Commit a44230b758c358aa0a70663066bc93f41d529747
1 parent
484df032
Exists in
master
Improve approximation of lambda_gg using interpolation in 'lambda_e.dat' file
Add time convolution between energy bands
Showing
12 changed files
with
390 additions
and
69 deletions
Show diff stats
Analysis.py
@@ -140,7 +140,7 @@ for fileId in argv[1:]: | @@ -140,7 +140,7 @@ for fileId in argv[1:]: | ||
140 | print "# 3. compute images and radial distribution" | 140 | print "# 3. compute images and radial distribution" |
141 | for jet_opening_angle in Jet_Opening: | 141 | for jet_opening_angle in Jet_Opening: |
142 | # apply selection ( /!\ USE DECREASING VALUES OF jet_opening_angle ) | 142 | # apply selection ( /!\ USE DECREASING VALUES OF jet_opening_angle ) |
143 | - cond = (dir_source*degre <= jet_opening_angle) & (energy>Elim) #& (abs(theta)<thetalim) & (abs(phi)<thetalim) | 143 | + cond = (dir_source*degre <= jet_opening_angle) #& (energy>Elim) #& (abs(theta)<thetalim) & (abs(phi)<thetalim) |
144 | dir_source = dir_source[cond] | 144 | dir_source = dir_source[cond] |
145 | theta_arrival = theta_arrival[cond] | 145 | theta_arrival = theta_arrival[cond] |
146 | theta = theta[cond] | 146 | theta = theta[cond] |
@@ -215,6 +215,46 @@ for fileId in argv[1:]: | @@ -215,6 +215,46 @@ for fileId in argv[1:]: | ||
215 | InProgress(Jet_Opening.index(jet_opening_angle)+1,shape(Jet_Opening)[0]) | 215 | InProgress(Jet_Opening.index(jet_opening_angle)+1,shape(Jet_Opening)[0]) |
216 | 216 | ||
217 | #=============================================================================# | 217 | #=============================================================================# |
218 | + # BY ENERGY RANGE | ||
219 | + #=============================================================================# | ||
220 | + print "# 3. By energy range" | ||
221 | + powerlaw_index = 2 | ||
222 | + weight_source = (Esource/min(Esource))**(1-powerlaw_index) | ||
223 | + weight = weightini* weight_source | ||
224 | + | ||
225 | + Emin = [1e-3,1e0,1e3] #GeV | ||
226 | + Emax = [1e0,1e3,1e5] #GeV | ||
227 | + for n in arange(0,3,1): | ||
228 | + cond= (energy>Emin[n]) & (energy<Emax[n]) | ||
229 | + | ||
230 | + # TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE =============================# | ||
231 | + nbBins = 100 | ||
232 | + delta_t,dNdt = timing(time[cond],weight[cond],nbBins) | ||
233 | + delta_t=delta_t[:,newaxis] | ||
234 | + dNdt=dNdt[:,newaxis] | ||
235 | + Timing = append(Timing,dNdt,axis=1) | ||
236 | + | ||
237 | + #=============================================================================# | ||
238 | + # BY GENERATION | ||
239 | + #=============================================================================# | ||
240 | + print "# 3. By generation" | ||
241 | + gen_tab =list(set(generation)) | ||
242 | + powerlaw_index = 2 | ||
243 | + weight_source = (Esource/min(Esource))**(1-powerlaw_index) | ||
244 | + weight = weightini* weight_source | ||
245 | + | ||
246 | + for gen in gen_tab: | ||
247 | + cond = generation==gen | ||
248 | + print shape(time[cond]) | ||
249 | + | ||
250 | + # TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE =============================# | ||
251 | + nbBins = 100 | ||
252 | + delta_t,dNdt = timing(time[cond],weight[cond],nbBins) | ||
253 | + delta_t=delta_t[:,newaxis] | ||
254 | + dNdt=dNdt[:,newaxis] | ||
255 | + Timing = append(Timing,dNdt,axis=1) | ||
256 | + | ||
257 | + #=============================================================================# | ||
218 | print "# 4. writing files" | 258 | print "# 4. writing files" |
219 | savetxt(resultDirectory+fileId+"/Generation.txt",Gen_contrib) | 259 | savetxt(resultDirectory+fileId+"/Generation.txt",Gen_contrib) |
220 | savetxt(resultDirectory+fileId+"/Spectrum.txt",Spectrum) | 260 | savetxt(resultDirectory+fileId+"/Spectrum.txt",Spectrum) |
Modules/Analytic.py
1 | from Constants import * | 1 | from Constants import * |
2 | -from numpy import sqrt, abs, cos, sin, arcsin | 2 | +from numpy import sqrt, abs, cos, sin, arcsin, searchsorted, loadtxt |
3 | from Read import ReadProfile | 3 | from Read import ReadProfile |
4 | 4 | ||
5 | # Value for analytic expression | 5 | # Value for analytic expression |
@@ -14,6 +14,7 @@ def Analytic_flux(E_ic): | @@ -14,6 +14,7 @@ def Analytic_flux(E_ic): | ||
14 | def Analytic_theta(E_ic,fileId): | 14 | def Analytic_theta(E_ic,fileId): |
15 | Esource,Dsource,B=ReadProfile(fileId,[0,2,4]) #GeV #Mpc #Gauss | 15 | Esource,Dsource,B=ReadProfile(fileId,[0,2,4]) #GeV #Mpc #Gauss |
16 | delta_to_theta=lambda_gg(Esource)/Dsource | 16 | delta_to_theta=lambda_gg(Esource)/Dsource |
17 | + delta_to_theta=1.9440974051313842/Dsource | ||
17 | RL0=RL(Esource/2,B) | 18 | RL0=RL(Esource/2,B) |
18 | Dic0=Dic(Esource/2) | 19 | Dic0=Dic(Esource/2) |
19 | delta=Dic0/(2*RL0)*((Esource/(2*Ee(E_ic)))**2 -1) | 20 | delta=Dic0/(2*RL0)*((Esource/(2*Ee(E_ic)))**2 -1) |
@@ -45,21 +46,21 @@ def Analytic_delay_vs_Egamma(Egamma, fileId): | @@ -45,21 +46,21 @@ def Analytic_delay_vs_Egamma(Egamma, fileId): | ||
45 | return c_delta_t *Mpc/c # sec. | 46 | return c_delta_t *Mpc/c # sec. |
46 | 47 | ||
47 | # Compton accumulation | 48 | # Compton accumulation |
48 | -def ECompton_threshold(Compton_threshold = 0.005): | ||
49 | - return Compton_threshold/(4/3*Ecmb/me*1e-3) *me*1e-6 #GeV | 49 | +def ECompton_threshold(Compton_threshold = 0.005,z=0): |
50 | + return Compton_threshold/(4/3*Ecmb*(1+z)/me*1e-3) *me*1e-6 #GeV | ||
50 | 51 | ||
51 | # Compton scattering | 52 | # Compton scattering |
52 | -def Dic(Ee=Ee_default): # Ee (GeV) | ||
53 | - return 3*(me*1e-6)**2/(4*sigmaT*rhoCMB*1e-9*Ee) /Mpc #Mpc | 53 | +def Dic(Ee=Ee_default,z=0): # Ee (GeV) |
54 | + return 3*(me*1e3)**2/(4*sigmaT*Ee*1e9*rhoCMB*(1+z)**4) /Mpc #Mpc | ||
54 | 55 | ||
55 | -def lambdaIC(): | ||
56 | - return 1/(nCMB*sigmaT*Mpc) #Mpc | 56 | +def lambdaIC(z=0): |
57 | + return 1/(sigmaT*Mpc*nCMB*(1+z)**3) #Mpc | ||
57 | 58 | ||
58 | -def Eic(Ee=Ee_default): | ||
59 | - return 4*Ecmb*Ee**2/(3*me**2)*1e3 #GeV | 59 | +def Eic(Ee=Ee_default,z=0): |
60 | + return 4*Ecmb*(1+z) *Ee**2/(3*me**2)*1e3 #GeV | ||
60 | 61 | ||
61 | -def Ee(Egamma=Egamma_default): | ||
62 | - return me*sqrt((3*Egamma*1e-3 )/(4*Ecmb)) #GeV | 62 | +def Ee(Egamma=Egamma_default,z=0): |
63 | + return me*sqrt((3*Egamma*1e-3 )/(4*Ecmb*(1+z))) #GeV | ||
63 | 64 | ||
64 | def tIC(): | 65 | def tIC(): |
65 | return lambdaIC()/(c*yr/Mpc) #yr | 66 | return lambdaIC()/(c*yr/Mpc) #yr |
@@ -85,5 +86,33 @@ def Ethreshold_ic(Ee=Ee_default,B=B_default): | @@ -85,5 +86,33 @@ def Ethreshold_ic(Ee=Ee_default,B=B_default): | ||
85 | def Ethreshold_gg(): | 86 | def Ethreshold_gg(): |
86 | return (me)**2/Eebl *1e-3 #GeV | 87 | return (me)**2/Eebl *1e-3 #GeV |
87 | 88 | ||
88 | -def lambda_gg(Egamma=1): # Egamma (GeV) | ||
89 | - return 800. /(Egamma) *1e3#Mpc (from Durrer and Neronov 2013) | 89 | +def lambda_gg(Egamma=1,z=0): # Egamma (GeV) |
90 | + # Bilinear interpolation | ||
91 | + z_tab = [0,0.5,1,2,3] | ||
92 | + E_tab = loadtxt("lambda_e.dat",unpack=True,usecols=[0])*me*1e-6 | ||
93 | + i2 = searchsorted(z_tab,z) | ||
94 | + if z<=0: | ||
95 | + fy=1 | ||
96 | + i1=i2 | ||
97 | + elif z>3: | ||
98 | + fy=1 | ||
99 | + i2-=1 | ||
100 | + i1=i2 | ||
101 | + else: | ||
102 | + i1 = i2-1 | ||
103 | + fy=(z-z_tab[i1])/(z_tab[i2]-z_tab[i1]) | ||
104 | + j2 = searchsorted(E_tab,Egamma) | ||
105 | + j1 = j2-1 | ||
106 | + fx=(Egamma-E_tab[j1])/(E_tab[j2]-E_tab[j1]) | ||
107 | + lambda_e = loadtxt("lambda_e.dat",unpack=True,usecols=[i1+1,i2+1,i1+6,i2+6]) | ||
108 | + lambda11 = lambda_e[0,j1]*((1-fx)*(1-fy)) | ||
109 | + lambda12 = lambda_e[1,j1]*((1-fx)*fy) | ||
110 | + lambda21 = lambda_e[0,j2]*(fx*(1-fy)) | ||
111 | + lambda22 = lambda_e[1,j2]*(fx*fy) | ||
112 | + lambda_proper = lambda11 + lambda12 + lambda21 + lambda22 | ||
113 | + lambda11 = lambda_e[2,j1]*((1-fx)*(1-fy)) | ||
114 | + lambda12 = lambda_e[3,j1]*((1-fx)*fy) | ||
115 | + lambda21 = lambda_e[2,j2]*(fx*(1-fy)) | ||
116 | + lambda22 = lambda_e[3,j2]*(fx*fy) | ||
117 | + lambda_comobile = lambda11 + lambda12 + lambda21 + lambda22 | ||
118 | + return lambda_proper, lambda_comobile, 800.e3/Egamma #Mpc (from Durrer and Neronov 2013) |
Modules/Analytic.pyc
No preview for this file type
Modules/Angle.py
@@ -11,7 +11,6 @@ def angle_vs_energy(theta,energy,weight,nbBins=50): | @@ -11,7 +11,6 @@ def angle_vs_energy(theta,energy,weight,nbBins=50): | ||
11 | Input: directory name | 11 | Input: directory name |
12 | Output: energy, arrival angle | 12 | Output: energy, arrival angle |
13 | ''' | 13 | ''' |
14 | - | ||
15 | energy =log10(energy) | 14 | energy =log10(energy) |
16 | angle,ener = histogram(energy,nbBins,weights=weight*theta) | 15 | angle,ener = histogram(energy,nbBins,weights=weight*theta) |
17 | nb, ener = histogram(energy,nbBins,weights=weight) | 16 | nb, ener = histogram(energy,nbBins,weights=weight) |
