analysis.py
9.03 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/bin/python
import os, shutil
from xml.dom import minidom
from numpy import append, savetxt, shape, array, newaxis, zeros, arange
from modules.read import ReadResults, ReadProfile, resultdir
from modules.spectrum import spectrum
from modules.maps import computeMap
from modules.arrival_angle import arrivalAngle
from modules.timing import timing
from modules.observables import param_vs_energy, delay_vs_theta
from modules.constants import degre
xmlfile = minidom.parse("simulations.xml")
simulations = xmlfile.getElementsByTagName("simu")
for simu in simulations:
fileId = simu.getAttribute("simulation_dir")
output_dir = resultdir+simu.getAttribute("id")+"/"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
powerlaw_index = float(simu.getAttribute("powerlaw_index"))
print "#=============================================================================#"
print " Start working on ", fileId
print " Output directory: ", output_dir
print " powerlaw index: ", powerlaw_index
print "#=============================================================================#"
# copy profile
shutil.copy(fileId+"/profile.dat",output_dir+"profile.dat")
# read files
print " > Reading data"
n_phot, n_lept = ReadProfile("../"+fileId,[4,5])
ratio = n_phot#/n_lept
results=ReadResults(fileId)
# select photons only
results = results[:,results[0]%2==0]
print " ... ", shape(results)[1], "events selected"
generation = results[0]
weightini = results[1]/ratio
energy = results[2]
time = results[3]
arrival_pos1 = results[4]*degre
arrival_pos2 = results[6]*degre
theta = (results[4]-results[6])*degre
phi = (results[5]-results[7])*degre
theta_arrival = results[8]*degre
Esource =results[9]
theta_min = 1e-5
theta_max = 90
max_dt = max(time)
#=============================================================================#
# NO SELECTION
#=============================================================================#
print " > No selection of events ..."
# SPECTRUM (SOURCE) =========================================================#
weight_source = (Esource/min(Esource))**(1-powerlaw_index)
weight = weightini* weight_source
nbBins = 100
Es=array(list(set(Esource)))
Ws= (Es/min(Es))**(1-powerlaw_index) / ratio
Es,Fs = spectrum(Es,Ws,nbBins=nbBins)
Source = Es[:,newaxis]
Source = append(Source,Fs[:,newaxis],axis=1)
if shape(Ws!=0)[0]>1:
ratio = (max(Es)-min(Es))*(max(Fs)+min(Fs))/2
weight /= ratio
# IMAGING ===================================================================#
print " ... Computing image"
nbBins = 50
computeMap(theta,phi,weight,energy,output_dir,nbBins,borne=[theta_max,theta_max])
# SPECTRUM (MEASURED) =======================================================#
print " ... Computing spectrum"
nbBins = 100
ener,flux = spectrum(energy,weight,nbBins)
Spectrum = ener[:,newaxis]
Spectrum = append(Spectrum,flux[:,newaxis],axis=1)
# ANGLE VERSUS ENERGY =======================================================#
print " ... Computing arrival angle versus energy"
nbBins = 100
ener,angle = param_vs_energy(theta_arrival,energy,nbBins)
Angle_Energy = ener[:,newaxis]
Angle_Energy = append(Angle_Energy,angle[:,newaxis],axis=1)
# Arrival angle =============================================================#
print " ... Computing arrival angle distribution"
nbBins = 100
theta2,dndtheta = arrivalAngle(theta_arrival,weight,nbBins,theta_range=[theta_min,theta_max])
arrival_Angle = theta2[:,newaxis]
arrival_Angle = append(arrival_Angle,dndtheta[:,newaxis],axis=1)
# TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE =============================#
print " ... Computing time distribution"
nbBins = 200
delta_t,dNdt = timing(time,weight,nbBins)#,dt_range=[])
Timing = delta_t[:,newaxis]
Timing = append(Timing,dNdt[:,newaxis],axis=1)
angle,dt = delay_vs_theta(theta_arrival,time,nbBins)#,dt_range=[])
Delay_vs_angle = angle[:,newaxis]
Delay_vs_angle = append(Delay_vs_angle,dt[:,newaxis],axis=1)
#=============================================================================#
# BY ENERGY RANGE
#=============================================================================#
print " > Selection by energy range ..."
