KPL/FK Generic Frame Definition Kernel File for IMPEx =========================================================================== This frame kernel defines a number of mission independent frames that could be used by any of the users of 3DView IMPEx, and that are not ``built'' in the SPICE toolkit. Version and Date ======================================================================== Version 0.0 -- July 5, 2013 -- Laurent Beigbeder, GFI Informatique Initial version. Version 0.1 -- December 11, 2013 -- Laurent Beigbeder, GFI Informatique Saturn, Jupiter, Earth and small bodies frames added Version 0.2 -- April 29, 2015 -- Laurent Beigbeder, GFI Informatique JSM frame correction on dipole axis References ======================================================================== 1. Frames Required Reading 2. Kernel Pool Required Reading 3. http://impex.latmos.ipsl.fr/doc/impex+spase_latest.xsd 4. Khurana, 2004, pp. 3-5 5. Russel, 1993, p. 694 6. Zarka, 2005, pp. 375 377 7. Seidelmann, P.K., Abalakin, V.K., Bursa, M., Davies, M.E., Bergh, C de, Lieske, J.H., Oberst, J., Simon, J.L., Standish, E.M., Stooke, and Thomas, P.C. (2002). ``Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000'' Celestial Mechanics and Dynamical Astronomy, v.8 Issue 1, pp. 83-111. 8. "Geophysical Coordinate Transformations", Christopher T. Russel, at: http://www-ssc.igpp.ucla.edu/personnel/ russell/papers/gct1.html/#s3.4 Contact Information ======================================================================== Laurent Beigbeder, GFI Informatique, laurent.beigbeder@gfi.fr Implementation Notes ======================================================================== This file is used by the SPICE system as follows: programs that make use of this frame kernel must 'load' the kernel, normally during program initialization. The SPICELIB routine FURNSH, the CSPICE function furnsh_c and the ICY function cspice_furnsh load a kernel file into the kernel pool as shown below. CALL FURNSH ( 'frame_kernel_name' ) furnsh_c ( "frame_kernel_name" ); cspice_furnsh ( 'frame_kernel_name' ) This file was created and may be updated with a text editor or word processor. All frames of date are implemented with IAU 2000 report constants [7]. IMPEx Generic Frame Names and NAIF ID Codes ======================================================================== The following names and NAIF ID codes are assigned to the generic frames defined in this kernel file: Frame Name NAIF ID Center Description ------------ ------- ------- ------------------------------- Frames list: MEME 1600199 JUPITER EME2000 centered on Jupiter MECLIP 1601199 JUPITER ECLIPJ2000 centered on Jupiter MESO 1603199 JUPITER JEME 1600599 JUPITER EME2000 centered on Jupiter JECLIP 1601599 JUPITER ECLIPJ2000 centered on Jupiter JSM 1602599 JUPITER JSO 1603599 JUPITER KEME 1600699 SATURN EME2000 centered on Saturn KECLIP 1601699 SATURN ECLIPJ2000 centered on Saturn KSM 1602699 SATURN KSO 1603699 SATURN 67PCG_EME 161000012 67P/CG EME2000 centered on comet 67P/CG LUTETIA_EME 162000021 LUTETIA EME2000 centered on asteroid LUTETIA STEINS_EME 162002867 STEINS EME2000 centered on asteroid STEINS HALLEY_EME 161000036 STEINS EME2000 centered on asteroid HALLEY GRIGGSKELL_EME 161000034 STEINS EME2000 centered on asteroid GRIGG-SKJELLERUP ------------------------------------------------------------------ From RSSSD0002.TF with new ids and all of date J2000: Frame Name NAIF ID Center Description ------------ ------- ------- ------------------------------- HEE 1600010 SUN Heliocentric Earth Ecliptic HEEQ 1601010 SUN Heliocentric Earth Equatorial HCI 1602010 SUN Heliocentric Inertial ------------------------------------------------------------------ VSO 1600299 VENUS Venus-centric Solar Orbital VME 1601299 VENUS Venus Mean Equator ------------------------------------------------------------------ GSE 1600399 EARTH Geocentric Solar Ecliptic EME 1601399 EARTH Earth Mean Equator and Equinox GSEQ 1602399 EARTH Geocentric Solar Equatorial ECLIPDATE 1603399 EARTH Earth Mean Ecliptic and Equinox ------------------------------------------------------------------ LSE 1600301 MOON Moon-centric Solar Ecliptic LME 1601301 MOON Moon Mean Equator ------------------------------------------------------------------ MME 1600499 MARS Mars Mean Equator MSO 1602499 MARS Mars-centric Solar Orbital From RBSP spice kernels http://rbsp.space.umn.edu/data/rbsp/teams/spice/fk/rbsp_general011.tf Frame Name NAIF ID Center Description ------------ ------- ------- ------------------------------- MAG 1604399 EARTH geomagnetic coordinate system GSM 1605399 EARTH geocentric solar magnetospheric system SM 1606399 EARTH solar magnetic coordinates Frames are based on planetary constants, therefore a PCK file containing the orientation constants for planets has to be loaded before. General Notes About This File ======================================================================== About Required Data: -------------------- Most of the dynamic frames defined in this file require at least one of the following kernels to be loaded prior to their evaluation, normally during program initialization: - Planetary ephemeris data (SPK), i.e. DE405, DE421, etc. - Planetary Constants data (PCK), i.e. PCK00007.TPC, PCK00008.TPC. Note that loading different kernels will lead to different implementations of the same frame, providing different results from each other, in terms of state vectors referred to these frames. Generic Dynamic Frames ======================================================================== This section contains the definition of the Generic Dynamic Frames. --------------------------------------------------------------- --------------------------------------------------------------- SUN --------------------------------------------------------------- --------------------------------------------------------------- Heliocentric