observables.py
14.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import matplotlib.cm as colormap
from matplotlib.pyplot import figure, show, legend, gca, setp
from matplotlib.gridspec import GridSpec
from numpy import sort, log10, histogram, pi, arange, where, ma, zeros, append
from numpy import rot90, flipud, histogram2d, logspace, linspace, size, loadtxt
from numpy import array, argsort, nditer, mean
from mpl_toolkits.mplot3d import Axes3D
from src.read import select_events, ReadProfile
from src.analytic import degre, yr, Analytic_delay_vs_theta, Analytic_observables_vs_energy
import matplotlib as mpl
label_size = 20
mpl.rcParams['xtick.labelsize'] = label_size
mpl.rcParams['ytick.labelsize'] = label_size
def weighted_median(values, weights):
''' compute the weighted median of values list. The weighted median is computed as follows:
1- sort both lists (values and weights) based on values.
2- select the 0.5 point from the weights and return the corresponding values as results
e.g. values = [1, 3, 0] and weights=[0.1, 0.3, 0.6] assuming weights are probabilities.
sorted values = [0, 1, 3] and corresponding sorted weights = [0.6, 0.1, 0.3] the 0.5 point on
weight corresponds to the first item which is 0. so the weighted median is 0.'''
#convert the weights into probabilities
sum_weights = sum(weights)
weights = array([(w*1.0)/sum_weights for w in weights])
#sort values and weights based on values
values = array(values)
sorted_indices = argsort(values)
values_sorted = values[sorted_indices]
weights_sorted = weights[sorted_indices]
#select the median point
it = nditer(weights_sorted, flags=['f_index'])
accumulative_probability = 0
median_index = -1
while not it.finished:
accumulative_probability += it[0]
if accumulative_probability > 0.5:
median_index = it.index
return values_sorted[median_index]
elif accumulative_probability == 0.5:
median_index = it.index
it.iternext()
next_median_index = it.index
return mean(values_sorted[[median_index, next_median_index]])
it.iternext()
return values_sorted[median_index]
#=========================== CORELATION BETWEEN OBSERVABLES ===========================#
def observables_vs_energy(energy,theta,delay,weight,Erange=[1e-3,1e5],median=False,nbBins=-1):#28):
# nbBins=16, Erange=[1e-1,1e3] <=> Arlen 2014 (energy binning)
if (nbBins==-1):
bins=append(logspace(log10(Erange[0]),log10(0.9),100),logspace(0,log10(Erange[1]),16))
nbBins=size(bins)-1
if (nbBins==-2): # <=> Arlen 2014 (energy binning)
nbBins=16
Erange=[1e-1,1e3]
bins=logspace(log10(Erange[0]),log10(Erange[1]),nbBins+1)
else:
bins=logspace(log10(Erange[0]),log10(Erange[1]),nbBins+1)
ener = (bins[1:nbBins+1]*bins[0:nbBins])**0.5
#dtheta, dE = histogram(energy,bins,weights=weight*theta)
#dt, dE = histogram(energy,bins,weights=weight*delay)
#dN, dE = histogram(energy,bins,weights=weight)
dt = zeros(nbBins,dtype="float64")
dtheta = zeros(nbBins,dtype="float64")
if median==False:
for i in arange(nbBins):
mask = (energy >= bins[i]) & (energy < bins[i+1])
w = sum(weight[mask])
t = sum(weight[mask]*delay[mask])
angle = sum(weight[mask]*theta[mask])
if w !=0:
dt[i]=t/w
dtheta[i]=angle/w
else:
for i in arange(nbBins):
mask = (energy >= bins[i]) & (energy < bins[i+1])
if True in mask:
