display_lib.py
13.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#! /bin/env python
# coding: utf8
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
class display1d(object):
"""
Functions to easily add options to 1d objects plots
initialize as display1d(3,2) for 3 columns and 2 rows
Change plot by switching the indice with set_actualPlotNumber, indice starts from 1 and goes from left to right and then under
add abscisse
add errorbars along x or y
add colorscale to a scatter plot
NOTE : Not made for timeseries!!
"""
def __init__(self, ncols = 1, nrows = 1) :
self.fig = plt.figure(figsize = (16, 10), dpi = 96)
self.ncols = int(ncols)
self.nrows = int(nrows)
self.set_actualPlotNumber(0)
print "initializing ", ncols * nrows, 'independant plots'
self.plots = [{}]
self.plots[0]['label'] = {'data' : None, 'xaxis' : None, 'yaxis' : None, 'cbar' : None, 'title' : None}
for i in range(nrows*ncols-1) :
self.plots.append({})
self.plots[-1]['label'] = {'data' : None, 'xaxis' : None, 'yaxis' : None, 'cbar' : None, 'title' : None}
#self.set_colorscale()
#self.set_errorbar(x = np.arange(len(self.y))/5.)
#self.set_logscale()
#self.set_label()
def set_data(self, y) :
#i = int(i)
#self.set_actualPlotNumber(i)
i = self.get_actualPlotNumber()
self.plots[i]['ax'] = self.fig.add_subplot(str(self.nrows) + str(self.ncols) + str(i+1))
self.plots[i]['data'] = np.array(y)
self.plots[i]['ax'].set_xlabel(self.plots[i]['label']['xaxis'])
self.plots[i]['ax'].set_ylabel(self.plots[i]['label']['yaxis'])
self.set_abscisse()
def set_actualPlotNumber(self, i):
self._actualPlotNumber = int(i)
def get_actualPlotNumber(self):
return self._actualPlotNumber
def set_abscisse(self, x = [0]):
i = self.get_actualPlotNumber()
x = np.array(x)
if len(x) != len(self.plots[i]['data']) :
print 'setting default abscisse for plot ', i
self.plots[i]['x'] = np.arange(self.plots[i]['data'].shape[0])
else : self.plots[i]['x'] = x
def set_label(self, data = None, xaxis = None, yaxis = None, cbar = None, title = None):
i = self.get_actualPlotNumber()
tmpdict = {'data' : data, 'xaxis' : xaxis, 'yaxis' : yaxis, 'cbar' : cbar, 'title' : title}
for key in tmpdict :
if tmpdict[key] : self.plots[i]['label'][key] = tmpdict[key]
def set_limits(self, xlim = [None, None], ylim = [None, None]):
i = self.get_actualPlotNumber()
self.plots[i]['ax'].set_xlim(xlim)
self.plots[i]['ax'].set_ylim(ylim)
def set_logscale(self, x = False, y = False) :
i = self.get_actualPlotNumber()
if x : self.plots[i]['ax'].set_xscale('log')
if y : self.plots[i]['ax'].set_yscale('log')
def set_errorbar(self, xerr = [0], yerr = [0]):
i = self.get_actualPlotNumber()
self.plots[i]['xerr'], self.plots[i]['yerr'] = np.array(xerr), np.array(yerr)
if self.plots[i]['xerr'].shape != self.plots[i]['data'].shape : self.plots[i]['xerr'] = np.zeros(self.plots[i]['data'].shape)
if self.plots[i]['yerr'].shape != self.plots[i]['data'].shape : self.plots[i]['yerr'] = np.zeros(self.plots[i]['data'].shape)
self.plots[i]['ax'].errorbar(self.plots[i]['x'], self.plots[i]['data'], xerr = self.plots[i]['xerr'], yerr = self.plots[i]['yerr'], color = 'black' , alpha = 0.1, fmt = '.')
