EGMF and lepton trajectory.ipynb 76.3 KB
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Check turbulent magnetic generation\n",
    "\n",
    "This script aims to check the conformity of the the magnetic field generated in simulation with the one described in:\n",
    "* Tautz and Dosch 2013 - http://arxiv.org/abs/1301.7164"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAugAAAItCAYAAABrf4+XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcXOXZPvDrGRhggMCwJewhJCGEbBSscW2wtmqreU1q\n1LrbJWrrm6o/TZtWDYPWrXaxmr5208TauiR2i9bWuJGlZtPEREhCNggJASFhSQLDMjPP749hZwgD\nzHDOeeb6vp983pxhZrivHiQ3D/d5jpBSgoiIiIiI9MGkdQFERERERNSDDToRERERkY6wQSciIiIi\n0hE26EREREREOsIGnYiIiIhIR9igExERERHpCBt0IiIiIiIdYYNORERERKQjwVoXMBpCiAgA/weg\nDUCxlPIVjUsiIiIiIhoVo6+gfwPAainlHQD+R+tiiIiIiIhGS3cNuhDiRSHE50KIz/o9foUQYp8Q\n4oAQ4kedD6cAONr5d+eYFkpERERE5Ae6a9ABrARwRe8HhBBBAFZ0Pp4D4AYhxHQAxwCkdT5Nj1mI\niIiIiIZFd02tlHIjgIZ+D58L4KCUskJK2QHgNQBXA/gbgGuEEP8HYO3YVkpERERE5HtGuUi09ygL\n4F45nyulbAHw7bO9UAgh/VkYEREREVEXKaUY7XsYpUEfVZMtpXo9uq3YhqL1RbA+bcWypGWYHjwd\nE5wT4GhwwNHowOx3ZyOmIGbA647/7jja69phjjEjOCa4+0/EzAgERw7/y8FWbIOtwOaDRJ7l5ubi\n008/9dv7a435jEvlbADzGR3zGZfK2QD18wkx6t4cgHEa9Cr0zJqj8+/HNKpFH4ptQJENceFTMP7g\nJWifZkHclRaEZYYhbFIYIudEenyZKcIEV6ULzceb0VHf4W7oGxzI+n0WxuWOG/D8A0sOoK2qrbuR\n72rsExYlIGR8CIrWF/m1QU9MTPTbe+sB8xmXytkA5jM65jMulbMB6ufzFaM06B8DmCqEyABwHMD1\nAG7QsiCt2WzuP+b0NFz7UQ7sh+2wH7KjZW8LTv7rJCyZFphjzANeFzIhBJYpFvfHE8xD/qQ34eYJ\naDvWho6Gzma+3oHWo634U+yf8JOynwAARJFA4bxC2ApsOLbiGIKjghGeHY7waeEIjh7dl9h55503\nqtfrHfMZl8rZAOYzOuYzLpWzAern8xXdNehCiFcBzAMQJ4Q4CmC5lHKlEOJ/AbwDIAjAC1LKvVrW\nqRc3fbkQkXMiB10x7+/EP0/g9NbTsB+2Q7ZLhGWGwZJpQdbvsxCSEDLg+VFzo4C5A9/nx53/J4oE\nZGHPCJFsk6h/px7Hfn0MLWUt7mZ9Wjhm/HUGzLEDf2AYSkFBwbBfYyTMZ1wqZwOYz+iYz7hUzgao\nn89XdNegSyk9roxLKf8N4N9jXI7u3Y5VAAq8fn7Wiqzuv3c0dqD1cCvsh+0IjvL8pVCysATmeHN3\nIx+WGQbLZAuCY4Ldq+/FhUBhz/PT7u+ZRJIuibaqNrTsa/G4ki6lxL7b9sEy2eJecc8OhyXLgiBL\nkNd5iIiIiFSju20WaXhO7HsJra2VI3qt2WrGuLxxGL9oPEyhA78UpJRIvjsZ484ZB0ejA7VrarH/\nzv3YOnUrHlkuIQSAYhuEcI/b9CdMAmFpYYj9aixE0MBRGumUiLksBq4OF2rX1GLPTXvw39j/YtvM\nbV5d2Gsr9vBJiYiISBNCiCH/XHLJJV49zwh//Pq/pYo7nPQmhJBKZrTZgKIiHLkJOHotkFF7BVK+\n+xbc93QaO0IAXf/zdjR2oGl9E2K+GoOg8JHV4XK40F7djrC0sAEfa61sRel1pd2r7TftugnrHlkH\nS6bF4w8ARERENHaEEErunOfJYFk7Hx91U8IG3eiEQEvzPpSV3QGXy45p0/6AyMg5Y/bpuy5WBYCW\nshbs//5+nP74NKyXWBG/IB5xV8UhJH7gbPtIOFudOPPJGbz6j1ex67+7MPHEREysm4jwlHBcXXK1\nTz4HERERjQwbdN816BxxMbji225DePg05OZ+iOTkO7Fr11dRW7tmzD5/79GW8GnhyH0/F+eVn4eE\naxJw8s2T2Dp5KyqfGtkIDgAUFxd3/z0oLAjRF0bjrqfvwvMfPY8f3/Rj3NBwA+Z/Ot/ja+vX1WP7\nnO3Yc8MeVDxagbq/1aF5XzNcDteI6/G13vlUpHI+lbMBzGd0zGdcKmcj7+nuIlEapttvBwAIYUJS\n0ncQG3slTKbh75biS+ZYMxJvSUTiLYlw2p1wnnL65fMUznNfnWoK9vxzZvSXopG9MhvNpc1o2dOC\nmlU1aC5thrXAiuwXsv1SExEREdFoccSFNLPvW/sQFBWE+AXxiL44etBG29eklB4v7jj262M4/vvj\niJgRgYgZEQjPCUfEjAhYplpgMg+szd93USUiIjISjrhwBt1rbNDdOjoaEBxs9ftVx8PRXNqME/84\ngRP/OAF7uR1xV8a559bnx41Zs96b0+5ES1kLWva0dK+6N+9pRvIdyX22j+wibALSxq8tIiIiwNgN\nupQSUkqYTN71H2zQR0n1Br24uNirTf/37r0d7e3VyMp6HhZLpv8LG6bWo604ufYkGt5rQM6anO4G\n3dt8Y8lWbEPR+iLcv/Z+zKyciYicCJxTcE73yrtlqgWmEO/+A9djPl9SOZ/K2QDmMzrmMy4jZzNK\ng/72229jy5YtSEpKQkREBKSU2LJlC55++mlERnp340d/N+icQQ8Q06b9AceO/RKffHIu0tN/hNTU\n+2Ay6ef0h6WFIeXuFKTcneLx4x2NHXDUO2DJtHQ/1nsHmbFkK3CPtoR0hKD+uvru1fba12rRvKcZ\nU56Zgrgr4ga8brDRGiIiIvI/KSW+973vYcqUKXjkkUe6H9++fTtefvllr5vzscAV9ABjtx/C/v13\noaPjBKZN+yPGjcvXuiSvNBQ3YM/1exAyIQTxC+IRvyAeUfmR8MEPqSM23Bn0HRftgKPe0T3b3jXn\nHp4drslIDxERkS+NegXdzytvRUVFqKysxAsvvNDncYfDgZUrV2Lx4sVevxdHXEaJDfpAUkp8/vnL\nAAQSE2/RuhyvSafEqS2n8M+lJxC0uQ5BkPgNpuDSwgRNVtKHy9nqhH2/vWe+vbQZzXuaMfs/s2HJ\nsAx4vsvhGrRx5wWqRESkN0M26EM14L3vfuhjJ0+eRFpaGsrKypCWNvC6suHiPuh0ViPZL1UIgcTE\nWw3RnPfOJ4IEoi+Mxq0fTcaNrrn4CWZh3cFIQzTngHsf98jZkZhwwwRMenQSZv5tJuy/tXtszqWU\n2Jy0Gdumb0PJohKULy9H7eu1OFNyBtIlUbS+SIMEw6fyfr4qZwOYz+iYz7hUzoaiQf7tstnczTng\n/v9CDN7Ij/Af/Y0bN2LixIl9mvN169Zh6dKluPbaa/HOO+8AAN566y3s27dvRJ/Dl9igkyEJIXBr\nYSQskwc2twBw9JmjaPpvE6TLmL89EULg/GPnI2d1DhIWJQASqF1diw8XfoigoiD3c4oEbMU2AO6G\n3tWunxswERERdevfgPdvsm22npVzKd1/BmvEB2vyhxAUFISYmJg+j1122WUYP348rFYrLr/8cgDu\nlfa6uroRfQ5f4ogL9VFT8zKk7EBi4rcMe0GjlBJHfnoEta/XwtHoQMI1CUi4NgHRF0RDmIyZqT9R\nJCALe76uW4+1YtvUbQjLCEP4jHBE5Lhn3CNmRyBieoSGlRIRUaAYcsRlqBGWs33cZuvbnBcWDms1\nvaWlBbm5ufjwww+RkuLekMLlcuHiiy/GXXfdhVtucU8V3H///XjiiScQEhJy1vfjDPoosUEfntOn\nP8X+/YsRFBSJrKzfITw8S+uSRqV5bzPq1tShbk0dTOEm5G81xkWxQ/E0g+5qc6Flf+ce7qXuPdxF\nsMCM12cMeH3Xaru320ESERENZdQNujcXiY5iTv3AgQP4xS9+gSlTpiAuLg52ux2JiYnIz8/HxIkT\nAQBLlizBt7/9bbzyyitYsmQJ0tPTBymDDfqoqN6g+2O/VCmdOHbsORw58lOkpd2HtLSlMJnO/pOk\nv/gyX8fJDpjjzD55L1/Rar/bhg8a8NmVnw1YcY/Mj0T4lHCffR4j7+c7FJWzAcxndMxnXEbONuqL\nRL3hx51empqacNVVV2HZsmW48sorz/pcXiRKY06IIKSl3YtzzvkETU0foazsO1qX5BODNefVL1Rj\n/9370VDcAOlU94e53mK+HIOLGi8aMONes6rG4/Odzc4+M+5ds+9ERERe80Vj7cedITZv3oxly5Zh\n7dq1qK6uht1u99vnGgpX0OmspJRwOJpgNlu1LsVv7IftqH2tFnVr6tBW3YaEb7hn1q1fskIEqTGz\nPlrHf3ccB+892L3i/su6X+LJ7z+JqPOjEJYepnV5RESkA0a5k+hgfv7zn+P222/H66+/jpSUFCxY\nsGDQ53LEZZTYoNNwtBxsQd0b7pn1rN9mIeqLUVqXpBuuNhd+8Zdf4N9v/xsZdRnIqMvA+P8Zj7ue\nvGvAczvqOxAUGcQZdyKiAGL0Bn04OOJCZ6XVfqkdHSfR1nbcr79qAsY+X/iUcExcNhHnfHLOoM15\n1xiML6Ibab9bU6gJS7+9FB+88QFWfnkllu9Z7rE5B4DKJyuxKXoTnk9/vs8+7u2ft49x1f5jpHM3\nEsxnbMxnXCpnI++xQacRaWzcgI8/noPaYmPcMMdXWo+24qOkj1B2RxneKqqHyxGYe48Xzis868cn\n/2wyLmq8CBm2jD4z7i1lLR6f33a8jfu4ExERdeKIC42MzYbTrxSh5BFgwrvApLTlELbAaNafvMeO\nT5+twzzUIRGtsOfF48rnEhF9QbTWpRlWyaIS1P+rfsCuMrFfi0VwVHCf53raYpKIiLTHERfOoHuN\nDbp/tccIlH7wJQQHR2P69D8jODhwZraFAFoO21H3Rh2Co4KRfGey1iUZmqd93Kc+OxWhKaF9nieK\nBFpubkFoWihn3ImIdIQNOmfQqZPWs2oh9xRizpz3EBqahqqq53z+/lrnO5vCQsAyyYL0pemDNuf2\nCvtZx2D0nM8XhpPPFGpC5KxITPjmBEx6dBJm/nVmn+bcVmyDKBKABF6+6GUURxZj2/Rt