dt[i] = weighted_median(delay[mask],weight[mask])
dtheta[i] = weighted_median(theta[mask],weight[mask])
else:
dt[i] = 0
dtheta[i] = 0
return ener, dtheta, dt
def observables_vs_delay(energy,theta,delay,weight,time_range=[10**-0.5,10**8.5],median=False,nbBins=100):#9):
# <=> Taylor 2011 (time binning)
bins=logspace(log10(time_range[0]),log10(time_range[1]),nbBins+1)
time = (bins[1:nbBins+1]*bins[0:nbBins])**0.5
dE = zeros(nbBins,dtype="float64")
dtheta = zeros(nbBins,dtype="float64")
if median==False:
for i in arange(nbBins):
mask = (delay >= bins[i]) & (delay < bins[i+1])
w = sum(weight[mask])
E = sum(weight[mask]*energy[mask])
angle = sum(weight[mask]*theta[mask])
if w !=0:
dE[i]=E/w
dtheta[i]=angle/w
else:
for i in arange(nbBins):
mask = (delay >= bins[i]) & (delay < bins[i+1])
if True in mask:
dE[i] = weighted_median(energy[mask],weight[mask])
dtheta[i] = weighted_median(theta[mask],weight[mask])
else:
dE[i] = 0
dtheta[i] = 0
return time, dtheta, dE
def drawObservables(fileId,psf=180,Nb=28,plot_generation_density=False,plot_others_codes=False,one_figure=True):
#ax = figure(figsize=(12,9)).add_subplot(111,projection='3d')
if one_figure:
fig = figure(figsize=(20,18))
gs = GridSpec(2, 2, height_ratios=[1,1], width_ratios=[1,1])
fig.subplots_adjust(hspace=0,wspace=0)
ax0 = fig.add_subplot(gs[0])
ax2 = fig.add_subplot(gs[2],sharex=ax0)
ax3 = fig.add_subplot(gs[3],sharey=ax2)
else:
fig0 = figure(figsize=(12,9))
ax0 = fig0.add_subplot(111)
fig2 = figure(figsize=(12,9))
ax2 = fig2.add_subplot(111)
fig3 = figure(figsize=(12,9))
ax3 = fig3.add_subplot(111)
fileId = "Simulations/"+fileId
i=0
nbBins = 250
theta_range = [1e-5,psf]
delay_range = [1e-4,5e9]
energy_range = [1e-3,1e4]
weight,energy,delay,theta,phi,Esource,generation = select_events(fileId,Erange=energy_range)
delay /= yr
theta /= degre
print "theta range: [",min(theta),", ",max(theta),"] (degre)"
print "delay range: [",min(delay),", ",max(delay),"] (yr)"
print "energy range: [",min(energy),", ",max(energy),"] (GeV)"
print "weight range: [",min(weight),", ",max(weight),"]"
colors=['b','g']
cond = (theta>0) & (delay>0)
if plot_generation_density:
cmaps=[colormap.Blues,colormap.Greens,colormap.Reds]
for gen in [2,4]:#sort(list(set(generation))):
cond = cond & (generation==gen)
H, xedges, yedges = histogram2d(log10(energy[cond]),log10(delay[cond]),bins=nbBins,weights=weight[cond])
H = flipud(rot90(ma.masked_where(H==0,H)))
im1 = ax0.pcolormesh(10**xedges,10**yedges,log10(H),cmap=cmaps[i])
H, xedges, yedges = histogram2d(log10(energy[cond]),log10(theta[cond]),bins=nbBins,weights=weight[cond])
H = flipud(rot90(ma.masked_where(H==0,H)))
im2 = ax2.pcolormesh(10**xedges,10**yedges,log10(H),cmap=cmaps[i])
H, xedges, yedges = histogram2d(log10(delay[cond]),log10(theta[cond]),bins=nbBins,weights=weight[cond])
H = flipud(rot90(ma.masked_where(H==0,H)))
im3 = ax3.pcolormesh(10**xedges,10**yedges,log10(H),cmap=cmaps[i])
ener,angle,dt = observables_vs_energy(energy[cond],theta[cond],delay[cond],weight[cond],nbBins=Nb,median=False)
ax0.plot(ener,dt,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
ax2.plot(ener,angle,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
dt,angle,ener = observables_vs_delay(energy[cond],theta[cond],delay[cond],weight[cond],nbBins=Nb,median=False)