def set_colorscale(self, col_arr = [0], minmax = 'auto', cmap = 'plasma') :
i = self.get_actualPlotNumber()
self.plots[i]['col_arr'] = np.array(col_arr)
if self.plots[i]['col_arr'].shape != self.plots[i]['data'].shape : self.plots[i]['col_arr'] = self.plots[i]['data']
#self.new_val = (self.col_arr - self.col_arr.min())/(self.col_arr.max() - self.col_arr.min())
#self.carray = plt.get_cmap(cmap)(self.new_val)
#for x, y, col, lab in zip(self.x, self.y, self.carray, self.col_arr) :
#self.collec = self.ax.scatter(x, y, color = col, label = lab)
self.plots[i]['scatter'] = self.plots[i]['ax'].scatter(self.plots[i]['x'], self.plots[i]['data'])
self.plots[i]['scatter'].set_array(self.plots[i]['col_arr'])
self.plots[i]['scatter'].set_cmap(cmap)
self.plots[i]['scatter'].set_label(self.plots[i]['label']['data'])
if minmax == 'auto' : self.plots[i]['scatter'].autoscale()
else : self.plots[i]['scatter'].set_clim(vmin = minmax[0], vmax = minmax[1])
self.plots[i]['cbar'] = self.fig.colorbar(self.plots[i]['scatter'])
self.plots[i]['cbar'].set_label(self.plots[i]['label']['cbar'])
def set_plot(self, lstyle = '-', color = 'black'):
i = self.get_actualPlotNumber()
self.plots[i]['plot'], = self.plots[i]['ax'].plot(self.plots[i]['x'], self.plots[i]['data'], lstyle, color = color)
self.plots[i]['plot'].set_label(self.plots[i]['label']['data'])
def set_secondaryPlot(self, x, y, lstyle = '-', color = 'black', label = 'secondary plot'):
i = self.get_actualPlotNumber()
if 'splots' not in self.plots[i] : self.plots[i]['splots'] = {}
self.plots[i]['splots'][len(self.plots[i]['splots'])] = {'x' : x, 'y': y, 'lstyle' : lstyle, 'color' : color, 'label':label}
self.plots[i]['ax'].plot(x, y, lstyle, color = color, label = label)
def set_hist(self, nstep = 20):
i = self.get_actualPlotNumber()
self.plots[i]['hist'] = self.plots[i]['ax'].hist(self.plots[i]['data'], nstep, alpha = 0.75, histtype = 'stepfilled', label = self.plots[i]['label']['data'])
def setAllLegends(self):
for obj in self.plots : obj['ax'].legend()
def show(self):
self.setAllLegends()
#plt.legend()
plt.show()
class display3d(object) :
"""
3D plotting object
works fine! init 3D coordinates as numpy arrays (x,y,z)
can add surface with values at surfaces (set_trisurf)
By default aspect ratio is 1:1, pyplot has a weird aspect ration! (still not fixes 07/2017)
Thus this object impose an invisible cube at first
use set_autoscatter for a default scatter plot of x,y,z (NOT generated by default, must be called!!)
"""
def __init__(self, x, y, z) :
self.x = x
self.y = y
self.z = z
self.planet = False
self._initialize()
self.plots = {}
def _initialize(self):
self.fig = plt.figure(figsize = (10, 10), dpi = 96)
self.ax = self.fig.gca(projection = '3d')#, aspect = 'equal')
self.ax.view_init(elev = 20., azim = 30)
### Create a cube to force aspect ratio 1:1
self.ax.set_aspect('equal')
MAX = max(np.concatenate([abs(self.x),abs(self.y),abs(self.z)]))
for direction in (-1, 1):
for point in np.diag(direction * MAX * np.array([1,1,1])):
self.ax.plot([point[0]], [point[1]], [point[2]], 'w')
def forceEqualRatio(self):
#find highest data point
mlist = []
for key in self.plots : mlist.append(abs(np.concatenate(self.plots[key]['data'])).max())
mlist.append(abs(np.concatenate([self.x,self.y,self.z])).max())
#add any other data to the list
MAX = max(mlist)
for direction in (-1, 1):
for point in np.diag(direction * MAX * np.array([1,1,1])):
self.ax.plot([point[0]], [point[1]], [point[2]], 'w')
def redraw(self):
self._initialize()
if self.trisurf : self.set_trisurf(tripos = self.trisurf['tripos'], trival = self.trisurf['trival'], minmax = self.trisurf['minmax'])
if self.planet : self.set_planet()
for i in self.plots : self.set_plot(self.plots[i]['data'], color = self.plots[i]['color'], save = False)
def set_trisurf(self, tripos, trival = False, minmax = 'auto') :
self.trisurf = {}
self.trisurf['tripos'] = tripos
self.trisurf['trival'] = trival
self.trisurf['minmax'] = minmax
self.collec = self.ax.plot_trisurf(self.x,self.y,self.z, triangles = tripos, alpha = 0.9, edgecolor = 'none')
if trival.any() :
if len(trival) != len(tripos) : print 'Wrong collection of surface!'