Earth Ecliptic frame (HEE) --------------------------------------- Definition: ----------- The Heliocentric Earth Ecliptic frame is defined as follows (from [3]): - X-Y plane is defined by the Earth Mean Ecliptic plane of date, therefore, the +Z axis is the primary vector,and it defined as the normal vector to the Ecliptic plane that points toward the north pole of date; - +X axis is the component of the Sun-Earth vector that is orthogonal to the +Z axis; - +Y axis completes the right-handed system; - the origin of this frame is the Sun's center of mass. All vectors are geometric: no aberration corrections are used. \begindata FRAME_HEE = 1600010 FRAME_1600010_NAME = 'HEE' FRAME_1600010_CLASS = 5 FRAME_1600010_CLASS_ID = 1600010 FRAME_1600010_CENTER = 10 FRAME_1600010_RELATIVE = 'J2000' FRAME_1600010_DEF_STYLE = 'PARAMETERIZED' FRAME_1600010_FAMILY = 'TWO-VECTOR' FRAME_1600010_PRI_AXIS = 'Z' FRAME_1600010_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1600010_PRI_FRAME = 'ECLIPDATE' FRAME_1600010_PRI_SPEC = 'RECTANGULAR' FRAME_1600010_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1600010_SEC_AXIS = 'X' FRAME_1600010_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1600010_SEC_OBSERVER = 'SUN' FRAME_1600010_SEC_TARGET = 'EARTH' FRAME_1600010_SEC_ABCORR = 'NONE' \begintext Heliocentric Earth Equatorial frame (HEEQ) ------------------------------------------ Definition: ----------- The Heliocentric Earth Equatorial frame is defined as follows: - X-Y plane is the solar equator of date, therefore, the +Z axis is the primary vector and it is aligned to the Sun's north pole of date; - +X axis is defined by the intersection between the Sun equatorial plane and the solar central meridian of date as seen from the Earth. The solar central meridian of date is defined as the meridian of the Sun that is turned toward the Earth. Therefore, +X axis is the component of the Sun-Earth vector that is orthogonal to the +Z axis; - +Y axis completes the right-handed system; - the origin of this frame is the Sun's center of mass. All vectors are geometric: no aberration corrections are used. \begindata FRAME_HEEQ = 1601010 FRAME_1601010_NAME = 'HEEQ' FRAME_1601010_CLASS = 5 FRAME_1601010_CLASS_ID = 1601010 FRAME_1601010_CENTER = 10 FRAME_1601010_RELATIVE = 'J2000' FRAME_1601010_DEF_STYLE = 'PARAMETERIZED' FRAME_1601010_FAMILY = 'TWO-VECTOR' FRAME_1601010_PRI_AXIS = 'Z' FRAME_1601010_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1601010_PRI_FRAME = 'IAU_SUN' FRAME_1601010_PRI_SPEC = 'RECTANGULAR' FRAME_1601010_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1601010_SEC_AXIS = 'X' FRAME_1601010_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1601010_SEC_OBSERVER = 'SUN' FRAME_1601010_SEC_TARGET = 'EARTH' FRAME_1601010_SEC_ABCORR = 'NONE' \begintext Heliocentric Inertial frame (HCI) ------------------------------------------------------ The Heliocentric Inertial Frame is defined as follows (from [3]): - X-Y plane is defined by the Sun's equator of epoch J2000: the +Z axis, primary vector, is parallel to the Sun's rotation axis of epoch J2000, pointing toward the Sun's north pole; - +X axis is defined by the ascending node of the Sun's equatorial plane on the ecliptic plane of J2000; - +Y completes the right-handed frame; - the origin of this frame is the Sun's center of mass. Note that even when the original frame defined in [3] is referenced to the orientation of the Solar equator in J1900, the HCI frame is based on J2000 instead. It is possible to define this frame as a dynamic frame frozen at J2000 epoch, using the following set of keywords: FRAME_HCI = 1602010 FRAME_1602010_NAME = 'HCI' FRAME_1602010_CLASS = 5 FRAME_1602010_CLASS_ID = 1602010 FRAME_1602010_CENTER = 10 FRAME_1602010_RELATIVE = 'J2000' FRAME_1602010_DEF_STYLE = 'PARAMETERIZED' FRAME_1602010_FAMILY = 'TWO-VECTOR' FRAME_1602010_PRI_AXIS = 'Z' FRAME_1602010_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1602010_PRI_FRAME = 'IAU_SUN' FRAME_1602010_PRI_SPEC = 'RECTANGULAR' FRAME_1602010_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1602010_SEC_AXIS = 'Y' FRAME_1602010_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1602010_SEC_FRAME = 'ECLIPJ2000' FRAME_1602010_SEC_SPEC = 'RECTANGULAR' FRAME_1602010_SEC_VECTOR = ( 0, 0, 1 ) In the above implementation of this frame, the primary vector is defined as a constant vector in the IAU_SUN frame, which is a PCK-based frame, therefore a PCK file containing the orientation constants for the Sun has to be loaded before using this frame. Due to the fact that the transformation between the HCI frame and J2000 frame is fixed and time independent, the HCI frame can be implemented as a fixed offset frame relative to the J2000 frame. The rotation matrix provided in the definition was computed using the following PXFORM call: CALL PXFORM( 'HCI', 'J2000', 0.D0, MATRIX ) using the implementation of the frame given above, and the following PCK: PCK00008.TPC which contains the following constants for the SUN (from [5]): BODY10_POLE_RA = ( 286.13 0. 0. ) BODY10_POLE_DEC = ( 63.87 0. 