@@ -23,9 +22,9 @@ def angle_vs_energy(theta,energy,weight,nbBins=50): | @@ -23,9 +22,9 @@ def angle_vs_energy(theta,energy,weight,nbBins=50): | ||
23 | 22 | ||
24 | def radial(theta,weight,nbBins=50): | 23 | def radial(theta,weight,nbBins=50): |
25 | cond = theta!=0 | 24 | cond = theta!=0 |
26 | - theta = 2*log10(theta[cond]) | 25 | + theta = log10(theta[cond]) |
27 | weight = weight[cond] | 26 | weight = weight[cond] |
28 | - dn,angle2 = histogram(theta,nbBins,range=[2*log10(1e-3),2*log10(25)],weights=weight) | 27 | + dn,angle2 = histogram(theta,nbBins,range=[log10(1e-3),log10(25)],weights=weight) |
29 | angle2=10**angle2 | 28 | angle2=10**angle2 |
30 | #theta = theta**2 | 29 | #theta = theta**2 |
31 | #dn,angle2 = histogram(theta,nbBins,range=[0,25],weights=weight) | 30 | #dn,angle2 = histogram(theta,nbBins,range=[0,25],weights=weight) |
@@ -66,8 +65,8 @@ def drawRadial(files,all_source_spectrum=False,all_jets=False): | @@ -66,8 +65,8 @@ def drawRadial(files,all_source_spectrum=False,all_jets=False): | ||
66 | ax.set_xscale('log') | 65 | ax.set_xscale('log') |
67 | ax.set_yscale('log') | 66 | ax.set_yscale('log') |
68 | ax.grid(b=True,which='major') | 67 | ax.grid(b=True,which='major') |
69 | - ax.set_xlabel("$\\theta^2$ [deg$^2$]") | ||
70 | - ax.set_ylabel("$dN/d\\theta^2$ [arbitrary]") | 68 | + ax.set_xlabel("$\\theta$ [deg]") |
69 | + ax.set_ylabel("$dN/d\\theta$ [arbitrary]") | ||
71 | 70 | ||
72 | show() | 71 | show() |
73 | 72 | ||
@@ -97,7 +96,7 @@ def drawAngle_vs_energy(files,all_source_spectrum=False,all_jets=False,PlotAnaly | @@ -97,7 +96,7 @@ def drawAngle_vs_energy(files,all_source_spectrum=False,all_jets=False,PlotAnaly | ||
97 | 96 | ||
98 | if PlotAnalytic: | 97 | if PlotAnalytic: |
99 | yfit = Analytic_theta(ener,fileId) | 98 | yfit = Analytic_theta(ener,fileId) |
100 | - ax1.plot(ener,yfit,'--',color=p[0].get_color(),linewidth=2,label="analytic") | 99 | + ax1.plot(ener,yfit,'--',color=p[0].get_color(),linewidth=2) |
101 | 100 | ||
102 | ax1.legend(loc="best") | 101 | ax1.legend(loc="best") |
103 | ax1.set_xscale('log') | 102 | ax1.set_xscale('log') |
Modules/Angle.pyc
No preview for this file type
Modules/Constants.pyc
No preview for this file type
Modules/Read.pyc
No preview for this file type
Modules/Spectrum.py
@@ -40,10 +40,11 @@ def drawSpectrum(files,all_source_spectrum=False,all_jets=False,PlotAnalytic=Fal | @@ -40,10 +40,11 @@ def drawSpectrum(files,all_source_spectrum=False,all_jets=False,PlotAnalytic=Fal | ||
40 | Output: graph spectrum normalize to 1 source photon | 40 | Output: graph spectrum normalize to 1 source photon |
41 | ''' | 41 | ''' |
42 | fig = figure() | 42 | fig = figure() |
43 | - gs = gridspec.GridSpec(2, 1, height_ratios=[3,1]) | ||
44 | - fig.subplots_adjust(hspace=0.001) | ||
45 | - ax1 = fig.add_subplot(gs[0]) | ||
46 | - ax2 = fig.add_subplot(gs[1],sharex=ax1) | 43 | + #gs = gridspec.GridSpec(2, 1, height_ratios=[3,1]) |
44 | + #fig.subplots_adjust(hspace=0.001) | ||
45 | + #ax1 = fig.add_subplot(gs[0]) | ||
46 | + #ax2 = fig.add_subplot(gs[1],sharex=ax1) | ||
47 | + ax1 = fig.add_subplot(111) | ||
47 | 48 | ||
48 | for fileId in files: | 49 | for fileId in files: |
49 | if all_source_spectrum: | 50 | if all_source_spectrum: |
@@ -57,9 +58,9 @@ def drawSpectrum(files,all_source_spectrum=False,all_jets=False,PlotAnalytic=Fal | @@ -57,9 +58,9 @@ def drawSpectrum(files,all_source_spectrum=False,all_jets=False,PlotAnalytic=Fal | ||
57 | ener,flux,flux_0 = ReadSpectrum(fileId,[0,j,j+1]) | 58 | ener,flux,flux_0 = ReadSpectrum(fileId,[0,j,j+1]) |
58 | ax1.plot(ener,flux,color=p[0].get_color(),drawstyle='steps-mid',label="p=%.1f"%powerlaw_index) | 59 | ax1.plot(ener,flux,color=p[0].get_color(),drawstyle='steps-mid',label="p=%.1f"%powerlaw_index) |
59 | # primary gamma-rays contribution | 60 | # primary gamma-rays contribution |
60 | - ax1.plot(ener,flux_0,color=p[0].get_color(),linestyle='--',drawstyle='steps-mid') | ||
61 | - contrib=flux_0/flux | ||
62 | - ax2.plot(ener,contrib,drawstyle='steps-mid',color=p[0].get_color()) | 61 | + #ax1.plot(ener,flux_0,color=p[0].get_color(),linestyle='--',drawstyle='steps-mid') |
62 | + #contrib=flux_0/flux | ||
63 | + #ax2.plot(ener,contrib,drawstyle='steps-mid',color=p[0].get_color()) | ||
63 | i+=1 | 64 | i+=1 |
64 | j+=2 | 65 | j+=2 |
65 | elif all_jets: | 66 | elif all_jets: |
@@ -73,23 +74,24 @@ def drawSpectrum(files,all_source_spectrum=False,all_jets=False,PlotAnalytic=Fal | @@ -73,23 +74,24 @@ def drawSpectrum(files,all_source_spectrum=False,all_jets=False,PlotAnalytic=Fal | ||
73 | ener,flux,flux_0 = ReadSpectrum(fileId,[0,j,j+1]) | 74 | ener,flux,flux_0 = ReadSpectrum(fileId,[0,j,j+1]) |
74 | ax1.plot(ener,flux,color=p[0].get_color(),drawstyle='steps-mid',label=jet_opening) | 75 | ax1.plot(ener,flux,color=p[0].get_color(),drawstyle='steps-mid',label=jet_opening) |
75 | # primary gamma-rays contribution | 76 | # primary gamma-rays contribution |
76 | - ax1.plot(ener,flux_0,color=p[0].get_color(),linestyle='--',drawstyle='steps-mid') | ||
77 | - contrib=flux_0/flux | ||
78 | - ax2.plot(ener,contrib,drawstyle='steps-mid',color=p[0].get_color()) | 77 | + #ax1.plot(ener,flux_0,color=p[0].get_color(),linestyle='--',drawstyle='steps-mid') |
78 | + #contrib=flux_0/flux | ||
79 | + #ax2.plot(ener,contrib,drawstyle='steps-mid',color=p[0].get_color()) | ||
79 | i+=1 | 80 | i+=1 |
80 | j+=2 | 81 | j+=2 |
81 | 82 | ||
82 | else: | 83 | else: |
83 | # read files | 84 | # read files |
84 | - Es,Fs = ReadSourceSpectrum(fileId,[0,3]) | ||
85 | - p = ax1.plot(Es,Fs,linestyle=':') | 85 | + #Es,Fs = ReadSourceSpectrum(fileId,[0,3]) |
86 | + #p = ax1.plot(Es,Fs,linestyle=':') | ||
86 | # draw full spectrum | 87 | # draw full spectrum |
87 | ener,flux,flux_0 = ReadSpectrum(fileId,[0,5,6]) | 88 | ener,flux,flux_0 = ReadSpectrum(fileId,[0,5,6]) |
88 | - ax1.plot(ener,flux,color=p[0].get_color(),drawstyle='steps-mid',label=fileId) | 89 | + ax1.plot(ener,flux,drawstyle='steps-mid') |
90 | + #ax1.plot(ener,flux,color=p[0].get_color(),drawstyle='steps-mid',label=fileId) | ||
89 | # primary gamma-rays contribution | 91 | # primary gamma-rays contribution |
90 | - ax1.plot(ener,flux_0,color=p[0].get_color(),linestyle='--',drawstyle='steps-mid') | ||
91 | - contrib=flux_0/flux | ||
92 | - ax2.plot(ener,contrib,drawstyle='steps-mid',color=p[0].get_color()) | 92 | + #ax1.plot(ener,flux_0,color=p[0].get_color(),linestyle='--',drawstyle='steps-mid') |
93 | + #contrib=flux_0/flux | ||
94 | + #ax2.plot(ener,contrib,drawstyle='steps-mid',color=p[0].get_color()) | ||
93 | 95 | ||
94 | if PlotAnalytic: | 96 | if PlotAnalytic: |
95 | minEner=min(ener) | 97 | minEner=min(ener) |
@@ -97,16 +99,18 @@ def drawSpectrum(files,all_source_spectrum=False,all_jets=False,PlotAnalytic=Fal | @@ -97,16 +99,18 @@ def drawSpectrum(files,all_source_spectrum=False,all_jets=False,PlotAnalytic=Fal | ||
97 | ax1.plot(ener,alpha*sqrt(ener),'--m',linewidth=2) | 99 | ax1.plot(ener,alpha*sqrt(ener),'--m',linewidth=2) |
98 | ax1.plot(ener,ener**(0)*max(flux)*0.95,'--m',linewidth=2) | 100 | ax1.plot(ener,ener**(0)*max(flux)*0.95,'--m',linewidth=2) |
99 | ax1.axvline(x=Ethreshold_gg(), ymin=0., ymax = 1., color='r', linewidth=2) | 101 | ax1.axvline(x=Ethreshold_gg(), ymin=0., ymax = 1., color='r', linewidth=2) |
102 | + ax1.axvline(x=1e4, ymin=0., ymax = 1., color='g', linewidth=2) | ||
100 | 103 | ||
101 | ax1.legend(loc="best") | 104 | ax1.legend(loc="best") |
102 | ax1.set_xscale('log') | 105 | ax1.set_xscale('log') |
103 | ax1.set_yscale('log') | 106 | ax1.set_yscale('log') |
104 | ax1.grid(b=True,which='major') | 107 | ax1.grid(b=True,which='major') |
105 | ax1.set_ylabel("$E^2 dN/dE$ [GeV]") | 108 | ax1.set_ylabel("$E^2 dN/dE$ [GeV]") |
106 | - ax2.set_xscale('log') | ||
107 | - ax2.grid(b=True,which='major') | ||
108 | - ax2.set_xlabel("energy [GeV]") | ||
109 | - xticklabels = ax1.get_xticklabels() | ||
110 | - setp(xticklabels, visible=False) | 109 | + ax1.set_xlabel("energy [GeV]") |
110 | + #ax2.set_xscale('log') | ||
111 | + #ax2.grid(b=True,which='major') | ||
112 | + #ax2.set_xlabel("energy [GeV]") | ||
113 | + #xticklabels = ax1.get_xticklabels() | ||
114 | + #setp(xticklabels, visible=False) | ||
111 | 115 | ||
112 | show() | 116 | show() |
Modules/Spectrum.pyc
No preview for this file type
Modules/Timing.py
1 | -from numpy import histogram, log10, shape, arange, pi | 1 | +from numpy import histogram, log10, shape, arange, pi, convolve |
2 | from matplotlib.pyplot import figure, show | 2 | from matplotlib.pyplot import figure, show |
3 | from Read import ReadTime, ReadTiming, ReadExtraFile, ReadProfile, ReadEnergy | 3 | from Read import ReadTime, ReadTiming, ReadExtraFile, ReadProfile, ReadEnergy |
4 | from Constants import yr, degre | 4 | from Constants import yr, degre |
@@ -11,39 +11,59 @@ def timing(time,weight,nbBins=100): | @@ -11,39 +11,59 @@ def timing(time,weight,nbBins=100): | ||