else : self.collec.set_array(trival)
if minmax == 'auto' : self.collec.autoscale()
else : self.collec.set_clim(vmin = minmax[0], vmax = minmax[1])
cbar = self.fig.colorbar(self.collec)
#def set_collec(self, collec, minmax = 'auto')
def set_quiver(self, quiver, color = None) :
self.ax.quiver(self.x,self.y,self.z, quiver[:,0], quiver[:,1], quiver[:,2], pivot = 'tail', color = color)
def add_quiver(self, positions, quiver, color = None):
self.ax.quiver(positions[:,0],positions[:,1],positions[:,2], quiver[:,0], quiver[:,1], quiver[:,2], pivot = 'tail', color = color)
def set_scatter(self, scatter, c = None) :
self.scatter = self.ax.scatter(scatter[:,0], scatter[:,1], scatter[:,2], c = c, cmap = 'seismic')
def set_autoscatter(self, c = None, vmin = None, vmax = None):
self.autoscatter = self.ax.scatter(self.x, self.y, self.z, vmin = vmin, vmax = vmax, c = c, cmap = 'seismic')
cbar = self.fig.colorbar(self.autoscatter)
def set_planet(self) :
self.planet = True
u, v = np.mgrid[0:2*np.pi:20j, 0:np.pi:10j]
xsp = np.cos(u)*np.sin(v)
ysp = np.sin(u)*np.sin(v)
zsp = np.cos(v)
colors = np.empty(xsp.shape, dtype=str)
colortuple = ('y', 'b')
for i in range (colors.shape[0]) :
for j in range(colors.shape[1]) :
#print [(i + j) %len(colortuple)]
colors[i,j] = colortuple[(i + j) %len(colortuple)]
self.ax.plot_surface(xsp, ysp, zsp, facecolors = colors, color="yellow", alpha = 1., shade = False)
def set_plot(self, plot, color = 'black', save = True) :
if save : self.plots[len(self.plots)] = {'data' : plot, 'color' : color}
self.ax.plot(plot[:,0], plot[:,1], plot[:,2], linewidth = 3., color = color)
def show(self) :
plt.show()
class display_colormaps(object) :
"""
Display all colormaps available in python
"""
def __init__(self) :
self.get_colormap_info()
self.nrows = max(len(cmap_list) for cmap_category, cmap_list in self.cmaps)
gradient = np.linspace(0, 1, 256)
self.gradient = np.vstack((gradient, gradient))
for cmap_category, cmap_list in self.cmaps:
self.plot_color_gradients(cmap_category, cmap_list, self.nrows)
plt.show()
def plot_color_gradients(self, cmap_category, cmap_list, nrows):
fig, axes = plt.subplots(nrows = nrows)
fig.subplots_adjust(top = 0.95, bottom = 0.01, left = 0.2, right = 0.99)
axes[0].set_title(cmap_category + ' colormaps', fontsize=14)
for ax, name in zip(axes, cmap_list):
ax.imshow(self.gradient, aspect = 'auto', cmap = plt.get_cmap(name))
pos = list(ax.get_position().bounds)
x_text = pos[0] - 0.01
y_text = pos[1] + pos[3]/2.
fig.text(x_text, y_text, name, va = 'center', ha = 'right', fontsize = 10)
# Turn off *all* ticks & spines, not just the ones with colormaps.
for ax in axes:
ax.set_axis_off()
def get_colormap_info(self) :
self.cmaps = [('Perceptually Uniform Sequential', ['viridis', 'plasma', 'inferno', 'magma']), ('Sequential', ['Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', 'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']), ('Sequential (2)', ['binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink', 'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia', 'hot', 'afmhot', 'gist_heat', 'copper']), ('Diverging', ['PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic']), ('Qualitative', ['Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2', 'Set1', 'Set2', 'Set3']), ('Miscellaneous', ['flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern', 'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'hsv', 'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar'])]
#print self.cmaps
#def lineplot(y, **kwargs):
#import matplotlib.dates as mpldates
#import matplotlib.pyplot as plt
#from matplotlib.widgets import Slider
##### Transformation en numpy array et récupération des abscisses (def une autre fonction?)
#y = np.array(y)
#if isinstance(y[0], (np.ndarray, list)):
#nplots = len(y)
#for nplot in range(nplots) : y[nplot] = np.array(y[nplot])
#else :
#y = np.array([y])
#nplots = len(y)
#if "x" in kwargs : abscisse = kwargs["x"]
#else :
#abscisse = []
#for nplot in range(nplots) : abscisse.append(np.arange(0, len(y[nplot]), 1))
#abscisse = np.array(abscisse)
##for nplot in range(nplots) :
##if isinstance(abscisse[nplot], (np.ndarray, list)) :
##abscisse[nplot] = np.array(abscisse[nplot])
##else :
##print "No abscisse specified, using default"
##np.append(abscisse)
#fig, ax = plt.subplots()
#plt.subplots_adjust(left = 0.25, bottom = 0.25)
#plt.grid(True)
#for nplot in range(nplots) :
#if isinstance(abscisse[nplot][0], datetime) :
#dates = mpldates.date2num(abscisse[nplot])
#plt.plot_date(dates, y[nplot])
#else :
#plt.plot(abscisse[nplot], y[nplot])
##pdb.set_trace()
#slide_select_abscisse = [abscisse.min(), abscisse.min()]
#slide_select_y = [y.min(), y.max()]
#if isinstance(abscisse[nplot][0], datetime) :
#abcdate = [0, 0]
#sliders_plot, = plt.plot(abcdate, slide_select_y)
#slaxe = plt.axes([0.25, 0.1, 0.65, 0.03], axisbg = 'white')
#slpos = Slider(slaxe, 'debut', 0, len(abscisse[0]) - 1)
#else :
#sliders_plot, = plt.plot(slide_select_abscisse, slide_select_y)
#slaxe = plt.axes([0.25, 0.1, 0.65, 0.03], axisbg = 'white')
#slpos = Slider(slaxe, 'debut', abscisse.min(), abscisse.max())
#def update_date(val):
#selec = mpldates.date2num(abscisse[0][int(slpos.val)])
#sliders_plot.set_xdata([selec,selec])
#fig.canvas.draw_idle()
#def update(val):
#selec = slpos.val
#sliders_plot.set_xdata([selec,selec])
#fig.canvas.draw_idle()
#slpos.on_changed(update_date)
#plt.draw()
#plt.show()
#return slideval