analysis.py
9.48 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#!/bin/python
import os, shutil
from xml.dom import minidom
from numpy import append, savetxt, shape, array, newaxis, zeros, arange, select, where
from modules.read import ReadResults, ReadProfile, resultdir
from modules.spectrum import spectrum
from modules.maps import computeMap
from modules.arrival_angle import arrivalAngle
from modules.timing import timing
from modules.observables import observables_vs_delay, observables_vs_energy
from modules.constants import degre, day, yr
def PSF_Taylor2011(E): # E in GeV -> PSF in degre
return 1.7 * E**(-0.74) * (1+(E/15)**2)**0.37
xmlfile = minidom.parse("simulations.xml")
simulations = xmlfile.getElementsByTagName("simu")
for simu in simulations:
fileId = simu.getAttribute("simulation_dir")
output_dir = resultdir+simu.getAttribute("id")+"/"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
Emin = float(simu.getAttribute("Emin"))
Emax = float(simu.getAttribute("Emax"))
print "#=============================================================================#"
print " Reading data from ", fileId
print " Output directory: ", output_dir
# copy profile
shutil.copy(fileId+"/profile.dat",output_dir+"profile.dat")
# read files
n_phot = ReadProfile("../"+fileId,[4])
results=ReadResults(fileId)
# select photons only
cond = (results[0]%2==0) & (results[2]>=Emin) & (results[2]<=Emax)
results = results[:,cond]
generation = results[0]
weight = results[1]/n_phot
energy = results[2]
time = results[3]
arrival_pos1 = results[4]*degre
arrival_pos2 = results[6]*degre
theta = (results[4]-results[6])*degre
phi = (results[5]-results[7])*degre
theta_arrival = results[8]*degre
Esource =results[9]
print " [", Emin,"GeV,",Emax,"GeV] band ->",shape(results)[1],"events selected"
theta_range = [1e-5,90]
time_range=[1e0,1e9]#max(time)]
PSF = simu.getAttribute("PSF")
if PSF == "Taylor2011":
print " PSF:", PSF
else:
PSF = float(PSF)
print " PSF:", PSF, "degre"
# SPECTRUM (SOURCE) =========================================================#
if "simple case" not in fileId:
powerlaw_index = simu.getAttribute("powerlaw_index")
print " Applying source spectrum:", powerlaw_index
weightini = weight
Es=array(list(set(Esource)))
if powerlaw_index == "BL Lacertae*":
Eth = 300
gamaVHE = 2.94
gamaHE = 1.86
condlist = [Esource>Eth,Esource<=Eth]
spect = [(Esource/Eth)**(1-gamaVHE),(Esource/Eth)**(1-gamaHE)]
weight = weightini*select(condlist,spect)
Ws = select([Es>Eth,Es<=Eth],[(Es/Eth)**(1-gamaVHE),(Es/Eth)**(1-gamaVHE)])
elif powerlaw_index == "1ES 0229+200":
powerlaw_index = 5/3.
weight = weightini*(Esource/min(Esource))**(1-powerlaw_index)
Ws= (Es/min(Es))**(1-powerlaw_index) / n_phot
else:
powerlaw_index = float(simu.getAttribute("powerlaw_index"))
weight = weightini*(Esource/min(Esource))**(1-powerlaw_index)
Ws= (Es/min(Es))**(1-powerlaw_index) / n_phot
nbBins = 100
Es,Fs = spectrum(Es,Ws,nbBins=nbBins,E_range=[Emin,Emax])
Source = Es[:,newaxis]
Source = append(Source,Fs[:,newaxis],axis=1)
if shape(Ws!=0)[0]>1:
weight /= (max(Es)-min(Es))*(max(Fs)+min(Fs))/2
savetxt(output_dir+"/Source_spectrum.txt",Source)
NbTotEvents = sum(weight)
print " ----------------------------------------------------------------------------- "
#=============================================================================#
# NO SELECTION
#=============================================================================#
print " > No selection of events ..."