11 | Input (optional): generation (default = all) | 11 | Input (optional): generation (default = all) |
12 | Output: time delay (sec), flux | 12 | Output: time delay (sec), flux |
13 | ''' | 13 | ''' |
14 | - time=time[time>0] | ||
15 | - weight=weight[time>0] | 14 | + cond = time>0 |
15 | + time = time[cond] | ||
16 | + time=log10(time) | ||
17 | + weight=weight[cond] | ||
16 | 18 | ||
17 | - time = log10(time*yr) | ||
18 | - | ||
19 | - dN,dt=histogram(time,nbBins,weights=weight) | 19 | + #dN,dt=histogram(time,nbBins,range=[-1,1e17],weights=weight) |
20 | + dN,dt=histogram(time,nbBins,range=[-1,17],weights=weight) | ||
21 | + dt = 10**dt | ||
20 | timecenter=(dt[1:nbBins+1]+dt[0:nbBins])/2 | 22 | timecenter=(dt[1:nbBins+1]+dt[0:nbBins])/2 |
21 | binSize=dt[1:nbBins+1]-dt[0:nbBins] | 23 | binSize=dt[1:nbBins+1]-dt[0:nbBins] |
22 | - dNdt=dN/(max(dN)*binSize) | 24 | + dNdt=dN/binSize *timecenter |
23 | 25 | ||
24 | - return 10**timecenter, dNdt | 26 | + return timecenter, dNdt |
25 | 27 | ||
26 | -def drawTiming(files,all_source_spectrum=False,all_jets=False): | 28 | +def drawTiming(files,plot_case=0): |
27 | ''' | 29 | ''' |
28 | Plot flux versus time delay | 30 | Plot flux versus time delay |
29 | Input: list of directories | 31 | Input: list of directories |
32 | + plot_case: (0) nothing, (1) all source spectrum, (2) all jets, (3) by energy band, | ||
33 | + (4) by generation | ||
30 | Output: graph of flux versus time delay | 34 | Output: graph of flux versus time delay |
31 | ''' | 35 | ''' |
32 | fig = figure() | 36 | fig = figure() |
33 | ax = fig.add_subplot(111) | 37 | ax = fig.add_subplot(111) |
34 | for fileId in files: | 38 | for fileId in files: |
35 | - if all_source_spectrum: | 39 | + if plot_case == 1: |
36 | i=1 | 40 | i=1 |
37 | for powerlaw_index in [1,1.5,2,2.5]: | 41 | for powerlaw_index in [1,1.5,2,2.5]: |
38 | delta_t,dNdt = ReadTiming(fileId,[0,i]) | 42 | delta_t,dNdt = ReadTiming(fileId,[0,i]) |
39 | ax.plot(delta_t,dNdt,linestyle="steps-mid",label="p=%.1f"%powerlaw_index) | 43 | ax.plot(delta_t,dNdt,linestyle="steps-mid",label="p=%.1f"%powerlaw_index) |
40 | i+=1 | 44 | i+=1 |
41 | - elif all_jets: | 45 | + elif plot_case == 2: |
42 | i=5 | 46 | i=5 |
43 | for jet_opening in ["isotrop","60 degre","30 degre"]: | 47 | for jet_opening in ["isotrop","60 degre","30 degre"]: |
44 | delta_t,dNdt = ReadTiming(fileId,[0,i]) | 48 | delta_t,dNdt = ReadTiming(fileId,[0,i]) |
45 | ax.plot(delta_t,dNdt,linestyle="steps-mid",label=jet_opening) | 49 | ax.plot(delta_t,dNdt,linestyle="steps-mid",label=jet_opening) |
46 | i+=1 | 50 | i+=1 |
51 | + elif plot_case == 3: | ||
52 | + i=8 | ||
53 | + Emin = [1e-3,1e0,1e3] #GeV | ||
54 | + Emax = [1e0,1e3,1e5] #GeV | ||
55 | + for n in arange(0,3,1): | ||
56 | + label = "%1.0e Gev"%Emin[n]+"< $E_\\gamma$ < %1.0e Gev"%Emax[n] | ||
57 | + delta_t,dNdt = ReadTiming(fileId,[0,i]) | ||
58 | + ax.plot(delta_t,dNdt,linestyle="steps-mid",label=label) | ||
59 | + i+=1 | ||
60 | + elif plot_case == 4: | ||
61 | + i=11 | ||
62 | + generation = ReadExtraFile(fileId,[3]) | ||
63 | + for gen in list(set(generation)): | ||
64 | + delta_t,dNdt = ReadTiming(fileId,[0,i]) | ||
65 | + ax.plot(delta_t,dNdt,linestyle="steps-mid",label="gen=%.0f"%gen) | ||
66 | + i+=1 | ||
47 | else: | 67 | else: |
48 | delta_t,dNdt = ReadTiming(fileId,[0,3]) | 68 | delta_t,dNdt = ReadTiming(fileId,[0,3]) |
49 | ax.plot(delta_t,dNdt,linestyle="steps-mid",label=fileId) | 69 | ax.plot(delta_t,dNdt,linestyle="steps-mid",label=fileId) |
@@ -53,10 +73,40 @@ def drawTiming(files,all_source_spectrum=False,all_jets=False): | @@ -53,10 +73,40 @@ def drawTiming(files,all_source_spectrum=False,all_jets=False): | ||
53 | ax.grid(b=True,which='major') | 73 | ax.grid(b=True,which='major') |
54 | ax.legend(loc="best") | 74 | ax.legend(loc="best") |
55 | ax.set_xlabel("Time delay [s]") | 75 | ax.set_xlabel("Time delay [s]") |
56 | - ax.set_ylabel("$t\ dN/dt$ [arbitrary units]") | 76 | + ax.set_ylabel("$t.dN/dt$ [arbitrary units]") |
77 | + | ||
78 | + show() | ||
79 | + | ||
80 | +def drawConvolveTiming(files): | ||
81 | + fig = figure() | ||
82 | + ax = fig.add_subplot(111) | ||
83 | + for fileId in files: | ||
84 | + delta_t,dNdt1 = ReadTiming(fileId,[0,8]) # MeV band | ||
85 | + delta_t,dNdt2 = ReadTiming(fileId,[0,9]) # GeV band | ||
86 | + delta_t,dNdt3 = ReadTiming(fileId,[0,10]) # TeV band | ||
87 | + ax.plot(delta_t,convolve(dNdt1,dNdt2,'same'),linestyle="steps-mid",label="MeV - GeV band") | ||
88 | + ax.plot(delta_t,convolve(dNdt2,dNdt3,'same'),linestyle="steps-mid",label="GeV - TeV band") | ||
89 | + ax.plot(delta_t,convolve(dNdt1,dNdt3,'same'),linestyle="steps-mid",label="MeV - TeV band") | ||
90 | + | ||
91 | + ax.set_xscale('log') | ||
92 | + ax.set_yscale('log') | ||
93 | + ax.grid(b=True,which='major') | ||
94 | + ax.legend(loc="best") | ||
95 | + ax.set_xlabel("Time delay [s]") | ||
96 | + ax.set_ylabel("cross correlation [arbitrary units]") | ||
57 | 97 | ||
58 | show() | 98 | show() |
59 | 99 | ||
100 | +def delay_vs_theta(theta,delay,nbBins=100): | ||
101 | + cond= (theta!=0) | ||
102 | + theta=log10(theta[cond]) | ||
103 | + dt,dtheta=histogram(theta,nbBins,weights=delay[cond]) | ||
104 | + dN,dtheta=histogram(theta,nbBins) | ||
105 | + dtheta=10**dtheta | ||
106 | + thetacenter=(dtheta[1:nbBins+1]+dtheta[0:nbBins])/2 | ||
107 | + dt=dt/dN | ||
108 | + return dt, thetacenter | ||
109 | + | ||
60 | def drawDelay_vs_angle(fileId): | 110 | def drawDelay_vs_angle(fileId): |
61 | ''' | 111 | ''' |
62 | Plot angle versus time delay, generation by generation | 112 | Plot angle versus time delay, generation by generation |
@@ -67,38 +117,37 @@ def drawDelay_vs_angle(fileId): | @@ -67,38 +117,37 @@ def drawDelay_vs_angle(fileId): | ||
67 | ax = fig.add_subplot(111) | 117 | ax = fig.add_subplot(111) |
68 | nbBins = 100 | 118 | nbBins = 100 |
69 | 119 | ||
70 | - theta = ReadExtraFile(fileId,[4]) | 120 | + theta = ReadExtraFile(fileId,[4])*degre |
71 | energy = ReadEnergy(fileId) | 121 | energy = ReadEnergy(fileId) |
72 | delay = ReadTime(fileId) | 122 | delay = ReadTime(fileId) |
73 | 123 | ||
74 | - for n in arange(0,8,2): | ||
75 | - Emin = 10**(3-n) #GeV | ||
76 | - Emax = 10**(5-n) #GeV | ||
77 | - label = "%1.0e Gev"%Emin+"< $E_\\gamma$ < %1.0e Gev"%Emax | ||
78 | - cond= (energy>Emin) & (energy<Emax) | 124 | + Emin = [1e-3,1e0,1e3] #GeV |
125 | + Emax = [1e0,1e3,1e5] #GeV | ||
126 | + for n in arange(0,3,1): | ||
127 | + cond= (energy>Emin[n]) & (energy<Emax[n]) | ||
128 | + if Emin[n]==1e-3: | ||
129 | + label="MeV band" | ||
130 | + if Emin[n]==1e0: | ||
131 | + label="GeV band" | ||
132 | + if Emin[n]==1e3: | ||
133 | + label="TeV band" | ||
79 | ax.plot(theta[cond],delay[cond],".",label=label) | 134 | ax.plot(theta[cond],delay[cond],".",label=label) |
80 | 135 | ||
81 | - cond= (theta!=0) | ||
82 | - theta=log10(theta[cond]) | ||
83 | - dt,dtheta=histogram(theta,nbBins,weights=delay[cond]) | ||
84 | - dN,dtheta=histogram(theta,nbBins) | ||
85 | - dtheta=10**dtheta | ||
86 | - thetacenter=(dtheta[1:nbBins+1]+dtheta[0:nbBins])/2 | ||
87 | - dt=dt/dN | ||
88 | - ax.plot(thetacenter,dt,color='m',linestyle="steps-mid",linewidth=2) | 136 | + dt,angle=delay_vs_theta(theta,delay,nbBins) |
137 | + ax.plot(angle,dt,color='m',linestyle="steps-mid",linewidth=2) | ||
89 | 138 | ||
90 | thmin = 1.e-8 | 139 | thmin = 1.e-8 |
91 | thmax = pi/2. | 140 | thmax = pi/2. |
92 | nth = 1000 | 141 | nth = 1000 |
93 | th = thmin*(thmax/thmin)**(arange(nth)/(nth-1.)) | 142 | th = thmin*(thmax/thmin)**(arange(nth)/(nth-1.)) |
94 | delay_fit = Analytic_delay_vs_theta(th,fileId) | 143 | delay_fit = Analytic_delay_vs_theta(th,fileId) |
95 | - ax.plot(th,delay_fit,'--k',linewidth=2) | 144 | + ax.plot(th*degre,delay_fit,'--k',linewidth=2) |
96 | 145 | ||
97 | ax.set_xscale('log') | 146 | ax.set_xscale('log') |
98 | ax.set_yscale('log') | 147 | ax.set_yscale('log') |
99 | ax.grid(b=True,which='major') | 148 | ax.grid(b=True,which='major') |
100 | ax.legend(loc="best") | 149 | ax.legend(loc="best") |
101 | - ax.set_xlabel("$\\theta $[rad]") | 150 | + ax.set_xlabel("$\\theta$ [deg]") |
102 | ax.set_ylabel("Time delay [s]") | 151 | ax.set_ylabel("Time delay [s]") |
103 | 152 | ||
104 | show() | 153 | show() |
Modules/Timing.pyc
No preview for this file type
@@ -0,0 +1,200 @@ | @@ -0,0 +1,200 @@ | ||
1 | + 20269.269131483430 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
2 | + 21718.913177441187 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
3 | + 23272.234758407678 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
4 | + 24936.648819655467 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
5 | + 26720.100618191405 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
6 | + 28631.103650283392 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
