used.
\begindata
FRAME_MSO = 1601499
FRAME_1601499_NAME = 'MSO'
FRAME_1601499_CLASS = 5
FRAME_1601499_CLASS_ID = 1601499
FRAME_1601499_CENTER = 499
FRAME_1601499_RELATIVE = 'J2000'
FRAME_1601499_DEF_STYLE = 'PARAMETERIZED'
FRAME_1601499_FAMILY = 'TWO-VECTOR'
FRAME_1601499_PRI_AXIS = 'X'
FRAME_1601499_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1601499_PRI_OBSERVER = 'MARS'
FRAME_1601499_PRI_TARGET = 'SUN'
FRAME_1601499_PRI_ABCORR = 'NONE'
FRAME_1601499_SEC_AXIS = 'Y'
FRAME_1601499_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY'
FRAME_1601499_SEC_OBSERVER = 'MARS'
FRAME_1601499_SEC_TARGET = 'SUN'
FRAME_1601499_SEC_ABCORR = 'NONE'
FRAME_1601499_SEC_FRAME = 'J2000'
\begintext
---------------------------------------------------------------
---------------------------------------------------------------
JUPITER
---------------------------------------------------------------
---------------------------------------------------------------
\begindata
FRAME_JEME = 1600599
FRAME_1600599_NAME = 'JEME'
FRAME_1600599_CLASS = 5
FRAME_1600599_CLASS_ID = 1600599
FRAME_1600599_CENTER = 599
FRAME_1600599_RELATIVE = 'J2000'
FRAME_1600599_DEF_STYLE = 'PARAMETERIZED'
FRAME_1600599_FAMILY = 'TWO-VECTOR'
FRAME_1600599_PRI_AXIS = 'Z'
FRAME_1600599_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1600599_PRI_FRAME = 'J2000'
FRAME_1600599_PRI_SPEC = 'RECTANGULAR'
FRAME_1600599_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1600599_SEC_AXIS = 'X'
FRAME_1600599_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1600599_SEC_FRAME = 'J2000'
FRAME_1600599_SEC_SPEC = 'RECTANGULAR'
FRAME_1600599_SEC_VECTOR = ( 1, 0, 0 )
\begintext
\begindata
FRAME_JECLIP = 1601599
FRAME_1601599_NAME = 'JECLIP'
FRAME_1601599_CLASS = 5
FRAME_1601599_CLASS_ID = 1600599
FRAME_1601599_CENTER = 599
FRAME_1601599_RELATIVE = 'J2000'
FRAME_1601599_DEF_STYLE = 'PARAMETERIZED'
FRAME_1601599_FAMILY = 'TWO-VECTOR'
FRAME_1601599_PRI_AXIS = 'Z'
FRAME_1601599_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1601599_PRI_FRAME = 'ECLIPDATE'
FRAME_1601599_PRI_SPEC = 'RECTANGULAR'
FRAME_1601599_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1601599_SEC_AXIS = 'X'
FRAME_1601599_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1601599_SEC_FRAME = 'ECLIPDATE'
FRAME_1601599_SEC_SPEC = 'RECTANGULAR'
FRAME_1601599_SEC_VECTOR = ( 1, 0, 0 )
\begintext
The JSM frame is defined in [3] as follows:
Jovian Solar Magnetospheric (JSM)
---------------------------------------------------
A coordinate system where the X axis is from Jupiter to Sun,
Z axis is northward in a plane containing the X axis and the Jovian dipole axis.
Dipole is 159 longitude and 80 latitude from [4][5][6] documents.
