observables.py
10.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import matplotlib.cm as colormap
from matplotlib.pyplot import figure, show, legend, gca, setp
from matplotlib.gridspec import GridSpec
from numpy import sort, log10, histogram, pi, arange, where, ma, zeros, append
from numpy import rot90, flipud, histogram2d, logspace, linspace, size, loadtxt
from mpl_toolkits.mplot3d import Axes3D
from modules.read import ReadResults
from modules.analytic import Analytic_delay_vs_theta, Analytic_observables_vs_energy
from modules.constants import degre, yr
#=========================== CORELATION BETWEEN OBSERVABLES ===========================#
def observables_vs_energy(energy,theta,delay,weight,Erange=[1e-3,1e5],nbBins=-1):#28):
# nbBins=16, Erange=[1e-1,1e3] <=> Arlen 2014 (energy binning)
if (nbBins==-1):
bins=append(logspace(log10(Erange[0]),log10(0.9),100),logspace(0,log10(Erange[1]),16))
nbBins=size(bins)-1
if (nbBins==-2): # <=> Arlen 2014 (energy binning)
nbBins=16
Erange=[1e-1,1e3]
bins=logspace(log10(Erange[0]),log10(Erange[1]),nbBins+1)
else:
bins=logspace(log10(Erange[0]),log10(Erange[1]),nbBins+1)
ener = (bins[1:nbBins+1]*bins[0:nbBins])**0.5
#dtheta, dE = histogram(energy,bins,weights=weight*theta)
#dt, dE = histogram(energy,bins,weights=weight*delay)
#dN, dE = histogram(energy,bins,weights=weight)
dt = zeros(nbBins,dtype="float64")
dtheta = zeros(nbBins,dtype="float64")
for i in arange(nbBins):
mask = (energy >= bins[i]) & (energy < bins[i+1])
w = sum(weight[mask])
t = sum(weight[mask]*delay[mask])
angle = sum(weight[mask]*theta[mask])
if w !=0:
dt[i]=t/w
dtheta[i]=angle/w
return ener, dtheta, dt
def observables_vs_delay(energy,theta,delay,weight,time_range=[10**-0.5,10**8.5],nbBins=100):#9):
# <=> Taylor 2011 (time binning)
bins=logspace(log10(time_range[0]),log10(time_range[1]),nbBins+1)
time = (bins[1:nbBins+1]*bins[0:nbBins])**0.5
dE = zeros(nbBins,dtype="float64")
dtheta = zeros(nbBins,dtype="float64")
for i in arange(nbBins):
mask = (delay >= bins[i]) & (delay < bins[i+1])
w = sum(weight[mask])
E = sum(weight[mask]*energy[mask])
angle = sum(weight[mask]*theta[mask])
if w !=0:
dE[i]=E/w
dtheta[i]=angle/w
return time, dtheta, dE
def drawObservables(fileId,psf=180,Nb=-1,plot_generation_density=False,plot_others_codes=False):
#ax = figure(figsize=(12,9)).add_subplot(111,projection='3d')
fig = figure(figsize=(20,18))
gs = GridSpec(2, 2, height_ratios=[1,1], width_ratios=[1,1])
fig.subplots_adjust(hspace=0,wspace=0)
ax0 = fig.add_subplot(gs[0])
ax2 = fig.add_subplot(gs[2],sharex=ax0)
ax3 = fig.add_subplot(gs[3],sharey=ax2)
fileId = "Simulations/"+fileId
i=0
nbBins = 250
generation, weight, energy, delay, pos, theta = ReadResults(fileId,cols=[0,1,2,3,4,8])
cond = (pos*degre < psf) & (theta>0) & (delay>0) & (generation%2 == 0)
generation = generation[cond]
energy = energy[cond]
delay = delay[cond]/yr
theta = theta[cond]*degre
weight = weight[cond]
print "theta range: [",min(theta),", ",max(theta),"] (degre)", energy[theta==max(theta)]," GeV", generation[theta==max(theta)]