7 | + 30678.780291537558 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
8 | + 32872.905343525497 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
9 | + 35223.952694836036 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
10 | + 37743.145319293020 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
11 | + 40442.508850010883 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801394E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
12 | + 43334.928985029408 7697650519.4028807 2123337729.7312262 1401667532.6164131 2311541635.2681680 2085020169.7309675 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
13 | + 46434.212998559728 468273936.11513162 120426816.81247480 70914365.726854995 101786815.23666322 99813452.524435252 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
14 | + 49755.155651471752 96983233.304416478 22745834.807081115 11468080.104997659 13550809.747791789 14947526.070943424 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
15 | + 53313.609815653974 29138559.276651461 6164926.5598030062 2641237.4934305497 2558929.7994762165 3192515.4258564161 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
16 | + 57126.562149378369 11321276.805710357 2230212.4459181922 888834.95382979000 786300.59220531711 1053266.2357869444 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
17 | + 61212.214184914861 5283096.0613234770 994028.91350226651 391439.92559958331 333768.17987579736 468985.01559088926 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
18 | + 65590.069215475523 2785635.3631394282 508110.63876286626 203398.34993737491 170879.16579706914 249788.06508851927 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
19 | + 70281.025396252851 1608949.3023370178 288459.57959855837 118567.57100183320 99231.968593367739 150082.31315027562 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
20 | + 75307.475503979425 996666.49921861023 177668.63611439316 75282.653086740393 63209.349864467367 98539.223028963592 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
21 | + 80693.413831222104 651684.39045347110 116614.79781962930 50928.919571107312 43061.200945794793 68979.226614651823 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
22 | + 86464.550725681765 444688.18387974217 80495.171500947719 36180.738360670308 30871.741952924280 50664.158227203603 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
23 | + 92648.435321264318 314748.37160868524 58056.582324658935 26848.085938999167 23186.144730824682 38887.617305727872 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
24 | + 99274.587046792440 229330.22996017573 43324.367528477283 20558.022485134541 17972.469128925084 30724.403557075602 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
25 | + 106374.63654012932 171429.77637283332 33287.566077179225 16180.265292205564 14325.652127387499 24909.524951938227 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
26 | + 113982.47664038227 131132.08693820090 26251.431586068138 13045.736104799136 11698.062391800924 20647.555707967400 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
27 | + 122134.42417896412 102383.20556804886 21164.328845146974 10736.208241055365 9748.6127712393100 17431.296073268157 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
28 | + 130869.39334183876 81301.392370889065 17348.137921001282 8959.5328872592963 8221.5704108782484 14854.731587271726 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
29 | + 140229.08143051411 65673.269491247062 14475.594823030404 7608.7031024776943 7059.1693276971027 12869.202065043297 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
30 | + 150258.16790853220 53733.396590615535 12207.455414999611 6518.7845326329370 6101.5685151544067 11198.931687995098 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
31 | + 161004.52768362602 44526.024206317954 10421.370038808429 5641.5696629364793 5318.2850015811036 9802.0273113055846 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
32 | + 172519.45964366791 37269.135565902347 8965.6477753969648 4917.1990070478350 4660.9975600510870 8614.1425308261641 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
33 | + 184857.93153735035 31443.362551002203 7764.9372522966187 4309.7573439494909 4100.2589047117463 7581.0381429323579 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
34 | + 198078.84236856268 26663.166483071320 6745.8282323358872 3783.4571220956118 3602.8739908094431 6645.8615996652143 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
35 | + 212245.30355703161 22711.045439356538 5873.6928945625150 3322.9275423710646 3156.5838021393097 5791.2316183981911 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
36 | + 227424.94020737533 19358.019467231865 5109.5605156051788 2913.3976153901176 2754.8605726631545 5019.6752562945221 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
37 | + 243690.21392471102 16534.229723767043 4446.8973802829960 2553.6871148425539 2399.4278095518789 4337.3635349947817 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
38 | + 261118.76871781005 14108.848279663629 3859.2668496546466 2231.0038371552314 2080.5210043092138 3732.1737541922948 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
39 | + 279793.80164100707 12040.004078351572 3343.9900343020945 1945.0500083123300 1798.9766054657428 3204.8245771317447 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
40 | + 299804.45994416054 10278.905448062691 2896.7353259179840 1694.9841475175301 1555.4016217694993 2755.7992112632787 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
41 | + 321246.26662650274 8773.3299979176027 2507.2024543228404 1475.3169994277205 1343.7265589278215 2369.9606814106569 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
42 | + 344221.57642580499 7491.5984383899413 2170.9166864959052 1284.7709488199964 1162.7707411133899 2045.2794073766479 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
43 | + 368840.06441957224 6404.7568218299375 1882.1559319843352 1120.5545647090535 1009.2550715037552 1773.2949767839852 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
44 | + 395219.24957065406 5483.9624480322227 1634.9410554695046 979.02419726815231 878.33163884306202 1541.9255797920700 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
45 | + 423485.05571647547 4705.1675970123260 1424.0056392045694 858.03112332482260 768.10541010728048 1349.2513266340391 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 | ||
46 | + 453772.41267982684 4047.6783087791391 1242.9730948467088 753.29246140411931 672.97562831071230 1182.3447766579907 9.7156034880801407E+085 9.7156034880801407E+085 9.7156034880801407E+085 1312.9265201357425 9.7156034880801407E+085 | ||
47 | + 486225.90037068044 3493.0933396048345 1088.6495086333621 663.75880297749734 592.64584064263147 1042.5371376078670 9.7156034880801407E+085 9.7156034880801407E+085 1537.4228948853699 971.77638304010304 1676.4965116825736 | ||
48 | + 521000.43895372108 3024.1722456568300 956.04484359079686 586.28278280521920 523.11230618024558 920.93836826619452 9.7156034880801407E+085 9.7156034880801407E+085 1073.4450793669239 768.09277534153875 1188.2124301452975 | ||
49 | + 558262.02837617928 2628.0584989757913 843.09428206416953 520.04303364677571 464.36342095248500 819.04602651308971 9.7156034880801407E+085 3538.3020747943879 833.11523842607971 629.17457185373041 925.57644395398131 | ||
50 | + 598188.54078618041 2291.4382999085055 745.18616104111220 462.14531201841237 412.83592931500959 729.47531543803166 9.7156034880801407E+085 2055.6191050504913 677.73229080575959 527.92991238341233 755.93704898446379 | ||
51 | + 640970.56962430570 2009.8156829964062 662.68593016372120 413.25931275480661 369.70394478367928 654.72475533241993 5167.5460549399295 1358.2099613149016 567.15046373882149 451.29853475901484 636.81784509316469 | ||
52 | + 686812.33944158896 1767.1182917835406 590.26075911720818 370.05422540951179 331.63893621361433 588.98973209454971 3369.9870055562023 1019.6352513123445 483.44009442743629 391.14396915774574 548.05538398151907 | ||
53 | + 735932.68078706658 1562.7058301445697 528.64300027620402 333.08379034040905 299.08317633905261 532.45073665852397 2540.5015892628785 818.09730308744292 417.96738144733200 342.92932432364603 478.91827210975157 | ||
54 | + 788566.07481860684 1387.3065201187637 475.07435725212167 300.85317735764880 270.84428176773122 483.77181476477790 2033.2595968496505 680.82891493275247 365.53810449413464 303.76665601180332 423.99864495428443 | ||
55 | + 844963.77262357995 1237.4159111571830 428.67163947652597 272.78144257516499 246.24801955218138 441.16465565312365 1684.6761384287768 579.99870220250125 323.01037731332309 271.45975797059668 379.81340640693156 | ||
56 | + 905394.99459256534 1108.5667422191104 388.53800013902327 248.39095598481239 224.97284580697129 404.45381777281284 1428.3613300169009 502.62825748976763 287.85942373399513 244.27311609313040 343.54414777405572 | ||