\begindata
FRAME_JSM = 1602599
FRAME_1602599_NAME = 'JSM'
FRAME_1602599_CLASS = 5
FRAME_1602599_CLASS_ID = 1602599
FRAME_1602599_CENTER = 599
FRAME_1602599_RELATIVE = 'J2000'
FRAME_1602599_DEF_STYLE = 'PARAMETERIZED'
FRAME_1602599_FAMILY = 'TWO-VECTOR'
FRAME_1602599_PRI_AXIS = 'X'
FRAME_1602599_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1602599_PRI_OBSERVER = 'JUPITER'
FRAME_1602599_PRI_TARGET = 'SUN'
FRAME_1602599_PRI_ABCORR = 'NONE'
FRAME_1602599_SEC_AXIS = 'Z'
FRAME_1602599_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1602599_SEC_SPEC = 'LATITUDINAL'
FRAME_1602599_SEC_UNITS = 'DEGREES'
FRAME_1602599_SEC_LONGITUDE = 159.00
FRAME_1602599_SEC_LATITUDE = 80.00
FRAME_1602599_SEC_FRAME = 'IAU_JUPITER'
\begintext
The JSO frame is defined in [3] as follows:
Jovian Solar Orbital Coordinates (JSO)
---------------------------------------------------
Coordinate Sytem Related to Jupiter Jovian Solar Orbita
(X anti-sunward, Y along the orbital velocity direction)
\begindata
FRAME_JSO = 1603599
FRAME_1603599_NAME = 'JSO'
FRAME_1603599_CLASS = 5
FRAME_1603599_CLASS_ID = 1603599
FRAME_1603599_CENTER = 599
FRAME_1603599_RELATIVE = 'J2000'
FRAME_1603599_DEF_STYLE = 'PARAMETERIZED'
FRAME_1603599_FAMILY = 'TWO-VECTOR'
FRAME_1603599_PRI_AXIS = 'X'
FRAME_1603599_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1603599_PRI_OBSERVER = 'JUPITER'
FRAME_1603599_PRI_TARGET = 'SUN'
FRAME_1603599_PRI_ABCORR = 'NONE'
FRAME_1603599_SEC_AXIS = 'Y'
FRAME_1603599_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY'
FRAME_1603599_SEC_OBSERVER = 'JUPITER'
FRAME_1603599_SEC_TARGET = 'SUN'
FRAME_1603599_SEC_ABCORR = 'NONE'
FRAME_1603599_SEC_FRAME = 'J2000'
\begintext
---------------------------------------------------------------
GPHIO
---------------------------------------
Definition:
-----------
the jovian plasma.
In this Cartesian coordinate system (referred to as GphiO),
X is along theflow direction, Y is along the Ganymede–Jupiter vector, and Z is along the spin axis.
These coordinates are analogous to the earth-centered GSE coordinates that relate to the direction of
flow of the solar wind onto Earth’s environment
All the vectors are geometric: no aberration corrections are used.
\begindata
FRAME_GPHIO = 1604599
FRAME_1604599_NAME = 'GPHIO'
FRAME_1604599_CLASS = 5
FRAME_1604599_CLASS_ID = 1604599
FRAME_1604599_CENTER = 503
FRAME_1604599_RELATIVE = 'J2000'
FRAME_1604599_DEF_STYLE = 'PARAMETERIZED'
FRAME_1604599_FAMILY = 'TWO-VECTOR'
FRAME_1604599_PRI_AXIS = 'Z'
FRAME_1604599_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1604599_PRI_FRAME = 'ECLIPDATE'
FRAME_1604599_PRI_SPEC = 'RECTANGULAR'
FRAME_1604599_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1604599_SEC_AXIS = 'X'
FRAME_1604599_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1604599_SEC_OBSERVER = 'GANYMEDE'
FRAME_1604599_SEC_TARGET = 'JUPITER'
FRAME_1604599_SEC_ABCORR = 'NONE'
\begintext
---------------------------------------------------------------
SATURN
---------------------------------------------------------------
\begindata
FRAME_KEME = 1600699
FRAME_1600699_NAME = 'KEME'
FRAME_1600699_CLASS = 5
FRAME_1600699_CLASS_ID = 1600699
FRAME_1600699_CENTER = 699
FRAME_1600699_RELATIVE = 'J2000'
FRAME_1600699_DEF_STYLE = 'PARAMETERIZED'
FRAME_1600699_FAMILY = 'TWO-VECTOR'
FRAME_1600699_PRI_AXIS = 'Z'
FRAME_1600699_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1600699_PRI_FRAME = 'J2000'
FRAME_1600699_PRI_SPEC = 'RECTANGULAR'
FRAME_1600699_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1600699_SEC_AXIS = 'X'
FRAME_1600699_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1600699_SEC_FRAME = 'J2000'
FRAME_1600699_SEC_SPEC = 'RECTANGULAR'
FRAME_1600699_SEC_VECTOR = ( 1, 0, 0 )
\begintext
\begindata
FRAME_KECLIP = 1601699
FRAME_1601699_NAME = 'KECLIP'
FRAME_1601699_CLASS = 5
FRAME_1601699_CLASS_ID = 1600699
FRAME_1601699_CENTER = 699
FRAME_1601699_RELATIVE = 'J2000'
FRAME_1601699_DEF_STYLE = 'PARAMETERIZED'
FRAME_1601699_FAMILY = 'TWO-VECTOR'
FRAME_1601699_PRI_AXIS = 'Z'
FRAME_1601699_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_1601699_PRI_FRAME = 'ECLIPDATE'
FRAME_1601699_PRI_SPEC = 'RECTANGULAR'
FRAME_1601699_PRI_VECTOR = ( 0, 0, 1 )
FRAME_1601699_SEC_AXIS = 'X'
FRAME_1601699_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1601699_SEC_FRAME = 'ECLIPDATE'
FRAME_1601699_SEC_SPEC = 'RECTANGULAR'
FRAME_1601699_SEC_VECTOR = ( 1, 0, 0 )
\begintext
The KSM frame is defined in [3] as follows:
Kronocentric Solar Magnetospheric Coordinates (KSM)
---------------------------------------------------
A coordinate system where the X axis is from Saturn to Sun,
Z axis is northward in a plane containing the X axis and the
Kronian dipole axis.
