Timing.py
2.57 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from numpy import histogram, log10, shape, arange, pi
from matplotlib.pyplot import figure, show
from Read import ReadTime, ReadTiming, ReadExtraFile, ReadProfile, ReadEnergy
from Constants import yr, degre
from Analytic import Analytic_delay_vs_theta
def timing(time,weight,nbBins=100):
'''
Compute flux versus time delay
Input: directory name
Input (optional): generation (default = all)
Output: time delay (sec), flux
'''
time=time[time>0]
weight=weight[time>0]
time = log10(time*yr)
dN,dt=histogram(time,nbBins,weights=weight)
timecenter=(dt[1:nbBins+1]+dt[0:nbBins])/2
binSize=dt[1:nbBins+1]-dt[0:nbBins]
dNdt=dN/(max(dN)*binSize)
return 10**timecenter, dNdt
def drawTiming(files):
'''
Plot flux versus time delay
Input: list of directories
Output: graph of flux versus time delay
'''
fig = figure()
ax = fig.add_subplot(111)
for fileId in files:
i=1
for powerlaw_index in [1,1.5,2,2.5]:
delta_t,dNdt = ReadTiming(fileId,[0,i])
ax.plot(delta_t,dNdt,linestyle="steps-mid",label="p=%.1f"%powerlaw_index)
ax.set_xscale('log')
ax.set_yscale('log')
ax.grid(b=True,which='major')
ax.legend(loc="best")
ax.set_xlabel("Time delay [s]")
ax.set_ylabel("$t\ dN/dt$ [arbitrary units]")
show()
def drawDelay_vs_angle(fileId):
'''
Plot angle versus time delay, generation by generation
Input: directory name
Output: graph of angle versus time delay, generation by generation
'''
fig = figure()
ax = fig.add_subplot(111)
nbBins = 100
theta = ReadExtraFile(fileId,[4])
energy = ReadEnergy(fileId)
delay = ReadTime(fileId)
for n in arange(0,8,2):
Emin = 10**(3-n) #GeV
Emax = 10**(5-n) #GeV
label = "%1.0e Gev"%Emin+"< $E_\\gamma$ < %1.0e Gev"%Emax
cond= (energy>Emin) & (energy<Emax)
ax.plot(theta[cond],delay[cond],".",label=label)
cond= (theta!=0)
theta=log10(theta[cond])
dt,dtheta=histogram(theta,nbBins,weights=delay[cond])
dN,dtheta=histogram(theta,nbBins)
dtheta=10**dtheta
thetacenter=(dtheta[1:nbBins+1]+dtheta[0:nbBins])/2
dt=dt/dN
ax.plot(thetacenter,dt,color='m',linestyle="steps-mid",linewidth=2)
thmin = 1.e-8
thmax = pi/2.
nth = 1000
th = thmin*(thmax/thmin)**(arange(nth)/(nth-1.))
delay_fit = Analytic_delay_vs_theta(th,fileId)
ax.plot(th,delay_fit,'--k',linewidth=2)
ax.set_xscale('log')
ax.set_yscale('log')
ax.grid(b=True,which='major')
ax.legend(loc="best")
ax.set_xlabel("$\\theta $[rad]")
ax.set_ylabel("Time delay [s]")
show()