57 | + 970148.21557143168 997.59836192175533 353.35994294625021 226.93377351826936 206.20461664845033 372.04678377736536 1232.1391725636352 441.49954706692961 258.55676745062402 221.22787852332138 313.35631013469151 | ||
58 | + 1039532.5419266038 902.58939900776977 323.20890137151889 208.54484375437639 190.33983909234283 344.97809607161753 1077.2517376230894 392.02824192426505 233.83546639460241 201.68945778721022 287.70750221910174 | ||
59 | + 1113879.1870970775 819.74202916997240 296.66199372400303 192.28650300860198 176.27780785241026 320.97844702971406 952.42022258598593 351.48381999991227 212.95852424694226 185.12038001625945 265.91237417173824 | ||
60 | + 1193543.0526768905 748.58042971709949 273.65390469307681 178.18301722284360 164.16253060112791 300.37105559862039 850.33964015725860 317.81078249431624 195.13868246179365 170.92365173987989 247.32156729183842 | ||
61 | + 1278904.4225755134 686.94665654400046 253.78423699156579 166.00433418977221 153.79062574420971 282.96397914178715 765.78683425513839 289.68586257115271 179.93232464645706 158.81852797205514 231.51045065655012 | ||
62 | + 1370370.7783434163 633.06471746657496 236.25887188478703 155.26731783870162 144.69903792681293 267.68589961652253 695.14138693190193 266.04801179825040 166.96874653604340 148.52226380187435 218.03815503910045 | ||
63 | + 1468378.7443284555 586.84560443708062 221.22644938057164 146.09039674701057 137.03755286217310 255.07083229401960 635.74086884347014 246.09853372713073 155.92340250607734 139.76025477232153 206.63572681678934 | ||
64 | + 1573396.1719484958 546.15363410034604 207.93545496494201 137.94026763537124 130.18564620049827 243.48124221487427 585.44878190772545 229.03966525135880 146.32165863251598 132.22316640799787 196.90730960555206 | ||
65 | + 1685924.3730297619 510.84142904357356 196.48742207807211 130.94642429947314 124.44249617431656 234.17634297779901 542.51070027713786 214.56096285266881 138.14658576871753 125.76333299734570 188.62484957403097 | ||
66 | + 1806500.5128719979 480.24928846443288 186.46341811716772 124.82064423154338 119.37624929611623 225.57876761728599 505.81014762255211 202.08602810861166 131.03775501092926 120.21987221434277 181.48671347585929 | ||
67 | + 1935700.1744639829 453.20632962875038 177.59333641356494 119.39051603029866 114.88468836074874 218.10365173217667 474.21765646095719 191.25016227442248 124.83296897647487 115.37652220234693 175.34346220653933 | ||
68 | + 2074140.1060899608 429.77702057467735 169.96579026696415 114.75637428548691 111.16934224552449 212.19547225873129 446.96026583429551 181.98280460163122 119.51609993754147 111.21705536630134 170.02268863348655 | ||
69 | + 2222481.1654429697 409.20484988488261 163.24731982065225 110.63750812728250 107.79680421049598 206.48893291720682 423.50320391643777 173.98714422054417 114.91373209827049 107.69352607875018 165.50043561287816 | ||
70 | + 2381431.4742991156 391.20692233039267 157.33775010437847 107.01530285522398 104.86557595781689 201.58726374680731 403.13423889372973 167.03848157864172 110.88117953974566 104.56084755427831 161.59828246236873 | ||
71 | + 2551749.7988119572 375.48279397839548 152.15996710252895 103.78547316291554 102.17862980640068 197.07607828006806 385.45681315156696 160.94863233361406 107.27831903906177 101.73928103514938 158.05916569109291 | ||
72 | + 2734249.1715631904 361.90566086354704 147.58489919031339 100.88498756263351 99.780587712295741 192.82839161491304 370.16896466811630 155.65542336366394 104.10152294889095 99.247978642814815 154.89092007711676 | ||
73 | + 2929800.7726598913 349.72536155857597 143.36326161286365 98.065692641581649 97.250652027608922 187.88048271634935 356.85940971790797 150.86839897603991 101.10051935501131 96.815425468323383 151.88038968264229 | ||
74 | + 3139338.0884051290 339.25691976214881 139.66135341924360 95.541019146616136 94.983492492145430 183.47504283437203 345.14586929559113 146.59126920907093 98.307463680110232 94.423647192801994 148.78056433767176 | ||
75 | + 3363861.3673938196 329.95911374317893 136.03086453079595 92.857463338712151 92.334103387764543 177.60232473678860 335.06044848941320 142.66381470904082 95.583607811847230 92.052040022774236 145.58363264459129 | ||
76 | + 3604442.3953054501 321.51668930336473 132.39937977781852 90.038027439738073 89.378609265412265 170.95051982232826 326.03554390079904 138.81098749157812 92.705744194014997 89.290210536728210 141.92228053492971 | ||
77 | + 3862229.6111866701 314.13208138303730 128.88090023101313 87.191601543806470 86.355098876337678 164.21347963596645 317.91567700053366 134.93819655724803 89.696130951669545 86.313624904376724 137.68103017117892 | ||
78 | + 4138453.5896468516 307.23123642028673 125.12647624701391 84.121214248625805 83.050326562933151 156.87939148711928 310.79986131932981 131.15360312346326 86.651126437941315 83.324735906908458 133.20799016376390 | ||
79 | + 4434432.9151364733 300.46385252956782 121.03395008307443 80.774584883944485 79.384472785587107 149.17371690598927 303.94514211471386 126.90798867324285 83.184037687784027 79.728839030448995 128.22312567143325 | ||
80 | + 4751580.4763498083 293.74838041736211 116.74016225246673 77.324379973107213 75.725726580883446 141.89474134867271 297.03562648721794 122.43559082964514 79.659767225688995 76.209443325015627 122.92944691585627 | ||
81 | + 5091410.2107989211 287.66938433738608 112.68413001559671 74.143525147867933 72.478822296761010 135.79602382945325 290.59349537372702 118.07222581061198 76.261486245735838 72.809668407348099 117.94294783598434 | ||
82 | + 5455544.3317549136 281.71543435473581 108.66866085021904 71.078830586597903 69.431914613358757 130.62343141237642 284.58162064050379 113.75281902087229 73.001862056661167 69.637078473282799 113.38082051619253 | ||
83 | + 5845721.0720549859 275.08910662127823 104.18208334956228 67.626838907677183 65.883526074466786 123.74600895198611 278.20850595030214 109.11900585758626 69.508230381173448 66.360749294712122 109.09850249185295 | ||
84 | + 6263802.9817411937 267.66450768438347 99.927357759887698 64.528116125245603 62.965391426469246 118.88232538877908 271.09189032068087 104.57400051204915 66.222890980948094 63.251470026745352 104.52167632184144 | ||
85 | + 6711785.8191405721 260.55026438405372 95.719075842754251 61.415007676291857 59.872516562547624 113.00914843436993 263.45873246137495 99.865141230147202 62.857823648223885 60.074240567204519 100.21436565652063 | ||
86 | + 7191808.0778291244 253.84376498807831 91.976636213934214 58.589867585563880 57.115881359535074 107.74403487258121 256.79439005343886 96.019813657924686 60.048693045536865 57.430822113429599 95.992853763269892 | ||
87 | + 7706161.1949576698 246.06978645779265 87.516484366018844 55.244366781630490 53.673293340804342 100.63958599911395 249.39001839620980 91.336569220142138 56.571818666846035 54.073118656243615 91.356401283005098 | ||
88 | + 8257300.4896700457 238.46676952684837 84.087805620221886 52.809996896777243 51.391422835826702 96.995490336912638 241.51644613438756 87.522463125211317 53.996821556260151 51.654440308852834 87.014263538026981 | ||
89 | + 8847856.8838293944 230.77184366078617 80.013926090429067 49.602234003244277 47.901491949948529 89.010964003314584 233.78992898037302 83.387954393188949 50.775614956718279 48.400271488225748 82.513799048510407 | ||
90 | + 9480649.4610026479 222.94790524999974 76.088406485218101 46.831806301841816 45.148691015063733 84.515205079996761 225.86172671712825 79.001004924511818 47.747679228895542 45.319156104203223 76.977463340182553 | ||
91 | + 10158698.923654843 215.25717232859307 72.429093003905336 43.948129231949167 42.067803496332559 77.699255429484424 218.03044820934460 75.215307156053214 44.877827917306540 42.488101688887930 72.799540572026373 | ||
92 | + 10885242.012792660 208.02130241056364 68.451642904623625 40.804390268310982 38.557184078764784 70.415256348695252 210.59899994878083 71.085525390051814 41.674845421848282 39.049153339385704 66.921411076796801 | ||
93 | + 11663746.958890798 199.69629788948509 64.492620904664633 37.821599657432877 35.468992918635166 64.188118743965617 202.52892729260816 66.843986937520867 38.583286979238373 35.885499066286570 61.031147837563395 | ||
94 | + 12497930.037857909 191.59083144405128 60.421609182755908 34.452630849762578 31.777406591518666 56.812117929278180 194.13982828408686 62.624995701199225 35.158922009867950 32.254548880367544 55.036980265916647 | ||
95 | + 13391773.311073713 183.86042750896053 56.118519549779712 31.018024352990874 28.077630314947474 49.177601410373377 186.32926691117834 58.150083886604627 31.657329648267122 28.546568671376988 48.397975609642430 | ||
96 | + 14349543.634181226 175.55056394690263 51.892415013680839 27.560518523622410 24.396897030563515 41.499775656373167 178.07790691029084 53.670696562913697 28.086734269252965 24.780787330467955 41.174749376576671 | ||