# IMAGING ===================================================================#
nbBins = 300
computeMap(theta,phi,weight,energy,output_dir,nbBins,borne=[theta_range[1],theta_range[1]])
# PARAMETER SPACE (theta, dt, E) ============================================#
nbBins = 50
ener,angle,dt = observables_vs_energy(energy,theta_arrival,time/yr,weight)
Angle_Energy = ener[:,newaxis]
Angle_Energy = append(Angle_Energy,angle[:,newaxis],axis=1)
Delay_Energy = ener[:,newaxis]
Delay_Energy = append(Delay_Energy,dt[:,newaxis],axis=1)
dt,angle,ener = observables_vs_delay(energy,theta_arrival,time/yr,weight)
Delay_vs_angle = angle[:,newaxis]
Delay_vs_angle = append(Delay_vs_angle,dt[:,newaxis],axis=1)
if PSF == "Taylor2011":
cond = (theta_arrival<PSF_Taylor2011(energy))
else:
cond = (theta_arrival<PSF)
ener,angle,dt = observables_vs_energy(energy[cond],theta_arrival[cond],time[cond]/yr,weight[cond])
Angle_Energy = append(Angle_Energy,angle[:,newaxis],axis=1)
Delay_Energy = append(Delay_Energy,dt[:,newaxis],axis=1)
dt,angle,ener = observables_vs_delay(energy[cond],theta_arrival[cond],time[cond]/yr,weight[cond])
Delay_vs_angle = append(Delay_vs_angle,dt[:,newaxis],axis=1)
# TIME AND ARRIVAL ANGLE DISTRIBUTION =======================================#
nbBins = 200
theta2,dndtheta = arrivalAngle(theta_arrival,weight,nbBins,theta_range)
arrival_Angle = theta2[:,newaxis]
arrival_Angle = append(arrival_Angle,dndtheta[:,newaxis],axis=1)
delta_t,dNdt = timing(time,weight,nbBins)#,dt_range=[])
Timing = delta_t[:,newaxis]
Timing = append(Timing,dNdt[:,newaxis],axis=1)
# SPECTRUM (MEASURED) =======================================================#
ener,flux = spectrum(energy,weight,nbBins,E_range=[Emin,Emax])
Spectrum = ener[:,newaxis]
Spectrum = append(Spectrum,flux[:,newaxis],axis=1)
nbBins = 200
if PSF == "Taylor2011":
cond = (theta_arrival<PSF_Taylor2011(energy))
else:
cond = (theta_arrival<PSF)
ener,flux = spectrum(energy[cond],weight[cond],nbBins,E_range=[Emin,Emax])
Spectrum = append(Spectrum,flux[:,newaxis],axis=1)
#=============================================================================#
# BY TIME RANGE
#=============================================================================#
print " > Selection by time range ..."
tmax = [day,10*day,30*day] # seconds (1 month, 1 year, 5 years)
for n in arange(0,3,1):
cond= (time<tmax[n])
contrib =sum(weight[cond])/NbTotEvents*100
print " ... integration time =",float(tmax[n]),"s\t-> contribution:",int(contrib),"%"
# ARRIVAL ANGLE DISTRIBUTION ============================================#
nbBins = 200
theta2,dndtheta = arrivalAngle(theta_arrival[cond],weight[cond],nbBins,theta_range)
arrival_Angle = append(arrival_Angle,dndtheta[:,newaxis],axis=1)
# SPECTRUM (MEASURED) ====================================================#
nbBins = 200
if PSF == "Taylor2011":
cond = (theta_arrival<PSF_Taylor2011(energy)) & (time<tmax[n])
else:
cond = (theta_arrival<PSF) & (time<tmax[n])
ener,flux = spectrum(energy[cond],weight[cond],nbBins,E_range=[Emin,Emax])
Spectrum = append(Spectrum,flux[:,newaxis],axis=1)
#=============================================================================#
# BY GENERATION
#=============================================================================#
print " > Selection by generation ..."
gen_tab =[0,2,4,6,8]#list(set(generation))
Gen_cont = zeros([shape(gen_tab)[0],2])
for gen in gen_tab:
cond = (generation==gen)
contrib =sum(weight[cond])/NbTotEvents*100
i = gen_tab.index(gen)
Gen_cont[i,0]=int(gen)
Gen_cont[i,1]=contrib
print " ... gen=",int(gen),"-> contribution:",int(contrib),"%"
# PARAMETER SPACE (theta, dt, E) =========================================#
ener,angle,dt = observables_vs_energy(energy[cond],theta_arrival[cond],time[cond]/yr,weight[cond])
Angle_Energy = append(Angle_Energy,angle[:,newaxis],axis=1)
Delay_Energy = append(Delay_Energy,dt[:,newaxis],axis=1)
dt,angle,ener = observables_vs_delay(energy[cond],theta_arrival[cond],time[cond]/yr,weight[cond])
Delay_vs_angle = append(Delay_vs_angle,dt[:,newaxis],axis=1)
# TIME AND ARRIVAL ANGLE DISTRIBUTION ==================================#
nbBins = 200
theta2,dndtheta = arrivalAngle(theta_arrival[cond],weight[cond],nbBins,theta_range)
arrival_Angle = append(arrival_Angle,dndtheta[:,newaxis],axis=1)
delta_t,dNdt = timing(time[cond],weight[cond],nbBins)
Timing = append(Timing,dNdt[:,newaxis],axis=1)
# SPECTRUM (MEASURED) ====================================================#
nbBins = 200
if PSF == "Taylor2011":
cond = (theta_arrival<PSF_Taylor2011(energy)) & (generation==gen)
else:
cond = (theta_arrival<PSF) & (generation==gen)
ener,flux = spectrum(energy[cond],weight[cond],nbBins,E_range=[Emin,Emax])
Spectrum = append(Spectrum,flux[:,newaxis],axis=1)
print shape(Spectrum)
#=============================================================================#
print " > writing files"
savetxt(output_dir+"/Spectrum.txt",Spectrum)
savetxt(output_dir+"/arrival_Angle_distribution.txt",arrival_Angle)
savetxt(output_dir+"/Timing.txt",Timing)
savetxt(output_dir+"/Angle_versus_Energy.txt",Angle_Energy)
savetxt(output_dir+"/Delay_versus_Angle.txt",Delay_vs_angle)
savetxt(output_dir+"/Delay_versus_Energy.txt",Delay_Energy)
savetxt(output_dir+"/Generation.txt",Gen_cont)
print "#=============================================================================#"