ax3.plot(dt,angle,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
i+=1
else:
H, xedges, yedges = histogram2d(log10(energy[cond]),log10(delay[cond]),bins=nbBins,weights=weight[cond])
H = flipud(rot90(ma.masked_where(H==0,H)))
im1 = ax0.pcolormesh(10**xedges,10**yedges,log10(H),cmap=colormap.YlOrBr)
H, xedges, yedges = histogram2d(log10(energy[cond]),log10(theta[cond]),bins=nbBins,weights=weight[cond])
H = flipud(rot90(ma.masked_where(H==0,H)))
im2 = ax2.pcolormesh(10**xedges,10**yedges,log10(H),cmap=colormap.YlOrBr)
H, xedges, yedges = histogram2d(log10(delay[cond]),log10(theta[cond]),bins=nbBins,weights=weight[cond])
H = flipud(rot90(ma.masked_where(H==0,H)))
im3 = ax3.pcolormesh(10**xedges,10**yedges,log10(H),cmap=colormap.YlOrBr)
for gen in [2,4]:#sort(list(set(generation))):
cond = (generation==gen)
ener,angle,dt = observables_vs_energy(energy[cond],theta[cond],delay[cond],weight[cond],nbBins=Nb,median=False)
ax0.plot(ener,dt,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
ax2.plot(ener,angle,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
dt,angle,ener = observables_vs_delay(energy[cond],theta[cond],delay[cond],weight[cond],nbBins=Nb,median=False)
ax3.plot(dt,angle,color=colors[i],linewidth=2,label="gen = %.0f"%(i+1))
i+=1
ener,angle,dt = observables_vs_energy(energy,theta,delay,weight,nbBins=Nb,median=False)
ax0.plot(ener,dt,color='k',linewidth=2,label="all gen")
ax2.plot(ener,angle,color='k',linewidth=2,label="all gen")
dt,angle,ener = observables_vs_delay(energy,theta,delay,weight,nbBins=Nb,median=False)
ax3.plot(dt,angle,color='k',linewidth=2,label="all gen")
nE = 5000
Emin = 1.e-3
Emax = 1e4
E = Emin*(Emax/Emin)**(arange(nE)/(nE-1.))
theta_fit, delay_fit, theta_fit2, delay_fit2 = Analytic_observables_vs_energy(E,"../"+fileId)
ax0.plot(E,delay_fit/yr,'--b',linewidth=2)
ax0.plot(E,delay_fit2/yr,'--g',linewidth=2)
ax2.plot(E,theta_fit,'--b',linewidth=2)
ax2.plot(E,theta_fit2,'--g',linewidth=2)
ax3.plot(delay_fit[delay_fit.argsort()]/yr,theta_fit[delay_fit.argsort()],'--b',linewidth=2)
ax3.plot(delay_fit2[delay_fit2.argsort()]/yr,theta_fit2[delay_fit2.argsort()],'--g',linewidth=2)
#ax3.scatter(delay_fit/yr,theta_fit,color='b',marker="+")
if plot_others_codes:
# Results from Arlen 2014 - fig. 2a, 2b
# =====================================
# - binning in energy : log, 16 bins between 1e-1 et 1e3 GeV
# - PSF = 10 deg
data = loadtxt(fileId+'/Arlen2014-fig2a.csv', delimiter=',')
ax0.plot(data[:,0],data[:,1],color="m",linestyle='--',linewidth=2,label="Arlen 2014 - no EBL")
data = loadtxt(fileId+'/Arlen2014-fig2b.csv', delimiter=',')
ax0.plot(data[:,0],data[:,1],color="m",linestyle='-.',linewidth=2,label="Arlen 2014 - EBL")
# Results from Taylor 2011 - fig. 2
# =================================
data = loadtxt(fileId+'/Taylor2011-fig2.csv', delimiter=',')
ax0.plot(data[:,0]*1e-9,data[:,1],color="m",linestyle=':',linewidth=2,label="Taylor 2011")
#ax.legend(loc="best")
#ax.set_xlabel("$E$ [GeV]")
#ax.set_ylabel("$\\theta$ [deg]")
#ax.set_zlabel("$\\Delta t$ [s]")
#ax3.set_title(fileId+" - selection %0.1f"%psf)
if one_figure:
ax0.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
ax0.grid(b=True,which='major')
ax0.set_xscale('log')