Some sources refers magnetic dipole at 180 degrees longitude, 89.99 degrees latitude
in the IAU_SATURN frame. Other source make assume that the dipole axis is
parallel to the spin axis.
\begindata
FRAME_KSM = 1602699
FRAME_1602699_NAME = 'KSM'
FRAME_1602699_CLASS = 5
FRAME_1602699_CLASS_ID = 1602699
FRAME_1602699_CENTER = 699
FRAME_1602699_RELATIVE = 'J2000'
FRAME_1602699_DEF_STYLE = 'PARAMETERIZED'
FRAME_1602699_FAMILY = 'TWO-VECTOR'
FRAME_1602699_PRI_AXIS = 'X'
FRAME_1602699_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1602699_PRI_OBSERVER = 'SATURN'
FRAME_1602699_PRI_TARGET = 'SUN'
FRAME_1602699_PRI_ABCORR = 'NONE'
FRAME_1602699_SEC_AXIS = 'Z'
FRAME_1602699_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_1602699_SEC_SPEC = 'LATITUDINAL'
FRAME_1602699_SEC_UNITS = 'DEGREES'
FRAME_1602699_SEC_LONGITUDE = 180.00
FRAME_1602699_SEC_LATITUDE = 89.99
FRAME_1602699_SEC_FRAME = 'IAU_SATURN'
\begintext
The KSO frame is defined in [3] as follows:
Kronocentric Solar Orbital Coordinates (KSO)
---------------------------------------------------
Coordinate Sytem Related to Saturn Kronian Solar Orbital
(X anti-sunward, Y along the orbital velocity direction)
\begindata
FRAME_KSO = 1603699
FRAME_1603699_NAME = 'KSO'
FRAME_1603699_CLASS = 5
FRAME_1603699_CLASS_ID = 1603699
FRAME_1603699_CENTER = 699
FRAME_1603699_RELATIVE = 'J2000'
FRAME_1603699_DEF_STYLE = 'PARAMETERIZED'
FRAME_1603699_FAMILY = 'TWO-VECTOR'
FRAME_1603699_PRI_AXIS = 'X'
FRAME_1603699_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION'
FRAME_1603699_PRI_OBSERVER = 'SATURN'
FRAME_1603699_PRI_TARGET = 'SUN'
FRAME_1603699_PRI_ABCORR = 'NONE'
FRAME_1603699_SEC_AXIS = 'Y'
FRAME_1603699_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY'
FRAME_1603699_SEC_OBSERVER = 'SATURN'
FRAME_1603699_SEC_TARGET = 'SUN'
FRAME_1603699_SEC_ABCORR = 'NONE'
FRAME_1603699_SEC_FRAME = 'J2000'
\begintext
---------------------------------------------------------------
Small bodies
---------------------------------------------------------------
Churyumov gerasimenko
\begindata
FRAME_67PCG_EME = 161000012
FRAME_161000012_NAME = '67PCG_EME'
FRAME_161000012_CLASS = 5
FRAME_161000012_CLASS_ID = 161000012
FRAME_161000012_CENTER = 1000012
FRAME_161000012_RELATIVE = 'J2000'
FRAME_161000012_DEF_STYLE = 'PARAMETERIZED'
FRAME_161000012_FAMILY = 'TWO-VECTOR'
FRAME_161000012_PRI_AXIS = 'Z'
FRAME_161000012_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_161000012_PRI_FRAME = 'J2000'
FRAME_161000012_PRI_SPEC = 'RECTANGULAR'
FRAME_161000012_PRI_VECTOR = ( 0, 0, 1 )
FRAME_161000012_SEC_AXIS = 'X'
FRAME_161000012_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_161000012_SEC_FRAME = 'J2000'
FRAME_161000012_SEC_SPEC = 'RECTANGULAR'
FRAME_161000012_SEC_VECTOR = ( 1, 0, 0 )
\begintext
Lutetia
\begindata
FRAME_LUTETIA_EME = 162000021
FRAME_162000021_NAME = 'LUTETIA_EME'