97 | + 15375813.025374586 167.26947456240379 47.532167813517923 24.211613095205379 21.000062854788876 35.461623243294774 169.59967738674098 49.159249979011470 24.654058277909616 21.328325004471878 35.268850257981711 | ||
98 | + 16475480.490412716 158.31272479995690 42.860213098883925 20.841680055723057 17.689821221852107 29.305603805575526 160.74525826730857 44.302904584895458 21.204371556194683 17.964316164116159 29.381734168248908 | ||
99 | + 17653795.408542775 149.22871892265286 38.252981437075583 17.742242280840106 14.738594647769379 23.940434638831519 151.55843723501403 39.490829392386615 18.015483850629543 14.936798218844945 24.035694182002263 | ||
100 | + 18916382.590968601 140.46302240849909 33.713092223014669 14.958097383708985 12.204682480305280 19.689036530679449 142.63895023154507 34.736381057113739 15.164138313384116 12.351362761169970 19.757733049335041 | ||
101 | + 20269269.131483428 130.72493804654141 29.414260109635709 12.541760308926078 10.094337284367922 16.215005847720384 132.92616446751813 30.249607992454891 12.689876995721994 10.194419471673859 16.246681987233128 | ||
102 | + 21718913.177441187 120.70470275197164 25.343957881227773 10.476126941733366 8.3461222297310567 13.352916030003925 122.79625482117720 25.990937940618519 10.579436140743020 8.4130538226477505 13.369850635292426 | ||
103 | + 23272234.758407678 110.55887358180112 21.637767113054842 8.7242624552627710 6.9002700615814394 11.003429878743367 112.47774987185974 22.130206711624929 8.7984492633549181 6.9480494414326532 11.018985031887896 | ||
104 | + 24936648.819655471 100.16383877953626 18.292126622317607 7.2419934869920004 5.7044778835859358 9.1228226426381731 101.94075124688770 18.655065033948475 7.2921239780602445 5.7351074583750083 9.1214870176710772 | ||
105 | + 26720100.618191410 89.787428673229869 15.475314988956098 6.0633551821642957 4.7717892078325681 7.6577255111363982 91.396164311758312 15.736957427280069 6.0981094230954929 4.7927101682233788 7.6564943595276933 | ||
106 | + 28631103.650283400 79.518476013089497 13.066023633338601 5.0795599467008721 3.9954734854423970 6.4121536980588374 80.930757849554126 13.257224613950260 5.1042812242459616 4.0103476470381914 6.4129385694202785 | ||
107 | + 30678780.291537568 69.415038253333591 10.956808843016221 4.2696861066082317 3.3706397948326376 5.4094754768117133 70.589017547094059 11.091229909622061 4.2865491843246755 3.3803698829220115 5.4085897716389724 | ||
108 | + 32872905.343525507 60.100521860560029 9.2206791621463999 3.6097669837571202 2.8608432179462597 4.5592195762379912 61.016900854247417 9.3152118832797051 3.6217065078425410 2.8677933319707529 4.5629202649249603 | ||
109 | + 35223952.694836050 51.747086333139187 7.7734508468150061 3.0569108478202986 2.4304264589454090 3.7790642793987965 52.440567147762337 7.8405291766484124 3.0652008789064933 2.4350799700263650 3.7868237496728785 | ||
110 | + 37743145.319293037 44.018897995783391 6.5700490881908520 2.6168713481643282 2.0946182142887522 3.0793912623806206 44.570227780620854 6.6169057844194565 2.6227819111837212 2.0979056927654245 3.0923934069659627 | ||
111 | + 40442508.850010902 37.264828771790214 5.5779092089881299 2.2496533984355858 1.8113793503672391 2.3721152494161148 37.660650566637017 5.6113362576332229 2.2539677119784067 1.8138100357551308 2.3880987790475938 | ||
112 | + 43334928.985029429 31.571290919003967 4.7429237555250712 1.9371183842331074 1.5669709691377836 1.6868935748052112 31.853229575813121 4.7668251401328900 1.9402849518553222 1.5688056435175375 1.7004997662853261 | ||
113 | + 46434212.998559713 26.602463135383907 4.0604760756147282 1.6854762563563113 1.3686328909812611 1.1040142555863339 26.807986912861050 4.0774328210636517 1.6877283673939407 1.3699306626769030 1.1122096679405016 | ||
114 | + 49755155.651471704 22.457526113320725 3.4933278005406829 1.4755712425421601 1.1972935645518985 0.67084625183367830 22.602817697290142 3.5056739727731889 1.4772730062939217 1.1983868340369759 0.67457362988646652 | ||
115 | + 53313609.815653935 18.986459749039721 3.0137954696301308 1.2941134501869322 1.0386865883897411 0.38910576581105982 19.089349303669525 3.0228244114962939 1.2954042542166011 1.0396722805892760 0.39049340437931146 | ||
116 | + 57126562.149378344 16.082854049047647 2.6193527984998219 1.1434660775476020 0.89107154585782622 0.22247373717437538 16.154690792541000 2.6258895458195437 1.1444055555796577 0.89196480299934799 0.22294268054743716 | ||
117 | + 61212214.184914827 13.683292460782857 2.2947637295166317 1.0204641905165901 0.74887405694691189 0.12818149688945454 13.734173343502663 2.2996775593759224 1.0211972620631617 0.74976589414803596 0.12833661693910564 | ||
118 | + 65590069.215475500 11.682679960030484 2.0155431898348670 0.91318426576520439 0.60267777240874021 7.5313653336467182E-002 11.719332155595904 2.0192636650234359 0.91376349867824191 0.60349910925047456 7.5365794672900527E-002 | ||
119 | + 70281025.396252826 10.028741957923160 1.7806019618719005 0.82097752778904842 0.45934454638001737 4.5437663212203161E-002 10.053892562419829 1.7833768960064467 0.82142127521157859 0.45998398931901724 4.5455896146998860E-002 | ||
120 | + 75307475.503979400 8.6690244043009876 1.5891027868245373 0.74447761739424345 0.33127602147651652 2.8231506403099748E-002 8.6874800626544140 1.5912521960730812 0.74483596556154019 0.33169544613350266 2.8238221283959201E-002 | ||
121 | + 80693413.831222087 7.5179188373411732 1.4241185714852926 0.67654593273587682 0.22711417414159796 1.8072932987296359E-002 7.5316014811630945 1.4258067168632251 0.67684421675739237 0.22734423086738831 1.8075547158654625E-002 | ||
122 | + 86464550.725681752 6.5560050938362053 1.2824288424613985 0.61528919322604014 0.15060649473496224 1.1915281996919274E-002 6.5654285421458960 1.2837320395025995 0.61553380435769478 0.15071658291992565 1.1916358739603540E-002 | ||
123 | + 92648435.321264282 5.7840166688132921 1.1676880850934812 0.56107310695748280 9.8504357020974320E-002 8.0817071271624581E-003 5.7909152801971349 1.1687281793514366 0.56129117333335654 9.8553352430042970E-002 8.0821760516196616E-003 | ||
124 | + 99274587.046792418 5.1169287958301783 1.0661914399046171 0.50577791688865281 6.4376032431724198E-002 5.6309830438706684E-003 5.1223148979547615 1.0670458150180648 0.50598354222310826 6.4397073311982356E-002 5.6311984283367901E-003 | ||
125 | + 106374636.54012930 4.5484484066612980 0.97758855836481218 0.44808703502492286 4.2524132245469887E-002 4.0245890880241638E-003 4.5523506247418624 0.97828004987159889 0.44827863456617206 4.2533149898580903E-002 4.0246931651701234E-003 | ||
126 | + 113982476.64038226 4.0949044728494295 0.90543163853367148 0.38869092344843503 2.8590273602393659E-002 2.9463087194132194E-003 4.0978066099136603 0.90601312277054213 0.38887010963985497 2.8594225667447969E-002 2.9463614954831486E-003 | ||
127 | + 122134424.17896411 3.6993187585896199 0.83645293455566394 0.32403040421379620 1.9612000826049653E-002 2.2059139003491011E-003 3.7016578440458869 0.83696102060120281 0.32418703351115280 1.9613788296748164E-002 2.2059419024185551E-003 | ||
128 | + 130869393.34183876 3.3551841687595121 0.76930174488479142 0.25876251351206431 1.3751472574496919E-002 1.6867192582837966E-003 3.3568146240935883 0.76973189289206811 0.25888176211279085 1.3752311896850555E-002 1.6867347613170290E-003 | ||
129 | + 140229081.43051413 3.0857935569020705 0.70718962250950523 0.19929519749394795 9.8625493551161344E-003 1.3154193224677385E-003 3.0871328952475201 0.70758542285532744 0.19937765877681191 9.8629607312520004E-003 1.3154282571315667E-003 | ||
130 | + 150258167.90853223 2.8415831957456010 0.63684193476451689 0.14811849225450960 7.2292946380264058E-003 1.0449214111139188E-003 2.8427328306850477 0.63720741408631754 0.14816894260140351 7.2295048057815512E-003 1.0449267570715507E-003 | ||
131 | + 161004527.68362606 2.6244271748537269 0.55804765163557557 0.10770253201802864 5.4126045603949697E-003 8.4446708056251261E-004 2.6252936497411796 0.55836734110141006 0.10773065263673949 5.4127164221880013E-003 8.4447039370825539E-004 | ||
132 | + 172519459.64366800 2.4534232359411710 0.47594796309292775 7.7738667066476239E-002 4.1358761920503445E-003 6.9354612012955048E-004 2.4541894679176837 0.47621982152241293 7.7753672563800266E-002 4.1359381941691907E-003 6.9354824238680442E-004 | ||
133 | + 184857931.53735042 2.2868418781670945 0.38911000214056907 5.6074282553630436E-002 3.2214391245846490E-003 5.7822499223193010E-004 2.2876287408989229 0.38932056344322363 5.6082088598098545E-002 3.2214748316577928E-003 5.7822639432432757E-004 | ||
134 | + 198078842.36856276 2.1230540221375596 0.30607593307232150 4.0746458369422048E-002 2.5550615082041853E-003 4.8889878313833162E-004 2.1238229021793558 0.30622100203578401 4.0750503583379900E-002 2.5550828330470569E-003 4.8889973665458835E-004 | ||