ax0.set_yscale('log')
ax0.set_xlim(energy_range)
ax0.set_ylim(delay_range)
ax0.set_ylabel("$\\Delta t$ [yrs]",fontsize=label_size)
if one_figure:
setp(ax0.get_xticklabels(), visible=False)
else:
ax0.set_xlabel("$E$ [GeV]",fontsize=label_size)
ax0.legend(loc="best",fontsize=label_size)
cbar1=fig0.colorbar(im1, ax=ax0)
cbar1.ax.set_ylabel("counts [log]",fontsize=label_size)
ax2.grid(b=True,which='major')
ax2.set_xscale('log')
ax2.set_yscale('log')
ax2.set_xlim(energy_range)
ax2.set_ylim(theta_range)
ax2.set_xlabel("$E$ [GeV]",fontsize=label_size)
ax2.set_ylabel("$\\theta$ [deg]",fontsize=label_size)
if not one_figure:
ax2.legend(loc="best",fontsize=label_size)
cbar2=fig2.colorbar(im2, ax=ax2)
cbar2.ax.set_ylabel("counts [log]",fontsize=label_size)
ax3.grid(b=True,which='major')
ax3.set_xscale('log')
ax3.set_yscale('log')
ax3.set_xlim(delay_range)
ax3.set_ylim(theta_range)
ax3.set_xlabel("$\\Delta t$ [yrs]",fontsize=label_size)
if one_figure:
setp(ax3.get_yticklabels(), visible=False)
else:
ax3.set_ylabel("$\\theta$ [deg]",fontsize=label_size)
ax3.legend(loc="best",fontsize=label_size)
cbar3=fig3.colorbar(im3, ax=ax3)
cbar3.ax.set_ylabel("counts [log]",fontsize=label_size)
show()
def drawDelays_vs_energy(files,psf=180,plot_others_codes=False):
ax1 = figure(figsize=(12,9)).add_subplot(111)
nbBins = 100
for fileId0 in files:
fileId = "Simulations/simple case/"+fileId0
weight, energy, delay, arrival_angle , theta, phi, gen = select_events(fileId)
#dt,dtheta,ener = observables_vs_delay(energy,arrival_angle/degre,delay/yr,weight)
#ax1.plot(ener,dt,marker='*',linestyle=":",linewidth=2)
cond = (arrival_angle/degre < psf) & (gen%2==0) #PSF_Taylor2011(energy)
energy = energy[cond]
arrival_angle = arrival_angle[cond]
delay = delay[cond]
weight = weight[cond]
ener,dtheta,dt = observables_vs_energy(energy,arrival_angle/degre,delay/yr,weight,nbBins=-2)
p0, =ax1.plot(ener,dt,marker='*',linewidth=2,label=fileId0)
nth = 5000
thmin = 0.1
thmax = 1e4
E = thmin*(thmax/thmin)**(arange(nth)/(nth-1.))
#ax1.plot(E,Analytic_observables_vs_energy(E,fileId)[1]/yr,color=p0.get_color(),linestyle="-")
if plot_others_codes:
# Results from Arlen 2014 - fig. 2a, 2b
# =====================================
# - binning in energy : log, 16 bins between 1e-1 et 1e3 GeV
# - PSF = 10 deg
data = loadtxt(fileId+'/Arlen2014-fig2a.csv', delimiter=',')
p1,= ax1.plot(data[:,0],data[:,1],color="r",linestyle='--',linewidth=2,label="Arlen 2014 - fig 2a")
data = loadtxt(fileId+'/Arlen2014-fig2b.csv', delimiter=',')
p2,= ax1.plot(data[:,0],data[:,1],color="r",linestyle='-.',linewidth=2,label="Arlen 2014 - fig 2b")
# Results from Taylor 2011 - fig. 2
# =================================
#data = loadtxt(fileId+'/Taylor2011-fig2.csv', delimiter=',')
#p3,= ax1.plot(data[:,0]*1e-9,data[:,1],color=p0.get_color(),linestyle=':',linewidth=2)
#leg1 = legend([p0,p1,p2], ["our code","Arlen 2014 - fig 2a",
# "Arlen 2014 - fig 2b"], loc=1)
ax1.grid(b=True,which='major')
ax1.set_xscale('log')
ax1.set_yscale('log')
#ax1.set_ylim([1,1e8])
#ax1.set_xlim([1e-1,1e3])
ax1.set_xlabel("$E$ [GeV]",fontsize=label_size)
ax1.set_ylabel("$\\Delta t$ [yrs]",fontsize=label_size)
ax1.legend(loc="best",fontsize=label_size)#2)
#ax1 = gca().add_artist(leg1)
show()