print "delay range: [",min(delay),", ",max(delay),"] (yr)"
print "energy range: [",min(energy),", ",max(energy),"] (GeV)"
theta_range = [1e-5,200]
delay_range = [1e-4,5e9]
energy_range = [1e-3,1e4]
colors=['b','g']
if plot_generation_density:
cmaps=[colormap.Blues,colormap.Greens,colormap.Reds]
for gen in [2,4]:#sort(list(set(generation))):
cond = (generation==gen)
H, xedges, yedges = histogram2d(log10(energy[cond]),log10(delay[cond]),bins=nbBins,weights=weight[cond])
H = flipud(rot90(ma.masked_where(H==0,H)))
im1 = ax0.pcolormesh(10**xedges,10**yedges,log10(H),cmap=cmaps[i])
H, xedges, yedges = histogram2d(log10(energy[cond]),log10(theta[cond]),bins=nbBins,weights=weight[cond])
H = flipud(rot90(ma.masked_where(H==0,H)))
im2 = ax2.pcolormesh(10**xedges,10**yedges,log10(H),cmap=cmaps[i])
H, xedges, yedges = histogram2d(log10(delay[cond]),log10(theta[cond]),bins=nbBins,weights=weight[cond])
H = flipud(rot90(ma.masked_where(H==0,H)))
im3 = ax3.pcolormesh(10**xedges,10**yedges,log10(H),cmap=cmaps[i])
ener,angle,dt = observables_vs_energy(energy[cond],theta[cond],delay[cond],weight[cond],nbBins=Nb)
ax0.plot(ener,dt,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
ax2.plot(ener,angle,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
dt,angle,ener = observables_vs_delay(energy[cond],theta[cond],delay[cond],weight[cond],nbBins=Nb)
ax3.plot(dt,angle,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
i+=1
else:
H, xedges, yedges = histogram2d(log10(energy),log10(delay),bins=nbBins,weights=weight)
H = flipud(rot90(ma.masked_where(H==0,H)))
im1 = ax0.pcolormesh(10**xedges,10**yedges,log10(H),cmap=colormap.YlOrBr)
H, xedges, yedges = histogram2d(log10(energy),log10(theta),bins=nbBins,weights=weight)
H = flipud(rot90(ma.masked_where(H==0,H)))
im2 = ax2.pcolormesh(10**xedges,10**yedges,log10(H),cmap=colormap.YlOrBr)
H, xedges, yedges = histogram2d(log10(delay),log10(theta),bins=nbBins,weights=weight)
H = flipud(rot90(ma.masked_where(H==0,H)))
im3 = ax3.pcolormesh(10**xedges,10**yedges,log10(H),cmap=colormap.YlOrBr)
for gen in [2,4]:#sort(list(set(generation))):
cond = (generation==gen)
ener,angle,dt = observables_vs_energy(energy[cond],theta[cond],delay[cond],weight[cond],nbBins=Nb)
ax0.plot(ener,dt,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
ax2.plot(ener,angle,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
dt,angle,ener = observables_vs_delay(energy[cond],theta[cond],delay[cond],weight[cond],nbBins=Nb)
ax3.plot(dt,angle,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
i+=1
ener,angle,dt = observables_vs_energy(energy,theta,delay,weight,nbBins=Nb)
ax0.plot(ener,dt,color='r',linewidth=2,label="all gen")
ax2.plot(ener,angle,color='r',linewidth=2,label="all gen")
dt,angle,ener = observables_vs_delay(energy,theta,delay,weight,nbBins=Nb)
ax3.plot(dt,angle,color='r',linewidth=2,label="all gen")
nE = 5000
Emin = 1.e-3
Emax = 1e4
E = Emin*(Emax/Emin)**(arange(nE)/(nE-1.))