FRAME_162000021_CLASS = 5
FRAME_162000021_CLASS_ID = 162000021
FRAME_162000021_CENTER = 2000021
FRAME_162000021_RELATIVE = 'J2000'
FRAME_162000021_DEF_STYLE = 'PARAMETERIZED'
FRAME_162000021_FAMILY = 'TWO-VECTOR'
FRAME_162000021_PRI_AXIS = 'Z'
FRAME_162000021_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_162000021_PRI_FRAME = 'J2000'
FRAME_162000021_PRI_SPEC = 'RECTANGULAR'
FRAME_162000021_PRI_VECTOR = ( 0, 0, 1 )
FRAME_162000021_SEC_AXIS = 'X'
FRAME_162000021_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_162000021_SEC_FRAME = 'J2000'
FRAME_162000021_SEC_SPEC = 'RECTANGULAR'
FRAME_162000021_SEC_VECTOR = ( 1, 0, 0 )
\begintext
Steins
\begindata
FRAME_STEINS_EME = 162002867
FRAME_162002867_NAME = 'STEINS_EME'
FRAME_162002867_CLASS = 5
FRAME_162002867_CLASS_ID = 162002867
FRAME_162002867_CENTER = 2002867
FRAME_162002867_RELATIVE = 'J2000'
FRAME_162002867_DEF_STYLE = 'PARAMETERIZED'
FRAME_162002867_FAMILY = 'TWO-VECTOR'
FRAME_162002867_PRI_AXIS = 'Z'
FRAME_162002867_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_162002867_PRI_FRAME = 'J2000'
FRAME_162002867_PRI_SPEC = 'RECTANGULAR'
FRAME_162002867_PRI_VECTOR = ( 0, 0, 1 )
FRAME_162002867_SEC_AXIS = 'X'
FRAME_162002867_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_162002867_SEC_FRAME = 'J2000'
FRAME_162002867_SEC_SPEC = 'RECTANGULAR'
FRAME_162002867_SEC_VECTOR = ( 1, 0, 0 )
\begintext
Halley
\begindata
FRAME_HALLEY_EME = 161000036
FRAME_161000036_NAME = 'HALLEY_EME'
FRAME_161000036_CLASS = 5
FRAME_161000036_CLASS_ID = 161000036
FRAME_161000036_CENTER = 1000036
FRAME_161000036_RELATIVE = 'J2000'
FRAME_161000036_DEF_STYLE = 'PARAMETERIZED'
FRAME_161000036_FAMILY = 'TWO-VECTOR'
FRAME_161000036_PRI_AXIS = 'Z'
FRAME_161000036_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_161000036_PRI_FRAME = 'J2000'
FRAME_161000036_PRI_SPEC = 'RECTANGULAR'
FRAME_161000036_PRI_VECTOR = ( 0, 0, 1 )
FRAME_161000036_SEC_AXIS = 'X'
FRAME_161000036_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_161000036_SEC_FRAME = 'J2000'
FRAME_161000036_SEC_SPEC = 'RECTANGULAR'
FRAME_161000036_SEC_VECTOR = ( 1, 0, 0 )
\begintext
GRIGG-SKJELLERUP
\begindata
FRAME_GRIGGSKELL_EME = 161000034
FRAME_161000034_NAME = 'GRIGGSKELL_EME'
FRAME_161000034_CLASS = 5
FRAME_161000034_CLASS_ID = 161000034
FRAME_161000034_CENTER = 1000034
FRAME_161000034_RELATIVE = 'J2000'
FRAME_161000034_DEF_STYLE = 'PARAMETERIZED'
FRAME_161000034_FAMILY = 'TWO-VECTOR'
FRAME_161000034_PRI_AXIS = 'Z'
FRAME_161000034_PRI_VECTOR_DEF = 'CONSTANT'
FRAME_161000034_PRI_FRAME = 'J2000'
FRAME_161000034_PRI_SPEC = 'RECTANGULAR'
FRAME_161000034_PRI_VECTOR = ( 0, 0, 1 )
FRAME_161000034_SEC_AXIS = 'X'
FRAME_161000034_SEC_VECTOR_DEF = 'CONSTANT'
FRAME_161000034_SEC_FRAME = 'J2000'
FRAME_161000034_SEC_SPEC = 'RECTANGULAR'
FRAME_161000034_SEC_VECTOR = ( 1, 0, 0 )
\begintext