135 | + 212245303.55703172 1.9701655328840579 0.23419144475386980 2.9993173013484073E-002 2.0614864641732085E-003 4.1883595817484724E-004 1.9710377865044901 0.23428303424947339 2.9995300486110866E-002 2.0614996480370581E-003 4.1883662447437056E-004 | ||
136 | + 227424940.20737553 1.7958160446683593 0.17534729123245382 2.2406384236135900E-002 1.6900957228179775E-003 3.6324226367515951E-004 1.7968735976497754 0.17540110906299641 2.2407529277360588E-002 1.6901041444168342E-003 3.6324274128003660E-004 | ||
137 | + 243690213.92471123 1.5967489414780485 0.12991736922328001 1.7014061060958516E-002 1.4065713839471346E-003 3.1866118583523737E-004 1.5978859650685751 0.12994732294028458 1.7014693890411856E-002 1.4065769304516897E-003 3.1866153644553294E-004 | ||
138 | + 261118768.71781003 1.3816142809025405 9.6254182198251312E-002 1.3141457463603784E-002 1.1872059444308777E-003 2.8256565735024219E-004 1.3827775641379552 9.6270542604391829E-002 1.3141818331404346E-002 1.1872097045073100E-003 2.8256592056043873E-004 | ||
139 | + 279793801.64100683 1.1496871562365112 7.1730737805526107E-002 1.0322811450455858E-002 1.0153434399779746E-003 2.5308505462682190E-004 1.1507339568845427 7.1739647454766395E-002 1.0323023897302958E-002 1.0153460591835813E-003 2.5308525642012277E-004 | ||
140 | + 299804459.94416034 0.92039809132179295 5.4002505378207298E-002 8.2423050901252043E-003 8.7912137548340377E-004 2.2881765622365934E-004 0.92120620583072366 5.4007401931510123E-002 8.2424341509844175E-003 8.7912324701771812E-004 2.2881781401213878E-004 | ||
141 | + 321246266.62650251 0.71538449302374096 4.1207194640187621E-002 6.6861147137366487E-003 7.7000493423721582E-004 2.0870294551969179E-004 0.71594494034878409 4.1209942752150071E-002 6.6861956132397904E-003 7.7000630394162084E-004 2.0870307120677775E-004 | ||
142 | + 344221576.42580485 0.54315515854030127 3.1911850010776108E-002 5.5063695243981799E-003 6.8175671809027620E-004 1.9192994853511124E-004 0.54350680906158277 3.1913430452619185E-002 5.5064217733496266E-003 6.8175774328387896E-004 1.9193005040951078E-004 | ||
143 | + 368840064.41957211 0.40720528892186614 2.5094403128065618E-002 4.6000523910403653E-003 6.0975141247336824E-004 1.7787167667095009E-004 0.40741153644531297 2.5095337580275094E-002 4.6000871232245210E-003 6.0975219620044725E-004 1.7787176060797297E-004 | ||
144 | + 395219249.57065392 0.30467583112359603 2.0043076635685324E-002 3.8953124603574728E-003 5.5053597903207709E-004 1.6603972327476523E-004 0.30479320766591322 2.0043645799247403E-002 3.8953361939208222E-003 5.5053659018959892E-004 1.6603979350716852E-004 | ||
145 | + 423485055.71647525 0.22879247630845140 1.6252157869916656E-002 3.3407437585251639E-003 5.0149259794261890E-004 1.5604983482749477E-004 0.22885830148690789 1.6252514682708157E-002 3.3407604005054646E-003 5.0149308348101712E-004 1.5604989445133668E-004 | ||
146 | + 453772412.67982668 0.17337246392940481 1.3373498520709170E-002 2.8996772516598547E-003 4.6062643502415109E-004 1.4759790883679078E-004 0.17340953051050118 1.3373728862623079E-002 2.8996892135869858E-003 4.6062682760080587E-004 1.4759796015129022E-004 | ||
147 | + 486225900.37068033 0.13301143797481713 1.1160692666311331E-002 2.5453421028088963E-003 4.2639587744940013E-004 1.4044128091886095E-004 0.13303261233693342 1.1160845543182349E-002 2.5453509015611431E-003 4.2639620013364636E-004 1.4044132565463227E-004 | ||
148 | + 521000438.95372105 0.10347028438529880 9.4392159173298969E-003 2.2580283865701934E-003 3.9759972505451008E-004 1.3438485561350177E-004 0.10348264342975325 9.4393201603020175E-003 2.2580350022692150E-003 3.9759999444392467E-004 1.3438489509113078E-004 | ||
149 | + 558262028.37617922 8.1686096536293773E-002 8.0850284863870567E-003 2.0231015203853605E-003 3.7329519417776859E-004 1.2927092511323817E-004 8.1693494028265437E-002 8.0851014196495711E-003 2.0231065983954697E-003 3.7329542238555014E-004 1.2927096035276526E-004 | ||
150 | + 598188540.78618050 6.5462607203670767E-002 7.0082662141976908E-003 1.8295297184044617E-003 3.5273557829124162E-004 1.2497127122975828E-004 6.5467156172274374E-002 7.0083184987406871E-003 1.8295336925252892E-003 3.5273577429513199E-004 1.2497130302905430E-004 | ||
151 | + 640970569.62430573 5.3236946180889200E-002 6.1436063468158948E-003 1.6689586999534931E-003 3.3532599093552600E-004 1.2138122092479931E-004 5.3239822720768361E-002 6.1436447097233064E-003 1.6689618677023193E-003 3.3532616148181397E-004 1.2138124991515585E-004 | ||
152 | + 686812339.44158888 4.3927091243321024E-002 5.4430438629733801E-003 1.5349904855207646E-003 3.2058912085959374E-004 1.1841498674048567E-004 4.3928961365988929E-002 5.4430726323680062E-003 1.5349930543514701E-003 3.2058927108357424E-004 1.1841501342730154E-004 | ||
153 | + 735932680.78706658 3.6741909868686022E-002 4.8704327160031318E-003 1.4226415316064354E-003 3.0813876844863351E-004 1.1600191988960111E-004 3.6743158878334611E-002 4.8704547433310631E-003 1.4226436490060519E-003 3.0813890231438023E-004 1.1600194468233158E-004 | ||
154 | + 788566074.81860685 3.1140276022643042E-002 4.3989484543929380E-003 1.3280411267844669E-003 2.9766116001017309E-004 1.1408371351116718E-004 3.1141132187679749E-002 4.3989656495034392E-003 1.3280428988791603E-003 2.9766128060749233E-004 1.1408373674498205E-004 | ||
155 | + 844963772.62357998 2.6726674406416295E-002 4.0081787687304832E-003 1.2481538486397634E-003 2.8890166975159256E-004 1.1261234920980518E-004 2.6727276487041762E-002 4.0081924418163993E-003 1.2481553533447759E-003 2.8890177952425894E-004 1.1261237116261421E-004 | ||
156 | + 905394994.59256530 2.3207252003046384E-002 3.6822282136493175E-003 1.1805378920947930E-003 2.8164947471675974E-004 1.1154793161024399E-004 2.3207685469412240E-002 3.6822392755995609E-003 1.1805391872508569E-003 2.8164957561782329E-004 1.1154795251513890E-004 | ||
157 | + 970148215.57143199 2.0376518363833442E-002 3.4089792556971760E-003 1.1232588235352240E-003 2.7573162457801277E-004 1.1085762191262771E-004 2.0376837614991882E-002 3.4089883527299689E-003 1.1232599527345101E-003 2.7573171818594602E-004 1.1085764196739278E-004 | ||
158 | + 1039532541.9266045 1.8081228763254249E-002 3.1790524199614614E-003 1.0747792613908897E-003 2.7100692687730208E-004 1.1051451575162835E-004 1.8081469114842978E-002 3.1790600173765109E-003 1.0747802578822993E-003 2.7100701448145838E-004 1.1051453512631435E-004 | ||
159 | + 1113879187.0970783 1.6201007280506930E-002 2.9848774038933705E-003 1.0338361093172788E-003 2.6735809247960642E-004 1.1049655683572671E-004 1.6201191854043246E-002 2.9848838410134575E-003 1.0338369987938582E-003 2.6735817514813068E-004 1.1049657567863564E-004 | ||
160 | + 1193543052.6768913 1.4651187049783094E-002 2.8205455050132823E-003 9.9939827691580092E-004 2.6468685524059328E-004 1.1078570934913404E-004 1.4651331565350541E-002 2.8205510348839257E-003 9.9939907955432839E-004 2.6468693386846225E-004 1.1078572779133749E-004 | ||
161 | + 1278904422.5755143 1.3364911525116201E-002 2.6813083741097396E-003 9.7062705015508750E-004 2.6291302229840171E-004 1.1136763650643695E-004 1.3365026750954417E-002 2.6813131863337356E-003 9.7062778186213314E-004 2.6291309764227245E-004 1.1136765466539695E-004 | ||
162 | + 1370370778.3434176 1.2292647849086050E-002 2.5634862451722452E-003 9.4685929150956636E-004 2.6197217716850287E-004 1.1223123381668382E-004 1.2292741330553709E-002 2.5634904841175541E-003 9.4685996499994961E-004 2.6197224987660554E-004 1.1223125179930305E-004 | ||
163 | + 1468378744.3284559 1.1392087310809011E-002 2.4638790968847511E-003 9.2751228417497513E-004 2.6180920329688931E-004 1.1336785516656103E-004 1.1392164363639313E-002 2.4638828743474587E-003 9.2751290982888337E-004 2.6180927393680439E-004 1.1336787307191689E-004 | ||
164 | + 1573396171.9484949 1.0633616593614852E-002 2.3800114809369340E-003 9.1211800624351955E-004 2.6237978662685293E-004 1.1477129567623767E-004 1.0633681082668066E-002 2.3800148840460692E-003 9.1211859251832375E-004 2.6237985569652723E-004 1.1477131359727060E-004 | ||
165 | + 1685924373.0297608 9.9927209215487749E-003 2.3098415344368563E-003 9.0029207401322699E-004 2.6364873079023427E-004 1.1643749194888812E-004 9.9927756756694047E-003 2.3098446319802101E-003 9.0029262791185014E-004 2.6364879873515176E-004 1.1643750997430397E-004 | ||
166 | + 1806500512.8719964 9.4513169921880413E-003 2.2518166051231614E-003 8.9173901250371899E-004 2.6558988959649791E-004 1.1836441855766019E-004 9.4513641251192729E-003 2.2518194520830506E-003 8.9173953989112661E-004 2.6558995682072768E-004 1.1836443677341689E-004 | ||
167 | + 1935700174.4639812 8.9918223150162527E-003 2.2044041001757311E-003 8.8617019879668466E-004 2.6818044008204597E-004 1.2055149972696262E-004 8.9918634038471199E-003 2.2044067412458554E-003 8.8617070469805147E-004 2.6818050696075638E-004 1.2055151821778522E-004 | ||