theta_fit, delay_fit = Analytic_observables_vs_energy(E,"../"+fileId)
ax0.plot(E,delay_fit/yr,'--k',linewidth=2)
ax2.plot(E,theta_fit,'--k',linewidth=2)
ax3.scatter(delay_fit/yr,theta_fit,color='k',marker="+")
if plot_others_codes:
# Results from Arlen 2014 - fig. 2a, 2b
# =====================================
# - binning in energy : log, 16 bins between 1e-1 et 1e3 GeV
# - PSF = 10 deg
data = loadtxt(fileId+'/Arlen2014-fig2a.csv', delimiter=',')
ax0.plot(data[:,0],data[:,1],color="m",linestyle='--',linewidth=2,label="Arlen 2014 - no EBL")
data = loadtxt(fileId+'/Arlen2014-fig2b.csv', delimiter=',')
ax0.plot(data[:,0],data[:,1],color="m",linestyle='-.',linewidth=2,label="Arlen 2014 - EBL")
# Results from Taylor 2011 - fig. 2
# =================================
data = loadtxt(fileId+'/Taylor2011-fig2.csv', delimiter=',')
ax0.plot(data[:,0]*1e-9,data[:,1],color="m",linestyle=':',linewidth=2,label="Taylor 2011")
#ax.legend(loc="best")
#ax.set_xlabel("energy [GeV]")
#ax.set_ylabel("$\\theta$ [deg]")
#ax.set_zlabel("Time delay [s]")
#ax3.set_title(fileId+" - selection %0.1f"%psf)
ax0.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
ax0.grid(b=True,which='major')
ax0.set_xscale('log')
ax0.set_yscale('log')
ax0.set_xlim(energy_range)
ax0.set_ylim(delay_range)
ax0.set_ylabel("Time delay [yrs]")
setp(ax0.get_xticklabels(), visible=False)
ax2.grid(b=True,which='major')
ax2.set_xscale('log')
ax2.set_yscale('log')
ax2.set_xlim(energy_range)
ax2.set_ylim(theta_range)
ax2.set_xlabel("energy [GeV]")
ax2.set_ylabel("$\\theta$ [deg]")
ax3.grid(b=True,which='major')
ax3.set_xscale('log')
ax3.set_yscale('log')
ax3.set_xlim(delay_range)
ax3.set_ylim(theta_range)
ax3.set_xlabel("Time delay [yrs]")
setp(ax3.get_yticklabels(), visible=False)
show()
def drawDelays_vs_energy(files,psf=180,plot_others_codes=False):
ax1 = figure(figsize=(12,9)).add_subplot(111)
nbBins = 100
for fileId0 in files:
fileId = "Simulations/simple case/"+fileId0
gen, weight, energy, delay, pos, arrival_angle = ReadResults(fileId,cols=[0,1,2,3,4,8])
#dt,dtheta,ener = observables_vs_delay(energy,arrival_angle*degre,delay/yr,weight)
#ax1.plot(ener,dt,marker='*',linestyle=":",linewidth=2)
cond = (arrival_angle*degre < psf) & (gen%2==0) #PSF_Taylor2011(energy)
energy = energy[cond]
arrival_angle = arrival_angle[cond]
delay = delay[cond]
weight = weight[cond]
ener,dtheta,dt = observables_vs_energy(energy,arrival_angle*degre,delay/yr,weight,nbBins=-2)
p0, =ax1.plot(ener,dt,marker='*',linewidth=2,label=fileId0)
nth = 5000
thmin = 0.1
thmax = 1e4
E = thmin*(thmax/thmin)**(arange(nth)/(nth-1.))
#ax1.plot(E,Analytic_observables_vs_energy(E,fileId)[1]/yr,color=p0.get_color(),linestyle="-")
if plot_others_codes:
# Results from Arlen 2014 - fig. 2a, 2b
# =====================================
# - binning in energy : log, 16 bins between 1e-1 et 1e3 GeV
# - PSF = 10 deg
data = loadtxt(fileId+'/Arlen2014-fig2a.csv', delimiter=',')
p1,= ax1.plot(data[:,0],data[:,1],color="r",linestyle='--',linewidth=2,label="Arlen 2014 - fig 2a")
data = loadtxt(fileId+'/Arlen2014-fig2b.csv', delimiter=',')
p2,= ax1.plot(data[:,0],data[:,1],color="r",linestyle='-.',linewidth=2,label="Arlen 2014 - fig 2b")
# Results from Taylor 2011 - fig. 2
# =================================
#data = loadtxt(fileId+'/Taylor2011-fig2.csv', delimiter=',')
#p3,= ax1.plot(data[:,0]*1e-9,data[:,1],color=p0.get_color(),linestyle=':',linewidth=2)
#leg1 = legend([p0,p1,p2], ["our code","Arlen 2014 - fig 2a",
# "Arlen 2014 - fig 2b"], loc=1)
ax1.grid(b=True,which='major')
ax1.set_xscale('log')
ax1.set_yscale('log')
#ax1.set_ylim([1,1e8])
#ax1.set_xlim([1e-1,1e3])
ax1.set_xlabel("energy [GeV]")
ax1.set_ylabel("Time delay [yrs]")
ax1.legend(loc="best")#2)
#ax1 = gca().add_artist(leg1)
show()