0. ) This new implementation of the frame is preferred for computing efficiency reasons. \begindata FRAME_HCI = 1602010 FRAME_1602010_NAME = 'HCI' FRAME_1602010_CLASS = 4 FRAME_1602010_CLASS_ID = 1602010 FRAME_1602010_CENTER = 10 TKFRAME_1602010_SPEC = 'MATRIX' TKFRAME_1602010_RELATIVE = 'J2000' TKFRAME_1602010_MATRIX = ( 0.2458856764679510 0.8893142951159845 0.3855649343628876 -0.9615455562494245 0.1735802308455697 0.2128380762847277 0.1223534934723278 -0.4230720836476433 0.8977971010607901 ) \begintext --------------------------------------------------------------- --------------------------------------------------------------- MERCURY --------------------------------------------------------------- \begindata FRAME_MEME = 1600199 FRAME_1600199_NAME = 'MEME' FRAME_1600199_CLASS = 5 FRAME_1600199_CLASS_ID = 1600199 FRAME_1600199_CENTER = 199 FRAME_1600199_RELATIVE = 'J2000' FRAME_1600199_DEF_STYLE = 'PARAMETERIZED' FRAME_1600199_FAMILY = 'TWO-VECTOR' FRAME_1600199_PRI_AXIS = 'Z' FRAME_1600199_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1600199_PRI_FRAME = 'J2000' FRAME_1600199_PRI_SPEC = 'RECTANGULAR' FRAME_1600199_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1600199_SEC_AXIS = 'X' FRAME_1600199_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1600199_SEC_FRAME = 'J2000' FRAME_1600199_SEC_SPEC = 'RECTANGULAR' FRAME_1600199_SEC_VECTOR = ( 1, 0, 0 ) \begintext \begindata FRAME_MECLIP = 1601199 FRAME_1601199_NAME = 'MECLIP' FRAME_1601199_CLASS = 5 FRAME_1601199_CLASS_ID = 1600199 FRAME_1601199_CENTER = 199 FRAME_1601199_RELATIVE = 'J2000' FRAME_1601199_DEF_STYLE = 'PARAMETERIZED' FRAME_1601199_FAMILY = 'TWO-VECTOR' FRAME_1601199_PRI_AXIS = 'Z' FRAME_1601199_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1601199_PRI_FRAME = 'ECLIPDATE' FRAME_1601199_PRI_SPEC = 'RECTANGULAR' FRAME_1601199_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1601199_SEC_AXIS = 'X' FRAME_1601199_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1601199_SEC_FRAME = 'ECLIPDATE' FRAME_1601199_SEC_SPEC = 'RECTANGULAR' FRAME_1601199_SEC_VECTOR = ( 1, 0, 0 ) \begintext --------------------------------------------------------------- Mercury-centric Solar Orbital frame (MESO) ---------------------------------------- Definition: ----------- The Mercury-centric Solar Orbital frame is defined as follows: - The position of the Sun relative to Mercury is the primary vector: +X axis points from Mercury to the Sun; - The inertially referenced velocity of the Sun relative to Mercury is the secondary vector: +Y axis is the component of this velocity vector orthogonal to the +X axis; - +Z axis completes the right-handed system; - the origin of this frame is Mercury center of mass. All vectors are geometric: no corrections are used. \begindata FRAME_MESO = 1603199 FRAME_1603199_NAME = 'MESO' FRAME_1603199_CLASS = 5 FRAME_1603199_CLASS_ID = 1603199 FRAME_1603199_CENTER = 199 FRAME_1603199_RELATIVE = 'J2000' FRAME_1603199_DEF_STYLE = 'PARAMETERIZED' FRAME_1603199_FAMILY = 'TWO-VECTOR' FRAME_1603199_PRI_AXIS = 'X' FRAME_1603199_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1603199_PRI_OBSERVER = 'MERCURY' FRAME_1603199_PRI_TARGET = 'SUN' FRAME_1603199_PRI_ABCORR = 'NONE' FRAME_1603199_SEC_AXIS = 'Y' FRAME_1603199_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY' FRAME_1603199_SEC_OBSERVER = 'MERCURY' FRAME_1603199_SEC_TARGET = 'SUN' FRAME_1603199_SEC_ABCORR = 'NONE' FRAME_1603199_SEC_FRAME = 'J2000' \begintext --------------------------------------------------------------- --------------------------------------------------------------- VENUS --------------------------------------------------------------- --------------------------------------------------------------- Venus-centric Solar Orbital frame (VSO) ---------------------------------------- Definition: ----------- The Venus-centric Solar Orbital frame is defined as follows: - The position of the Sun relative to Venus is the primary vector: +X axis points from Venus to the Sun; - The inertially referenced velocity of the Sun relative to Venus is the secondary vector: +Y axis is the component of this velocity vector orthogonal to the +X axis; - +Z axis completes the right-handed system; - the origin of this frame is Venus' center of mass. All vectors are geometric: no corrections are used. \begindata FRAME_VSO = 1600299 FRAME_1600299_NAME = 'VSO' FRAME_1600299_CLASS = 5 FRAME_1600299_CLASS_ID = 1600299 FRAME_1600299_CENTER = 299 FRAME_1600299_RELATIVE = 'J2000' FRAME_1600299_DEF_STYLE = 'PARAMETERIZED' FRAME_1600299_FAMILY = 'TWO-VECTOR' FRAME_1600299_PRI_AXIS = 'X' FRAME_1600299_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1600299_PRI_OBSERVER = 'VENUS' FRAME_1600299_PRI_TARGET = 'SUN' FRAME_1600299_PRI_ABCORR = 'NONE' FRAME_1600299_SEC_AXIS = 'Y' FRAME_1600299_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY' FRAME_1600299_SEC_OBSERVER = 'VENUS' FRAME_1600299_SEC_TARGET = 'SUN' FRAME_1600299_SEC_ABCORR = 'NONE' FRAME_1600299_SEC_FRAME = 'J2000' \begintext Venus Mean Equator of Date frame (VME) -------------------------------------- Definition: ----------- The Venus Mean Equatorial of Date frame (also known as Venus Mean Equator and IAU vector of Date frame) is defined as follows (from [5]): - X-Y plane is defined by the Venus equator of date, and the +Z axis is parallel to the Venus' rotation axis of date, pointing toward the North side of the invariant plane; - +X axis is defined by the intersection of the Venus' equator of date with the Earth Mean Equator of J2000; - +Y axis completes the right-handed system; - the origin of this frame is Venus' center of mass. All vectors are geometric: no corrections are used. \begindata FRAME_VME = 1601299 FRAME_1601299_NAME = 'VME' FRAME_1601299_CLASS = 5 FRAME_1601299_CLASS_ID = 1601299 FRAME_1601299_CENTER = 299 FRAME_1601299_RELATIVE = 'J2000' FRAME_1601299_DEF_STYLE = 'PARAMETERIZED' FRAME_1601299_FAMILY = 'TWO-VECTOR' FRAME_1601299_PRI_AXIS = 'Z' FRAME_1601299_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1601299_PRI_FRAME = 'IAU_VENUS' FRAME_1601299_PRI_SPEC = 'RECTANGULAR' FRAME_1601299_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1601299_SEC_AXIS = 'Y' FRAME_1601299_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1601299_SEC_FRAME = 'J2000' FRAME_1601299_SEC_SPEC = 'RECTANGULAR' FRAME_1601299_SEC_VECTOR = ( 0, 0, 1 ) \begintext --------------------------------------------------------------- --------------------------------------------------------------- EARTH --------------------------------------------------------------- --------------------------------------------------------------- Geocentric Solar Ecliptic frame (GSE) --------------------------------------- Definition: ----------- The Geocentric Solar Ecliptic frame is defined as follows (from [3]): - X-Y plane is defined by the Earth Mean Ecliptic plane of date: the +Z axis, primary vector, is the normal vector to this plane, always pointing toward the North side of the invariant plane; - +X axis is the component of the Earth-Sun vector that is orthogonal to the +Z axis; - +Y axis completes the right-handed system; - the origin of this frame is the Sun's center of mass. All the vectors are geometric: no aberration corrections are used. \begindata FRAME_GSE = 1600399 FRAME_1600399_NAME = 'GSE' FRAME_1600399_CLASS = 5 FRAME_1600399_CLASS_ID = 1600399 FRAME_1600399_CENTER = 399 FRAME_1600399_RELATIVE = 'J2000' FRAME_1600399_DEF_STYLE = 'PARAMETERIZED' FRAME_1600399_FAMILY = 'TWO-VECTOR' FRAME_1600399_PRI_AXIS = 'Z' FRAME_1600399_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1600399_PRI_FRAME = 'ECLIPDATE' FRAME_1600399_PRI_SPEC = 'RECTANGULAR' FRAME_1600399_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1600399_SEC_AXIS = 'X' FRAME_1600399_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1600399_SEC_OBSERVER = 'EARTH' FRAME_1600399_SEC_TARGET = 'SUN' FRAME_1600399_SEC_ABCORR = 'NONE' \begintext Earth Mean Equator and Equinox of Date frame (EME) -------------------------------------------------- Definition: ----------- The Earth Mean Equator and Equinox of Date frame is defined as follows: - +Z axis is aligned with the north-pointing vector normal to the mean equatorial plane of the Earth; - +X axis points along the ``mean equinox'', which is defined as the intersection of the Earth's mean orbital plane with the Earth's mean equatorial plane. It is aligned with the cross product of the north-pointing vectors normal to the Earth's mean equator and mean orbit plane of date; - +Y axis is the cross product of the Z and X axes and completes the right-handed frame; - the origin of this frame is the Earth's center of mass. The mathematical model used to obtain the orientation of the Earth's mean equator and equinox of date frame is the 1976 IAU precession model, built into SPICE. The base frame for the 1976 IAU precession model is J2000. Remarks: -------- None. \begindata FRAME_EME = 1601399 FRAME_1601399_NAME = 'EME' FRAME_1601399_CLASS = 5 FRAME_1601399_CLASS_ID = 1601399 FRAME_1601399_CENTER = 399 FRAME_1601399_RELATIVE = 'J2000' FRAME_1601399_DEF_STYLE = 'PARAMETERIZED' FRAME_1601399_FAMILY = 'MEAN_EQUATOR_AND_EQUINOX_OF_DATE' FRAME_1601399_PREC_MODEL = 'EARTH_IAU_1976' FRAME_1601399_ROTATION_STATE = 'ROTATING' \begintext Geocentric Solar Equatorial frame (GSEQ) ---------------------------------------- Definition: ----------- The Geocentric Solar Equatorial frame is defined as follows (from [7]): - +X axis is the position of the Sun relative to the Earth; it's the primary vector and points from the Earth to the Sun; - +Z axis is the component of the Sun's north pole of date orthogonal to the +X axis; - +Y axis completes the right-handed reference frame; - the origin of this frame is the Earth's center of mass. All the vectors are geometric: no aberration corrections are used. \begindata FRAME_GSEQ = 1602399 FRAME_1602399_NAME = 'GSEQ' FRAME_1602399_CLASS = 5 FRAME_1602399_CLASS_ID = 1602399 FRAME_1602399_CENTER = 399 FRAME_1602399_RELATIVE = 'J2000' FRAME_1602399_DEF_STYLE = 'PARAMETERIZED' FRAME_1602399_FAMILY = 'TWO-VECTOR' FRAME_1602399_PRI_AXIS = 'X' FRAME_1602399_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1602399_PRI_OBSERVER = 'EARTH' FRAME_1602399_PRI_TARGET = 'SUN' FRAME_1602399_PRI_ABCORR = 'NONE' FRAME_1602399_SEC_AXIS = 'Z' FRAME_1602399_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1602399_SEC_FRAME = 'IAU_SUN' FRAME_1602399_SEC_SPEC = 'RECTANGULAR' FRAME_1602399_SEC_VECTOR = ( 0, 0, 1 ) \begintext Earth Mean Ecliptic and Equinox of Date frame (ECLIPDATE) --------------------------------------------------------- Definition: ----------- The Earth Mean Ecliptic and Equinox of Date frame is defined as follows: - +Z axis is aligned with the north-pointing vector normal to the mean orbital plane of the Earth; - +X axis points along the ``mean equinox'', which is defined as the intersection of the Earth's mean orbital plane with the Earth's mean equatorial plane. It is aligned with the cross product of the north-pointing vectors normal to the Earth's mean equator and mean orbit plane of date; - +Y axis is the cross product of the Z and X axes and completes the right-handed frame; - the origin of this frame is the Earth's center of mass. The mathematical model used to obtain the orientation of the Earth's mean equator and equinox of date frame is the 1976 IAU precession model, built into SPICE. The mathematical model used to obtain the mean orbital plane of the Earth is the 1980 IAU obliquity model, also built into SPICE. The base frame for the 1976 IAU precession model is J2000. Required Data: -------------- The usage of this frame does not require additional data since both the precession and the obliquity models used to define this frame are already built into SPICE. Remarks: -------- None. \begindata FRAME_ECLIPDATE = 1603399 FRAME_1603399_NAME = 'ECLIPDATE' FRAME_1603399_CLASS = 5 FRAME_1603399_CLASS_ID = 1603399 FRAME_1603399_CENTER = 399 FRAME_1603399_RELATIVE = 'J2000' FRAME_1603399_DEF_STYLE = 'PARAMETERIZED' FRAME_1603399_FAMILY = 'MEAN_ECLIPTIC_AND_EQUINOX_OF_DATE' FRAME_1603399_PREC_MODEL = 'EARTH_IAU_1976' FRAME_1603399_OBLIQ_MODEL = 'EARTH_IAU_1980' FRAME_1603399_ROTATION_STATE = 'ROTATING' \begintext MAG Frame: --------------------------------------------------------- Definition From [8]: Geomagnetic - geocentric. Z axis is parallel to the geomagnetic dipole axis, positive north. X is in the plane defined by the Z axis and the Earth's rotation axis. If N is a unit vector from the Earth's center to the north geographic pole, the signs of the X and Y axes are given by Y = N x Z, X = Y x Z.. See Russell, 1971, and The implementation of this frame is complicated in that the definition of the IGRF dipole is a function of time and the IGRF model cannot be directly incorporated into Spice. However, Spice does allow one to define time dependent Euler angles. Meaning, you can define an Euler angle that rotates GEO to MAG for a given ephemeris time t: V = r(t) * V GEI MAG where r(t) is a time dependent Euler angle representation of a rotation. Spice allows for the time dependence to be represented by a polynomial expansion. This expansion can be fit using the IGRF model, thus representing the IGRF dipole axis. IGRF-11 (the 11th version) was fit for the period of 1990-2020, which should encompass the mission and will also make this kernel useful for performing Magnetic dipole frame transformations for the 1990's and the 2000's. However, IGRF-11 is not as accurate for this entire time interval. The years between 1945-2005 are labeled definitive, although only back to 1990 was used in the polynomial fit. 2005-2010 is provisional, and may change with IGRF-12. 2010-2015 was only a prediction. Beyond 2015, the predict is so far in the future as to not be valid. So to make the polynomials behave nicely in this region (in case someone does try to use this frame during that time), the 2015 prediction was extended until 2020. So for low precision, this kernel can be used for the years 2015-2020. Any times less than 1990 and greater than 2020 were not used in the fit, and therefore may be vastly incorrect as the polynomials may diverge outside of this region. These coefficients will be refit when IGRF-12 is released. Also, since the rest of the magnetic dipole frames are defined from this one, similar time ranges should be used for those frames. Definitive Provisional Predict Not Valid |------------------------------|+++++++++++|###########|???????????| 1990 2005 2010 2015 2020 In addition to the error inherit in the model itself, the polynomial expansion cannot perfectly be fit the IGRF dipole. The maximum error on the fit is .2 milliradians, or .01 degrees. The MAG frame is achieved by first rotating the GEO frame about Z by the longitude degrees, and then rotating about the Y axis by the amount of latitude. This matches the new frame to Russell's definition. \begindata FRAME_MAG = 1604399 FRAME_1604399_NAME = 'MAG' FRAME_1604399_CLASS = 5 FRAME_1604399_CLASS_ID = 1604399 FRAME_1604399_CENTER = 399 FRAME_1604399_RELATIVE = 'IAU_EARTH' FRAME_1604399_DEF_STYLE = 'PARAMETERIZED' FRAME_1604399_FAMILY = 'EULER' FRAME_1604399_EPOCH = @2010-JAN-1/00:00:00 FRAME_1604399_AXES = ( 3, 2, 1 ) FRAME_1604399_UNITS = 'DEGREES' FRAME_1604399_ANGLE_1_COEFFS = ( +72.19592169505606 +2.6506950233619764E-9 +1.6897777301495875E-18 -3.725022474684048E-27 -6.395891803742159E-36 ) FRAME_1604399_ANGLE_2_COEFFS = ( -9.98363089063021 +1.7304386827492741E-9 +5.686537610447754E-19 -5.208835662700353E-28 -9.569975244363123E-37 ) FRAME_1604399_ANGLE_3_COEFFS = ( 0 ) \begintext GSM Frame: --------------------------------------------------------- Definition From [8]: Geocentric Solar Magnetospheric - A coordinate system where the X axis is from Earth to Sun, Z axis is northward in a plane containing the X axis and the geomagnetic dipole axis. See Russell, 1971 Thus, +X is identical as GSE +X and is the primary, and +Z is the secondary and is the MAG +Z. \begindata FRAME_GSM = 1605399 FRAME_1605399_NAME = 'GSM' FRAME_1605399_CLASS = 5 FRAME_1605399_CLASS_ID = 1605399 FRAME_1605399_CENTER = 399 FRAME_1605399_RELATIVE = 'J2000' FRAME_1605399_DEF_STYLE = 'PARAMETERIZED' FRAME_1605399_FAMILY = 'TWO-VECTOR' FRAME_1605399_PRI_AXIS = 'X' FRAME_1605399_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1605399_PRI_OBSERVER = 'EARTH' FRAME_1605399_PRI_TARGET = 'SUN' FRAME_1605399_PRI_ABCORR = 'NONE' FRAME_1605399_SEC_AXIS = 'Z' FRAME_1605399_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1605399_SEC_SPEC = 'RECTANGULAR' FRAME_1605399_SEC_FRAME = 'MAG' FRAME_1605399_SEC_VECTOR = (0, 0, 1) \begintext SM Frame: --------------------------------------------------------- Definition From [8]: Solar Magnetic - A geocentric coordinate system where the Z axis is northward along Earth's dipole axis, X axis is in plane of z axis and Earth-Sun line, positive sunward. See Russell, 1971. Thus, this is much like GSM, except that now the +Z axis is the primary, meaning it is parallel to the dipole vector, and +X is the secondary. Since the X-Z plane is the same as GSM's X-Z plane, the Y axis is the same as GSM. \begindata FRAME_SM = 1606399 FRAME_1606399_NAME = 'SM' FRAME_1606399_CLASS = 5 FRAME_1606399_CLASS_ID = 1606399 FRAME_1606399_CENTER = 399 FRAME_1606399_RELATIVE = 'J2000' FRAME_1606399_DEF_STYLE = 'PARAMETERIZED' FRAME_1606399_FAMILY = 'TWO-VECTOR' FRAME_1606399_PRI_AXIS = 'Z' FRAME_1606399_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1606399_PRI_SPEC = 'RECTANGULAR' FRAME_1606399_PRI_FRAME = 'MAG' FRAME_1606399_PRI_VECTOR = (0, 0, 1) FRAME_1606399_SEC_AXIS = 'X' FRAME_1606399_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1606399_SEC_OBSERVER = 'EARTH' FRAME_1606399_SEC_TARGET = 'SUN' FRAME_1606399_SEC_ABCORR = 'NONE' \begintext --------------------------------------------------------------- MOON --------------------------------------------------------------- Moon-centric Solar Ecliptic frame (LSE) --------------------------------------- Definition: ----------- The Moon-centric Solar Ecliptic frame is defined as follows: - The position of the Sun relative to Moon is the