168 | + 2074140106.0899589 8.6026907329779401E-003 2.1665096898649395E-003 8.8337414602907970E-004 2.7140499246483053E-004 1.2299986580565091E-004 8.6027269882340135E-003 2.1665121613983120E-003 8.8337463473150046E-004 2.7140505934790442E-004 1.2299988465594501E-004 | ||
169 | + 2222481165.4429684 8.2738530268717039E-003 2.1371972456592100E-003 8.8317426737433635E-004 2.7525314712965215E-004 1.2571211861869033E-004 8.2738853837280926E-003 2.1371995777397491E-003 8.8317474261441627E-004 2.7525321435023677E-004 1.2571213791376582E-004 | ||
170 | + 2381431474.2991152 7.9974391721475430E-003 2.1157367873816542E-003 8.8543675665792433E-004 2.7971982519832698E-004 1.2869229482928470E-004 7.9974683610044926E-003 2.1157390050753604E-003 8.8543722172084523E-004 2.7971989307776842E-004 1.2869231465635508E-004 | ||
171 | + 2551749798.8119569 7.7671251329611722E-003 2.1015101419663840E-003 8.9005143691062475E-004 2.8480381499769485E-004 1.3194576641852062E-004 7.7671517464254040E-003 2.1015122670521524E-003 8.9005189480379746E-004 2.8480388385404191E-004 1.3194578686789784E-004 | ||
172 | + 2734249171.5631905 7.5759732165266531E-003 2.0938632130580769E-003 8.9690438022463272E-004 2.9050548007914309E-004 1.3547891775304708E-004 7.5759977089560147E-003 2.0938652636543135E-003 8.9690483363137001E-004 2.9050555022713825E-004 1.3547893891887748E-004 | ||
173 | + 2929800772.6598907 7.4202698966942902E-003 2.0924289611594406E-003 9.0593766420458835E-004 2.9683105705682449E-004 1.3929956411453051E-004 7.4202926418852353E-003 2.0924309531033837E-003 9.0593811560823643E-004 2.9683112881385217E-004 1.3929958609585461E-004 | ||
174 | + 3139338088.4051285 7.2964303252757001E-003 2.0968802172130077E-003 9.1710755375666770E-004 3.0378996022773646E-004 1.4341672523423895E-004 7.2964516347023937E-003 2.0968821646220590E-003 9.1710800549958942E-004 3.0379003391741252E-004 1.4341674813596282E-004 | ||
175 | + 3363861367.3938189 7.2012102483053021E-003 2.1069222673410202E-003 9.3037990856773705E-004 3.1139435493823179E-004 1.4784057095709757E-004 7.2012303777362853E-003 2.1069241828417665E-003 9.3038036289899945E-004 3.1139443089627704E-004 1.4784059489128488E-004 | ||
176 | + 3604442395.3054500 7.1320310957526233E-003 2.1223225424800794E-003 9.4573368292718272E-004 3.1965885660340589E-004 1.5258238492663460E-004 7.1320502591892898E-003 2.1223244375111389E-003 9.4573414201820703E-004 3.1965893517898748E-004 1.5258241001334704E-004 | ||
177 | + 3862229611.1866703 7.0873097760535990E-003 2.1429624446178313E-003 9.6317444876984780E-004 3.2860201948484667E-004 1.5765473952575521E-004 7.0873281585655838E-003 2.1429643298346728E-003 9.6317491476895852E-004 3.2860210104555565E-004 1.5765476589436986E-004 | ||
178 | + 4138453589.6468515 7.0643366140484042E-003 2.1686225945911062E-003 9.8269316124040555E-004 3.3824333059601433E-004 1.6307123037003960E-004 7.0643543679186765E-003 2.1686244796802461E-003 9.8269363624685683E-004 3.3824341552838504E-004 1.6307125816027951E-004 | ||
179 | + 4434432915.1364727 7.0621848317669773E-003 2.1992726932898998E-003 1.0043215726334175E-003 3.4860736269591103E-004 1.6884690439245733E-004 7.0622020935967450E-003 2.1992745876760885E-003 1.0043220587971332E-003 3.4860745141322502E-004 1.6884693375592276E-004 | ||
180 | + 4751580476.3498077 7.0796815731700010E-003 2.2348612757057437E-003 1.0280905162617666E-003 3.5972050092060681E-004 1.7499799121322647E-004 7.0796984634748416E-003 2.2348631885343462E-003 1.0280910157954844E-003 3.5972059386722759E-004 1.7499802231511831E-004 | ||
181 | + 5091410210.7989206 7.1159355584937524E-003 2.2753734574303122E-003 1.0540415196245484E-003 3.7161188719000483E-004 1.8154198994446317E-004 7.1159521843898879E-003 2.2753753975662304E-003 1.0540420347907174E-003 3.7161198484210228E-004 1.8154202296474665E-004 | ||
182 | + 5455544331.7549152 7.1702247483006482E-003 2.3208273877077441E-003 1.0822261691534110E-003 3.8431334378391058E-004 1.8849770378485817E-004 7.1702412083072880E-003 2.3208293640187448E-003 1.0822267023204637E-003 3.8431344665699541E-004 1.8849773892035061E-004 | ||
183 | + 5845721072.0549889 7.2419806514260714E-003 2.3712681892309037E-003 1.1127073229634944E-003 3.9785998712043403E-004 1.9588539369713113E-004 7.2419970365184792E-003 2.3712702106466897E-003 1.1127078766158195E-003 3.9786009577197714E-004 1.9588543116317295E-004 | ||
184 | + 6263802981.7411985 7.3312211868676834E-003 2.4268250204431477E-003 1.1455705618855225E-003 4.1229118996668736E-004 2.0372691152372458E-004 7.3312375861460544E-003 2.4268270963627180E-003 1.1455711387141129E-003 4.1229130500805404E-004 2.0372695155703672E-004 | ||
185 | + 6711785819.1405764 7.4367986275347174E-003 2.4874747446720614E-003 1.1808691525060360E-003 4.2764545072296111E-004 2.1204521257208841E-004 7.4368151179374769E-003 2.4874768842708061E-003 1.1808697552905883E-003 4.2764557281445314E-004 2.1204525543208001E-004 | ||
186 | + 7191808077.8291302 7.5590482745122910E-003 2.5533997089657932E-003 1.2187070665346611E-003 4.4396799170964016E-004 2.2086520168120190E-004 7.5590649347930987E-003 2.5534019220871625E-003 1.2187076983031023E-003 4.4396812157654526E-004 2.2086524765349279E-004 | ||
187 | + 7706161194.9576759 7.6979251202954416E-003 2.6247384500017925E-003 1.2591826580240302E-003 4.6130598001699059E-004 2.3021332233977128E-004 7.6979420285489099E-003 2.6247407469967179E-003 1.2591833220300353E-003 4.6130611845147425E-004 2.3021337173864703E-004 | ||
188 | + 8257300489.6700459 7.8535063303623014E-003 2.7016658725169990E-003 1.3024088365723512E-003 4.7971076172168128E-004 2.4011782072482825E-004 7.8535235632906635E-003 2.7016682642492097E-003 1.3024095363251148E-003 4.7971090959297380E-004 2.4011787389684167E-004 | ||
189 | + 8847856883.8293877 8.0259351330089716E-003 2.7843584311938794E-003 1.3485008458199452E-003 4.9923621839299956E-004 2.5060872715863933E-004 8.0259527689516344E-003 2.7843609293848721E-003 1.3485015851507278E-003 4.9923637665684592E-004 2.5060878448599877E-004 | ||
190 | + 9480649461.0026398 8.2154781522190499E-003 2.8730362915535047E-003 1.3975919734452223E-003 5.1994113071604357E-004 2.6171815643737925E-004 8.2154962703258252E-003 2.8730389085652166E-003 1.3975927564829642E-003 5.1994130042031580E-004 2.6171821834188930E-004 | ||
191 | + 10158698923.654837 8.4224620011986318E-003 2.9679261489853992E-003 1.4498188405096897E-003 5.4188703855528213E-004 2.7348008015048493E-004 8.4224806847810248E-003 2.9679288983526556E-003 1.4498196718068215E-003 5.4188722085773250E-004 2.7348014709866023E-004 | ||
192 | + 10885242012.792652 8.6477291746045806E-003 3.0693477856478034E-003 1.5053474237181614E-003 5.6514144636322819E-004 2.8593083769689064E-004 8.6477485124738223E-003 3.0693506819913148E-003 1.5053483082365239E-003 5.6514164253782819E-004 2.8593091020426102E-004 | ||
193 | + 11663746958.890787 8.8908878683326958E-003 3.1774519079229581E-003 1.5643100685058815E-003 5.8977245291707365E-004 2.9910871512455226E-004 8.8909079476669015E-003 3.1774549668408857E-003 1.5643110116533429E-003 5.8977266436749474E-004 2.9910879376135344E-004 | ||
194 | + 12497930037.857903 9.1529559046759044E-003 3.2926045196196019E-003 1.6268941304508687E-003 6.1585646033243105E-004 3.1305476912702341E-004 9.1529768202922544E-003 3.2926077580560141E-003 1.6268951381378186E-003 6.1585668860555606E-004 3.1305485452417619E-004 | ||
195 | + 13391773311.073711 9.4346091176880295E-003 3.4151432418056634E-003 1.6932886657291518E-003 6.4347398821500471E-004 3.2781258520398615E-004 9.4346309728334087E-003 3.4151466785539548E-003 1.6932897445240899E-003 6.4347423502758485E-004 3.2781267806111818E-004 | ||
196 | + 14349543634.181225 9.7365328839443613E-003 3.5454074341065736E-003 1.7636865701405240E-003 6.7270919197557147E-004 3.4342827626882618E-004 9.7365557871057183E-003 3.5454110894676803E-003 1.7636877272194198E-003 6.7270945922132726E-004 3.4342837736066735E-004 | ||
197 | + 15375813025.374584 1.0059556820641538E-002 3.6837832982946918E-003 1.8383011153547877E-003 7.0365266953609641E-004 3.5995099114262451E-004 1.0059580890480610E-002 3.6837871945685214E-003 1.8383023586183813E-003 7.0365295930761439E-004 3.5995110132787259E-004 | ||
198 | + 16475480490.412716 1.0404518457245637E-002 3.8306706884843663E-003 1.9173561294583319E-003 7.3640051249125767E-004 3.7743291910785214E-004 1.0404543820952374E-002 3.8306748501790839E-003 1.9173574676424286E-003 7.3640082710959513E-004 3.7743303933943350E-004 | ||
199 | + 17653795408.542770 1.0772403970315626E-002 3.9865126172001324E-003 2.0010937580830432E-003 7.7105496595754493E-004 3.9592946316893755E-004 1.0772430765796183E-002 3.9865170710220226E-003 2.0010952007701115E-003 7.7105530798871232E-004 3.9592959450409645E-004 | ||
200 | + 18916382590.968597 1.1164779137167766E-002 4.1518557995055411E-003 2.0897889374053400E-003 8.0772619485281957E-004 4.1549969877083693E-004 1.1164807521243146E-002 4.1518605755207624E-003 2.0897904953061965E-003 8.0772656714934163E-004 4.1549984238385776E-004 |