Emin = [1e-3,1e0,1e3] #GeV
Emax = [1e0,1e3,1e5] #GeV
for n in arange(0,3,1):
cond= (energy>Emin[n]) & (energy<Emax[n])
# Arrival angle ===========================================================#
nbBins = 100
theta2,dndtheta = arrivalAngle(theta_arrival[cond],weight[cond],nbBins,theta_range=[theta_min,theta_max])
arrival_Angle = append(arrival_Angle,dndtheta[:,newaxis],axis=1)
# TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE ==========================#
nbBins = 200
delta_t,dNdt = timing(time[cond],weight[cond],nbBins)
Timing = append(Timing,dNdt[:,newaxis],axis=1)
angle,dt = delay_vs_theta(theta_arrival[cond],time[cond],nbBins)#,dt_range=[])
Delay_vs_angle = append(Delay_vs_angle,dt[:,newaxis],axis=1)
print " ... ", ((n+1)*100)/3,"% done"
#=============================================================================#
# BY TIME RANGE
#=============================================================================#
print " > Selection by time range ..."
tmax = [2.6298e5,3.15576e7,1.57788e8] # seconds (1 month, 1 year, 5 years)
for n in arange(0,3,1):
cond= (time<tmax[n])
# SPECTRUM (MEASURED) ====================================================#
nbBins = 100
ener,flux = spectrum(energy[cond],weight[cond],nbBins)
Spectrum = append(Spectrum,flux[:,newaxis],axis=1)
# Arrival angle ==========================================================#
nbBins = 100
theta2,dndtheta = arrivalAngle(theta_arrival[cond],weight[cond],nbBins,theta_range=[theta_min,theta_max])
arrival_Angle = append(arrival_Angle,dndtheta[:,newaxis],axis=1)
print " ... ", ((n+1)*100)/3,"% done"
#=============================================================================#
# BY JET OPENING ANGLE
#=============================================================================#
print " > Selection by jet opening angle ..."
opening_angle = [45,30,10,5,1] # degres
for n in arange(0,5,1):
cond= (arrival_pos1<=opening_angle[n]) & (arrival_pos2<=opening_angle[n])
# Arrival angle ==========================================================#
nbBins = 100
theta2,dndtheta = arrivalAngle(theta_arrival[cond],weight[cond],nbBins,theta_range=[theta_min,theta_max])
arrival_Angle = append(arrival_Angle,dndtheta[:,newaxis],axis=1)
print " ... ", ((n+1)*100)/5,"% done"
#=============================================================================#
# BY GENERATION
#=============================================================================#
print " > Selection by generation ..."
NbTotEvents = sum(weight)
gen_tab =list(set(generation))
Gen_cont = zeros([shape(gen_tab)[0],2])
for gen in gen_tab:
cond = generation==gen
contrib =sum(weight[cond])/NbTotEvents*100
i = gen_tab.index(gen)
Gen_cont[i,0]=int(gen)
Gen_cont[i,1]=contrib
print " ... gen=",int(gen),"-> contribution:",int(contrib),"%"
# SPECTRUM (MEASURED) ====================================================#
nbBins = 100
ener,flux = spectrum(energy[cond],weight[cond],nbBins)
Spectrum = append(Spectrum,flux[:,newaxis],axis=1)
# ANGLE VERSUS ENERGY ====================================================#
nbBins = 100
ener,angle = param_vs_energy(theta_arrival[cond],energy[cond],nbBins)
Angle_Energy = append(Angle_Energy,angle[:,newaxis],axis=1)
# arrivalAngle =================================================================#
nbBins = 100
theta2,dndtheta = arrivalAngle(theta_arrival[cond],weight[cond],nbBins,theta_range=[theta_min,theta_max])
arrival_Angle = append(arrival_Angle,dndtheta[:,newaxis],axis=1)
# TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE ==========================#
nbBins = 200
delta_t,dNdt = timing(time[cond],weight[cond],nbBins)
Timing = append(Timing,dNdt[:,newaxis],axis=1)
angle,dt = delay_vs_theta(theta_arrival[cond],time[cond],nbBins)#,dt_range=[])
Delay_vs_angle = append(Delay_vs_angle,dt[:,newaxis],axis=1)
#=============================================================================#
print " > writing files"
savetxt(output_dir+"/Spectrum.txt",Spectrum)
savetxt(output_dir+"/Source_spectrum.txt",Source)
savetxt(output_dir+"/Angle_vs_Energy.txt",Angle_Energy)
savetxt(output_dir+"/arrival_Angle_distribution.txt",arrival_Angle)
savetxt(output_dir+"/Timing.txt",Timing)
savetxt(output_dir+"/Delay_versus_angle.txt",Delay_vs_angle)
savetxt(output_dir+"/Generation.txt",Gen_cont)
print "#=============================================================================#"