primary vector: +X axis points from Moon to the Sun; - The inertially referenced velocity of the Sun relative to Moon is the secondary vector: +Y axis is the component of this velocity vector orthogonal to the +X axis; - +Z axis completes the right-handed system; - the origin of this frame is Moon's center of mass. All vectors are geometric: no corrections are used. \begindata FRAME_LSE = 1600301 FRAME_1600301_NAME = 'LSE' FRAME_1600301_CLASS = 5 FRAME_1600301_CLASS_ID = 1600301 FRAME_1600301_CENTER = 301 FRAME_1600301_RELATIVE = 'J2000' FRAME_1600301_DEF_STYLE = 'PARAMETERIZED' FRAME_1600301_FAMILY = 'TWO-VECTOR' FRAME_1600301_PRI_AXIS = 'X' FRAME_1600301_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1600301_PRI_OBSERVER = 'MOON' FRAME_1600301_PRI_TARGET = 'SUN' FRAME_1600301_PRI_ABCORR = 'NONE' FRAME_1600301_SEC_AXIS = 'Y' FRAME_1600301_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY' FRAME_1600301_SEC_OBSERVER = 'MOON' FRAME_1600301_SEC_TARGET = 'SUN' FRAME_1600301_SEC_ABCORR = 'NONE' FRAME_1600301_SEC_FRAME = 'J2000' \begintext Moon Mean Equator of Date frame (LME) ------------------------------------- Definition: ----------- The Moon Mean Equator of Date frame (also known as Moon Mean Equator and IAU vector of Date frame) is defined as follows (from [5]): - X-Y plane is defined by the Moon equator of date, and the +Z axis, primary vector of this frame, is parallel to the Moon's rotation axis of date, pointing toward the North side of the invariant plane; - +X axis is defined by the intersection of the Moon's equator of date with the Earth Mean Equator of J2000; - +Y axis completes the right-handed system; - the origin of this frame is Moon's center of mass. All vectors are geometric: no corrections are used. \begindata FRAME_LME = 1601301 FRAME_1601301_NAME = 'LME' FRAME_1601301_CLASS = 5 FRAME_1601301_CLASS_ID = 1601301 FRAME_1601301_CENTER = 301 FRAME_1601301_RELATIVE = 'J2000' FRAME_1601301_DEF_STYLE = 'PARAMETERIZED' FRAME_1601301_FAMILY = 'TWO-VECTOR' FRAME_1601301_PRI_AXIS = 'Z' FRAME_1601301_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1601301_PRI_FRAME = 'IAU_MOON' FRAME_1601301_PRI_SPEC = 'RECTANGULAR' FRAME_1601301_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1601301_SEC_AXIS = 'Y' FRAME_1601301_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1601301_SEC_FRAME = 'J2000' FRAME_1601301_SEC_SPEC = 'RECTANGULAR' FRAME_1601301_SEC_VECTOR = ( 0, 0, 1 ) \begintext --------------------------------------------------------------- --------------------------------------------------------------- MARS --------------------------------------------------------------- --------------------------------------------------------------- Mars Mean Equator of Date frame (MME) ------------------------------------- Definition: ----------- The Mars Mean Equator of Date frame (also known as Mars Mean Equator and IAU vector of Date frame) is defined as follows (from [5]): - X-Y plane is defined by the Mars equator of date: the +Z axis, primary vector, is parallel to the Mars' rotation axis of date, pointing toward the North side of the invariant plane; - +X axis is defined by the intersection of the Mars' equator of date with the J2000 equator; - +Y axis completes the right-handed system; - the origin of this frame is Mars' center of mass. All vectors are geometric: no corrections are used. \begindata FRAME_MME = 1600499 FRAME_1600499_NAME = 'MME' FRAME_1600499_CLASS = 5 FRAME_1600499_CLASS_ID = 1600499 FRAME_1600499_CENTER = 499 FRAME_1600499_RELATIVE = 'J2000' FRAME_1600499_DEF_STYLE = 'PARAMETERIZED' FRAME_1600499_FAMILY = 'TWO-VECTOR' FRAME_1600499_PRI_AXIS = 'Z' FRAME_1600499_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1600499_PRI_FRAME = 'IAU_MARS' FRAME_1600499_PRI_SPEC = 'RECTANGULAR' FRAME_1600499_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1600499_SEC_AXIS = 'Y' FRAME_1600499_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1600499_SEC_FRAME = 'J2000' FRAME_1600499_SEC_SPEC = 'RECTANGULAR' FRAME_1600499_SEC_VECTOR = ( 0, 0, 1 ) \begintext Mars-centric Solar Orbital frame (MSO) -------------------------------------------------------- Definition: ----------- The Mars-centric Solar Orbital frame is defined as follows: - The position of the Sun relative to Mars is the primary vector: +X axis points from Mars to the Sun; - The inertially referenced velocity of the Sun relative to Mars is the secondary vector: +Y axis is the component of this velocity vector orthogonal to the +X axis; - +Z axis completes the right-handed system; - the origin of this frame is Mars' center of mass. All vectors are geometric: no corrections are used. \begindata FRAME_MSO = 1601499 FRAME_1601499_NAME = 'MSO' FRAME_1601499_CLASS = 5 FRAME_1601499_CLASS_ID = 1601499 FRAME_1601499_CENTER = 499 FRAME_1601499_RELATIVE = 'J2000' FRAME_1601499_DEF_STYLE = 'PARAMETERIZED' FRAME_1601499_FAMILY = 'TWO-VECTOR' FRAME_1601499_PRI_AXIS = 'X' FRAME_1601499_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1601499_PRI_OBSERVER = 'MARS' FRAME_1601499_PRI_TARGET = 'SUN' FRAME_1601499_PRI_ABCORR = 'NONE' FRAME_1601499_SEC_AXIS = 'Y' FRAME_1601499_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY' FRAME_1601499_SEC_OBSERVER = 'MARS' FRAME_1601499_SEC_TARGET = 'SUN' FRAME_1601499_SEC_ABCORR = 'NONE' FRAME_1601499_SEC_FRAME = 'J2000' \begintext --------------------------------------------------------------- --------------------------------------------------------------- JUPITER --------------------------------------------------------------- --------------------------------------------------------------- \begindata FRAME_JEME = 1600599 FRAME_1600599_NAME = 'JEME' FRAME_1600599_CLASS = 5 FRAME_1600599_CLASS_ID = 1600599 FRAME_1600599_CENTER = 599 FRAME_1600599_RELATIVE = 'J2000' FRAME_1600599_DEF_STYLE = 'PARAMETERIZED' FRAME_1600599_FAMILY = 'TWO-VECTOR' FRAME_1600599_PRI_AXIS = 'Z' FRAME_1600599_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1600599_PRI_FRAME = 'J2000' FRAME_1600599_PRI_SPEC = 'RECTANGULAR' FRAME_1600599_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1600599_SEC_AXIS = 'X' FRAME_1600599_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1600599_SEC_FRAME = 'J2000' FRAME_1600599_SEC_SPEC = 'RECTANGULAR' FRAME_1600599_SEC_VECTOR = ( 1, 0, 0 ) \begintext \begindata FRAME_JECLIP = 1601599 FRAME_1601599_NAME = 'JECLIP' FRAME_1601599_CLASS = 5 FRAME_1601599_CLASS_ID = 1600599 FRAME_1601599_CENTER = 599 FRAME_1601599_RELATIVE = 'J2000' FRAME_1601599_DEF_STYLE = 'PARAMETERIZED' FRAME_1601599_FAMILY = 'TWO-VECTOR' FRAME_1601599_PRI_AXIS = 'Z' FRAME_1601599_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1601599_PRI_FRAME = 'ECLIPDATE' FRAME_1601599_PRI_SPEC = 'RECTANGULAR' FRAME_1601599_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1601599_SEC_AXIS = 'X' FRAME_1601599_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1601599_SEC_FRAME = 'ECLIPDATE' FRAME_1601599_SEC_SPEC = 'RECTANGULAR' FRAME_1601599_SEC_VECTOR = ( 1, 0, 0 ) \begintext The JSM frame is defined in [3] as follows: Jovian Solar Magnetospheric (JSM) --------------------------------------------------- A coordinate system where the X axis is from Jupiter to Sun, Z axis is northward in a plane containing the X axis and the Jovian dipole axis. Dipole is 159 longitude and 80 latitude from [4][5][6] documents. \begindata FRAME_JSM = 1602599 FRAME_1602599_NAME = 'JSM' FRAME_1602599_CLASS = 5 FRAME_1602599_CLASS_ID = 1602599 FRAME_1602599_CENTER = 599 FRAME_1602599_RELATIVE = 'J2000' FRAME_1602599_DEF_STYLE = 'PARAMETERIZED' FRAME_1602599_FAMILY = 'TWO-VECTOR' FRAME_1602599_PRI_AXIS = 'X' FRAME_1602599_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1602599_PRI_OBSERVER = 'JUPITER' FRAME_1602599_PRI_TARGET = 'SUN' FRAME_1602599_PRI_ABCORR = 'NONE' FRAME_1602599_SEC_AXIS = 'Z' FRAME_1602599_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1602599_SEC_SPEC = 'LATITUDINAL' FRAME_1602599_SEC_UNITS = 'DEGREES' FRAME_1602599_SEC_LONGITUDE = 159.00 FRAME_1602599_SEC_LATITUDE = 80.00 FRAME_1602599_SEC_FRAME = 'IAU_JUPITER' \begintext The JSO frame is defined in [3] as follows: Jovian Solar Orbital Coordinates (JSO) --------------------------------------------------- Coordinate Sytem Related to Jupiter Jovian Solar Orbita (X anti-sunward, Y along the orbital velocity direction) \begindata FRAME_JSO = 1603599 FRAME_1603599_NAME = 'JSO' FRAME_1603599_CLASS = 5 FRAME_1603599_CLASS_ID = 1603599 FRAME_1603599_CENTER = 599 FRAME_1603599_RELATIVE = 'J2000' FRAME_1603599_DEF_STYLE = 'PARAMETERIZED' FRAME_1603599_FAMILY = 'TWO-VECTOR' FRAME_1603599_PRI_AXIS = 'X' FRAME_1603599_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1603599_PRI_OBSERVER = 'JUPITER' FRAME_1603599_PRI_TARGET = 'SUN' FRAME_1603599_PRI_ABCORR = 'NONE' FRAME_1603599_SEC_AXIS = 'Y' FRAME_1603599_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY' FRAME_1603599_SEC_OBSERVER = 'JUPITER' FRAME_1603599_SEC_TARGET = 'SUN' FRAME_1603599_SEC_ABCORR = 'NONE' FRAME_1603599_SEC_FRAME = 'J2000' \begintext --------------------------------------------------------------- GPHIO --------------------------------------- Definition: ----------- the jovian plasma. In this Cartesian coordinate system (referred to as GphiO), X is along theflow direction, Y is along the Ganymede–Jupiter vector, and Z is along the spin axis. These coordinates are analogous to the earth-centered GSE coordinates that relate to the direction of flow of the solar wind onto Earth’s environment All the vectors are geometric: no aberration corrections are used. \begindata FRAME_GPHIO = 1604599 FRAME_1604599_NAME = 'GPHIO' FRAME_1604599_CLASS = 5 FRAME_1604599_CLASS_ID = 1604599 FRAME_1604599_CENTER = 503 FRAME_1604599_RELATIVE = 'J2000' FRAME_1604599_DEF_STYLE = 'PARAMETERIZED' FRAME_1604599_FAMILY = 'TWO-VECTOR' FRAME_1604599_PRI_AXIS = 'Z' FRAME_1604599_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1604599_PRI_FRAME = 'ECLIPDATE' FRAME_1604599_PRI_SPEC = 'RECTANGULAR' FRAME_1604599_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1604599_SEC_AXIS = 'X' FRAME_1604599_SEC_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1604599_SEC_OBSERVER = 'GANYMEDE' FRAME_1604599_SEC_TARGET = 'JUPITER' FRAME_1604599_SEC_ABCORR = 'NONE' \begintext --------------------------------------------------------------- SATURN --------------------------------------------------------------- \begindata FRAME_KEME = 1600699 FRAME_1600699_NAME = 'KEME' FRAME_1600699_CLASS = 5 FRAME_1600699_CLASS_ID = 1600699 FRAME_1600699_CENTER = 699 FRAME_1600699_RELATIVE = 'J2000' FRAME_1600699_DEF_STYLE = 'PARAMETERIZED' FRAME_1600699_FAMILY = 'TWO-VECTOR' FRAME_1600699_PRI_AXIS = 'Z' FRAME_1600699_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1600699_PRI_FRAME = 'J2000' FRAME_1600699_PRI_SPEC = 'RECTANGULAR' FRAME_1600699_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1600699_SEC_AXIS = 'X' FRAME_1600699_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1600699_SEC_FRAME = 'J2000' FRAME_1600699_SEC_SPEC = 'RECTANGULAR' FRAME_1600699_SEC_VECTOR = ( 1, 0, 0 ) \begintext \begindata FRAME_KECLIP = 1601699 FRAME_1601699_NAME = 'KECLIP' FRAME_1601699_CLASS = 5 FRAME_1601699_CLASS_ID = 1600699 FRAME_1601699_CENTER = 699 FRAME_1601699_RELATIVE = 'J2000' FRAME_1601699_DEF_STYLE = 'PARAMETERIZED' FRAME_1601699_FAMILY = 'TWO-VECTOR' FRAME_1601699_PRI_AXIS = 'Z' FRAME_1601699_PRI_VECTOR_DEF = 'CONSTANT' FRAME_1601699_PRI_FRAME = 'ECLIPDATE' FRAME_1601699_PRI_SPEC = 'RECTANGULAR' FRAME_1601699_PRI_VECTOR = ( 0, 0, 1 ) FRAME_1601699_SEC_AXIS = 'X' FRAME_1601699_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1601699_SEC_FRAME = 'ECLIPDATE' FRAME_1601699_SEC_SPEC = 'RECTANGULAR' FRAME_1601699_SEC_VECTOR = ( 1, 0, 0 ) \begintext The KSM frame is defined in [3] as follows: Kronocentric Solar Magnetospheric Coordinates (KSM) --------------------------------------------------- A coordinate system where the X axis is from Saturn to Sun, Z axis is northward in a plane containing the X axis and the Kronian dipole axis. Some sources refers magnetic dipole at 180 degrees longitude, 89.99 degrees latitude in the IAU_SATURN frame. Other source make assume that the dipole axis is parallel to the spin axis. \begindata FRAME_KSM = 1602699 FRAME_1602699_NAME = 'KSM' FRAME_1602699_CLASS = 5 FRAME_1602699_CLASS_ID = 1602699 FRAME_1602699_CENTER = 699 FRAME_1602699_RELATIVE = 'J2000' FRAME_1602699_DEF_STYLE = 'PARAMETERIZED' FRAME_1602699_FAMILY = 'TWO-VECTOR' FRAME_1602699_PRI_AXIS = 'X' FRAME_1602699_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1602699_PRI_OBSERVER = 'SATURN' FRAME_1602699_PRI_TARGET = 'SUN' FRAME_1602699_PRI_ABCORR = 'NONE' FRAME_1602699_SEC_AXIS = 'Z' FRAME_1602699_SEC_VECTOR_DEF = 'CONSTANT' FRAME_1602699_SEC_SPEC = 'LATITUDINAL' FRAME_1602699_SEC_UNITS = 'DEGREES' FRAME_1602699_SEC_LONGITUDE = 180.00 FRAME_1602699_SEC_LATITUDE = 89.99 FRAME_1602699_SEC_FRAME = 'IAU_SATURN' \begintext The KSO frame is defined in [3] as follows: Kronocentric Solar Orbital Coordinates (KSO) --------------------------------------------------- Coordinate Sytem Related to Saturn Kronian Solar Orbital (X anti-sunward, Y along the orbital velocity direction) \begindata FRAME_KSO = 1603699 FRAME_1603699_NAME = 'KSO' FRAME_1603699_CLASS = 5 FRAME_1603699_CLASS_ID = 1603699 FRAME_1603699_CENTER = 699 FRAME_1603699_RELATIVE = 'J2000' FRAME_1603699_DEF_STYLE = 'PARAMETERIZED' FRAME_1603699_FAMILY = 'TWO-VECTOR' FRAME_1603699_PRI_AXIS = 'X' FRAME_1603699_PRI_VECTOR_DEF = 'OBSERVER_TARGET_POSITION' FRAME_1603699_PRI_OBSERVER = 'SATURN' FRAME_1603699_PRI_TARGET = 'SUN' FRAME_1603699_PRI_ABCORR = 'NONE' FRAME_1603699_SEC_AXIS = 'Y' FRAME_1603699_SEC_VECTOR_DEF = 'OBSERVER_TARGET_VELOCITY' FRAME_1603699_SEC_OBSERVER = 'SATURN' FRAME_1603699_SEC_TARGET = 'SUN' FRAME_1603699_SEC_ABCORR = 'NONE' FRAME_1603699_SEC_FRAME = 'J2000' \begintext --------------------------------------------------------------- Small bodies --------------------------------------------------------------- Churyumov gerasimenko \begindata FRAME_67PCG_EME = 161000012 FRAME_161000012_NAME = '67PCG_EME' FRAME_161000012_CLASS = 5 FRAME_161000012_CLASS_ID = 161000012 FRAME_161000012_CENTER = 1000012 FRAME_161000012_RELATIVE = 'J2000' FRAME_161000012_DEF_STYLE = 'PARAMETERIZED' FRAME_161000012_FAMILY = 'TWO-VECTOR' FRAME_161000012_PRI_AXIS = 'Z' FRAME_161000012_PRI_VECTOR_DEF = 'CONSTANT' FRAME_161000012_PRI_FRAME = 'J2000' FRAME_161000012_PRI_SPEC = 'RECTANGULAR' FRAME_161000012_PRI_VECTOR = ( 0, 0, 1 ) FRAME_161000012_SEC_AXIS = 'X' FRAME_161000012_SEC_VECTOR_DEF = 'CONSTANT' FRAME_161000012_SEC_FRAME = 'J2000' FRAME_161000012_SEC_SPEC = 'RECTANGULAR' FRAME_161000012_SEC_VECTOR = ( 1, 0, 0 ) \begintext Lutetia \begindata FRAME_LUTETIA_EME = 162000021 FRAME_162000021_NAME = 'LUTETIA_EME' FRAME_162000021_CLASS = 5 FRAME_162000021_CLASS_ID = 162000021 FRAME_162000021_CENTER = 2000021 FRAME_162000021_RELATIVE = 'J2000' FRAME_162000021_DEF_STYLE = 'PARAMETERIZED' FRAME_162000021_FAMILY = 'TWO-VECTOR' FRAME_162000021_PRI_AXIS = 'Z' FRAME_162000021_PRI_VECTOR_DEF = 'CONSTANT' FRAME_162000021_PRI_FRAME = 'J2000' FRAME_162000021_PRI_SPEC = 'RECTANGULAR' FRAME_162000021_PRI_VECTOR = ( 0, 0, 1 ) FRAME_162000021_SEC_AXIS = 'X' FRAME_162000021_SEC_VECTOR_DEF = 'CONSTANT' FRAME_162000021_SEC_FRAME = 'J2000' FRAME_162000021_SEC_SPEC = 'RECTANGULAR' FRAME_162000021_SEC_VECTOR = ( 1, 0, 0 ) \begintext Steins \begindata FRAME_STEINS_EME = 162002867 FRAME_162002867_NAME = 'STEINS_EME' FRAME_162002867_CLASS = 5 FRAME_162002867_CLASS_ID = 162002867 FRAME_162002867_CENTER = 2002867 FRAME_162002867_RELATIVE = 'J2000' FRAME_162002867_DEF_STYLE = 'PARAMETERIZED' FRAME_162002867_FAMILY = 'TWO-VECTOR' FRAME_162002867_PRI_AXIS = 'Z' FRAME_162002867_PRI_VECTOR_DEF = 'CONSTANT' FRAME_162002867_PRI_FRAME = 'J2000' FRAME_162002867_PRI_SPEC = 'RECTANGULAR' FRAME_162002867_PRI_VECTOR = ( 0, 0, 1 ) FRAME_162002867_SEC_AXIS = 'X' FRAME_162002867_SEC_VECTOR_DEF = 'CONSTANT' FRAME_162002867_SEC_FRAME = 'J2000' FRAME_162002867_SEC_SPEC = 'RECTANGULAR' FRAME_162002867_SEC_VECTOR = ( 1, 0, 0 ) \begintext Halley \begindata FRAME_HALLEY_EME = 161000036 FRAME_161000036_NAME = 'HALLEY_EME' FRAME_161000036_CLASS = 5 FRAME_161000036_CLASS_ID = 161000036 FRAME_161000036_CENTER = 1000036 FRAME_161000036_RELATIVE = 'J2000' FRAME_161000036_DEF_STYLE = 'PARAMETERIZED' FRAME_161000036_FAMILY = 'TWO-VECTOR' FRAME_161000036_PRI_AXIS = 'Z' FRAME_161000036_PRI_VECTOR_DEF = 'CONSTANT' FRAME_161000036_PRI_FRAME = 'J2000' FRAME_161000036_PRI_SPEC = 'RECTANGULAR' FRAME_161000036_PRI_VECTOR = ( 0, 0, 1 ) FRAME_161000036_SEC_AXIS = 'X' FRAME_161000036_SEC_VECTOR_DEF = 'CONSTANT' FRAME_161000036_SEC_FRAME = 'J2000' FRAME_161000036_SEC_SPEC = 'RECTANGULAR' FRAME_161000036_SEC_VECTOR = ( 1, 0, 0 ) \begintext GRIGG-SKJELLERUP \begindata FRAME_GRIGGSKELL_EME = 161000034 FRAME_161000034_NAME = 'GRIGGSKELL_EME' FRAME_161000034_CLASS = 5 FRAME_161000034_CLASS_ID = 161000034 FRAME_161000034_CENTER = 1000034 FRAME_161000034_RELATIVE = 'J2000' FRAME_161000034_DEF_STYLE = 'PARAMETERIZED' FRAME_161000034_FAMILY = 'TWO-VECTOR' FRAME_161000034_PRI_AXIS = 'Z' FRAME_161000034_PRI_VECTOR_DEF = 'CONSTANT' FRAME_161000034_PRI_FRAME = 'J2000' FRAME_161000034_PRI_SPEC = 'RECTANGULAR' FRAME_161000034_PRI_VECTOR = ( 0, 0, 1 ) FRAME_161000034_SEC_AXIS = 'X' FRAME_161000034_SEC_VECTOR_DEF = 'CONSTANT' FRAME_161000034_SEC_FRAME = 'J2000' FRAME_161000034_SEC_SPEC = 'RECTANGULAR' FRAME_161000034_SEC_VECTOR = ( 1, 0, 0 ) \begintext