Analysis.py
6.55 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/bin/python
from sys import argv
from numpy import append, savetxt, shape, array, newaxis, zeros, arange
from Modules.Read import ReadEnergy, ReadTime, ReadExtraFile, ReadProfile
from Modules.Read import ReadMomentumAngle, ReadPositionAngle, resultDirectory
from Modules.Spectrum import spectrum
from Modules.Map import computeMap
from Modules.Angle import angle_vs_energy, radial
from Modules.Timing import timing
from Modules.Constants import degre
if shape(argv)[0] < 2:
print "not enough arguments (at least 1)"
exit()
powerlaw_index=2
for fileId in argv[1:]:
print "#===============================================#"
print "# Analysis of", fileId
print "#===============================================#"
# read files
print " > Reading data"
time = ReadTime(fileId)
energy = ReadEnergy(fileId)
weightini, generation, theta_arrival, Esource, dir_source = ReadExtraFile(fileId,[2,3,4,5,6])
#weightini, generation, theta_arrival, Esource = ReadExtraFile(fileId,[2,3,4,5])
n_phot, n_lept = ReadProfile(fileId,[3,5])
ratio = n_phot#/n_lept
weightini /= ratio
theta_arrival*= degre
thetaDir,phiDir = ReadMomentumAngle(fileId)*degre
thetaPos,phiPos = ReadPositionAngle(fileId)*degre
theta = thetaDir - thetaPos
phi = phiDir -phiPos
powerlaw_index = 2
theta_min = 1e-3
theta_max = 25
#=============================================================================#
# NO SELECTION
#=============================================================================#
print " > No selection of events ..."
# SPECTRUM (SOURCE) =========================================================#
weight_source = (Esource/min(Esource))**(1-powerlaw_index)
weight = weightini* weight_source
nbBins = 100
Es=array(list(set(Esource)))
Ws= (Es/min(Es))**(1-powerlaw_index) / ratio
Es,Fs = spectrum(Es,Ws,nbBins=nbBins)
Es=Es[:,newaxis]
Fs=Fs[:,newaxis]
Source = Es
Source = append(Source,Fs,axis=1)
# IMAGING ===================================================================#
print " ... Computing image"
nbBins = 50
computeMap(theta,phi,weight,energy,fileId,nbBins,borne=[theta_max,theta_max])
# SPECTRUM (MEASURED) =======================================================#
print " ... Computing spectrum"
nbBins = 100
ener,flux = spectrum(energy,weight,nbBins)
ener=ener[:,newaxis]
flux=flux[:,newaxis]
Spectrum = ener
Spectrum = append(Spectrum,flux,axis=1)
# ANGLE VERSUS ENERGY =======================================================#
print " ... Computing arrival angle versus energy"
nbBins = 100
ener,angle = angle_vs_energy(theta_arrival,energy,weight,nbBins)
ener=ener[:,newaxis]
angle=angle[:,newaxis]
Angle_Energy = ener
Angle_Energy = append(Angle_Energy,angle,axis=1)
# RADIAL ====================================================================#
print " ... Computing radial distribution"
nbBins = 100
theta2,dndtheta = radial(theta,weight,nbBins,theta_range=[theta_min,theta_max])
theta2=theta2[:,newaxis]
dndtheta=dndtheta[:,newaxis]
Radial = theta2
Radial = append(Radial,dndtheta,axis=1)
# TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE =============================#
print " ... Computing time distribution"
nbBins = 100
min_dt = min(time)
max_dt = max(time)
delta_t,dNdt = timing(time,weight,nbBins)#,dt_range=[])
delta_t=delta_t[:,newaxis]
dNdt=dNdt[:,newaxis]
Timing = delta_t
Timing = append(Timing,dNdt,axis=1)
#=============================================================================#
# BY ENERGY RANGE
#=============================================================================#
print " > Selection by energy range ..."
Emin = [1e-3,1e0,1e3] #GeV
Emax = [1e0,1e3,1e5] #GeV
for n in arange(0,3,1):
cond= (energy>Emin[n]) & (energy<Emax[n])
# RADIAL =================================================================#
nbBins = 100
theta2,dndtheta = radial(theta[cond],weight[cond],nbBins,theta_range=[theta_min,theta_max])
dndtheta=dndtheta[:,newaxis]
Radial = append(Radial,dndtheta,axis=1)
# TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE ==========================#
nbBins = 100
delta_t,dNdt = timing(time[cond],weight[cond],nbBins)
dNdt=dNdt[:,newaxis]
Timing = append(Timing,dNdt,axis=1)
print " ... ", ((n+1)*100)/3,"% done"
#=============================================================================#
# BY GENERATION
#=============================================================================#
print " > Selection by generation ..."
NbTotEvents = sum(weight)
gen_tab =list(set(generation))
Gen_cont = zeros([shape(gen_tab)[0],2])
for gen in gen_tab:
cond = generation==gen
contrib =sum(weight[cond])/NbTotEvents*100
i = gen_tab.index(gen)
Gen_cont[i,0]=int(gen)
Gen_cont[i,1]=contrib
print " ... gen=",int(gen),"-> contribution:",int(contrib),"%"
# SPECTRUM (MEASURED) ====================================================#
nbBins = 100
ener,flux = spectrum(energy[cond],weight[cond],nbBins)
flux=flux[:,newaxis]
Spectrum = append(Spectrum,flux,axis=1)
# ANGLE VERSUS ENERGY ====================================================#
nbBins = 100
ener,angle = angle_vs_energy(theta_arrival[cond],energy[cond],weight[cond],nbBins)
angle=angle[:,newaxis]
Angle_Energy = append(Angle_Energy,angle,axis=1)
# RADIAL =================================================================#
nbBins = 100
theta2,dndtheta = radial(theta[cond],weight[cond],nbBins,theta_range=[theta_min,theta_max])
dndtheta=dndtheta[:,newaxis]
Radial = append(Radial,dndtheta,axis=1)
# TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE ==========================#
nbBins = 100
delta_t,dNdt = timing(time[cond],weight[cond],nbBins)
dNdt=dNdt[:,newaxis]
Timing = append(Timing,dNdt,axis=1)
#=============================================================================#
print " > writing files"
savetxt(resultDirectory+fileId+"/Spectrum.txt",Spectrum)
savetxt(resultDirectory+fileId+"/Source_spectrum.txt",Source)
savetxt(resultDirectory+fileId+"/Angle_vs_Energy.txt",Angle_Energy)
savetxt(resultDirectory+fileId+"/Radial_distribution.txt",Radial)
savetxt(resultDirectory+fileId+"/Timing.txt",Timing)
savetxt(resultDirectory+fileId+"/Generation.txt",Gen_cont)
print "#===============================================#"