7hn3wnLU\nrq4d05EjnjtjYz5jUzmfytnIe2zQaXRsNphMZmRl/Qbp6T/Wupox5c1FohXLK7A5aTPK7ihD/buB\nO7PuC7YCG2ShBARwR/UdKDhdgJzXO/dxdwEn/n7C47aY0iVxpuQMZ9yJiMgwOOJC5Gf2cnv31o2t\n5a2IXxiPKc9OQVBYkNalGdJwZ9Dba9ux8+KdaD3SCsski3vGfUYExuWNQ/zV8f4rlIgowHDEhTPo\nXmODTnpiL7ejYV0Dku5IghC8CdJYcrW50FLmnm1vKW2Bq92FyU9NHvA8xykHWitbEZ4V7nHGnRep\nEhF5xgadM+jUSc+zag5HE0pKrkFr69ERv4ee842EZZIFyXcmdzfnvfO1HmlVbgxGT+fPFGpC5Oye\nGXdPzTkAtJS1oPSaUmyM2thnxr3h/QYAQNF6925FesrmD8xnbMxnXCpnI++xQSe/CQqKQlTUedix\nYy4aGzdpXY7utVW1ofyhcs6sayzqi1GYWzYXFzdd3GfGfc3aNe6LVOHeSWbVp6sAuM8bZ9yJiMiX\nOOJCfnfy5L+xb99tmDTpMSQnL9a6HN2zV/SaWT/cimkvTkP8/L6z0jab32/iSoMQRcJ9sWqnur/W\n4fCDh9Fa0XfGPe7KOESdGzjbjhIRqTDicuDAAZSUlGD37t2YP38+8vLyPD6PM+ijxAZdH1pa9qOk\n5GpYrV/G1KkrOH/tJXuFHUGWIIRMCOnzuBAAv6y1MdgMev993Md9cRzi/2fgRajN+5ohHXLQGXci\nIqNSoUH/1a9+hQsvvBDTp0/HnXfeiVdeecXj8ziDTmdllFm18PAs5OVtQVTUecNqzo2Sb6SGymfJ\nsPRpzm02d3MOSCwWh/HrW/Q9BqPi+etqzvtn67+Pu6fmHAAa3mlA6aKBM+4tZS1Df+5i2yir956K\n56435jM2lfOpnM0I7rvvPpx77rk4evQoJk2apFkdbNBpzAQHRyMx8RatyzA0m829ch4EiYefDsZF\nZZ0z64s5s24UqfekYu6+zhn31T0z7s5mp8fnN21p6p5x77pAlYiIRq+lpQUXXXSRx4/94x//wIMP\nPjjGFfXgiAuRAfWeQe89sx4UGYTc93O1LI187NDSQyh7vQzBx4NRHVONioQKTPziRNzw1A0ITQwd\n+g2IiMaI0UZcnnrqKfzkJz9BR0cHTKaeNeu1a9fikksuQU1NDaZOnerxtZxBHyU26PrX2noEoaGp\nEII37hktZ4sTQeH831FFrjYXptw3BZu/tBkte1qQcnfKgGsTAODkf04iNDWUM+5ENOZG26CP5QYI\nO3fuREVFBW688UYcPHgQKSkpAIC///3vePzxx2G1WlFQUDDoKjpn0OmsVJhVO3z4x/jss6vhcDQN\n+JgK+c7G1/kGa86PPHFEkzEYlc/fWGczhZpw63W3umfcH5nksTkHgM9f/tzjjLurbXjnXeVzBzCf\n0amcT+VsQzXfRV5M8fmigXc4HFi9ejUWLlyIxMREVFVVdX9s4cKF2L59O959911NR1zYoJPmsrNf\nQlhYBj75ZC5aWvZrXY6SJtw4AZZplp591jmzbkje3ME05y85A2bchUlAhAxc0JFOidrXa7mPOxGN\nicEa8J4NENz/X4jBG3Fvmvih/OY3v8F3v/tdABjQoL/11lvYt2/f6D/JKHHEhXTj+PE/oLz8QWRn\nv4S4uK9pXY6yes+s57yWA8ski9YlkUY6GjtQ9u0yNO9p7rOPe9S5UUj/YfqA5w+2xSQRETD42IfN\n1rexLiz03ICfbQthb99jKIcOHcLy5ctx2WWXAQBWrFiB22+/HXfffTcA4KWXXkJmZiYuvvjis74P\nZ9BHiQ26sTQ1/RelpdfjC19YD4vF863Yyb+klJBOCVMwf8EWSHrv4+5sciL5zuQBz7H+0Ir9+fsR\nPiOcM+5ENMBQM+hD3cPDmxn00dwHREqJ5cuXo6ioqPui0HvvvRcRERF47LHHAAD3338/nnjiCYSE\neB4j7KmDM+h0FqrNqkVHX4hzz93X3Zyrlq8/PeZr3t3sszEYPebzFdWy9d7HPfnO5D75bMU2iCKB\nqJYo/Lbot9jw9Q19ZtyrX6jWrvARUu389cd8xqVytsLCs3/cnxeIbtmyBfPnz8f+/fvhcrn/Xdu0\naRN2796N999/Hxs3bgQAtLe3o7S0FEuXLkVlZaX/ChpCsGafmWgQwcGRWpcQ0CLnRCJvex7q3qhD\n+UPlaD3civgF8Uj6bhKi5rpvXT+WV9qT9mwF7tEWUSSwfM9yAH1X3E1hntd6mvc2o3l3M1fciQiA\nb/7dGKrJH8x5552Ht956q89jF110ET744IPu46amJnz66ac4fvw4nn766dGUOWoccSGis+qaWQ9L\nD8P468YDGN2vGMm4hjuD3ri+EceePYbm0r4z7om3Jg56p1UiMi6j7YPe33/+8x84nU6sXbsWNpsN\nVqsVFovn67Q44kIEoLFxI44f/53WZQQkS4YF6Q+kY/x14wdcaW+zAS37W7gbTIAY7gWi1nlWzPzr\nzAG7ypjjzR6f37ihcdBdZWzFw/vcRETDVVJSgrlz52L27NnYunXroM35WOAKusEVFxejoKBA6zL8\npitfS8t+lJRcDau1AFOm/Bom09kv3jAKo56/3ivony34DKf+ewrxC+ORcG0CrJdYuy8wNWo+b6ic\nDdAmX+0btah9tXbAinva/WmwrrNCFvrueznPn7GpnM/I2Yy+gj4cXEEnAhAenoW8vK1oa6vCrl1f\nQXt7LYegNdR7BnDWP2Yhb3seLFkWlD/Yuc/6XWWQrsD4Jk2+M37R+AEr7htyNmDGqzMAAKJI9FlJ\nr32jlvu4E5GSDL+CLoS4GsCVAKIAvCClfLffx5VeQQ80UrpQUVGImpo/YeatlRh3gOdWb+wVdpz6\n6BQm3DhB61JIIaJIDFhBr3q+Cg3vNQxYcZ/8s8mwZHJ/f6KxxhV0362gG34XFynlPwH8UwhhBfBz\nAO8O8RIyMCFMmPRSECKKK9EeA/esxUjvVkB+YcmwwJLhuTlq3tOMtmNt7jEYM3+BR94rnDdw64aU\n76Ug5XspAPruKhMc4/mftmMrjiEkIYS7yhCR7unmu5MQ4kUhxOdCiM/6PX6FEGKfEOKAEOJHZ3mL\nhwCs8G+V+qPyfqnAIPlsNowvlojbDvcgtIGb80A7f23H21D+cDk2J3fus76uHq4OY44mBNq509pQ\nF6j23sfdHOP5IlRHowO1q2tRuqgUz0Y+272Pu7PZOfTnN9hFqno7f76mcj6Vs5H39LSCvhLAcwD+\n1PWAECII7qb7KwCqAGwXQqwFcA6APABPA6gG8CSAf0spPx3roklDI90MlTQT+5VYxH4ltnvrxvKH\n3fusz3hjBqzzrFqXR4rLeCij++/N65qRk5SDlr0tMIUPXKuSTomKRyoQkROB8JxwPPb+Y8PexYaI\naKR0NYMuhMgA8KaUclbn8fkACqWUV3QeLwMAKeWTvV7zAwC3AtgO4FMp5e/6vSdn0AOIy9UGkylU\n6zJoGOwVdphjzAiO1tN6AQU6Z7MTlU9W4uP1H8O+x47ExkRUx1Qj5IshuOHtG7Quj0iXOIMeODPo\nKQCO9jo+BmBu7ydIKZ8F8OzZ3iQ3Nxe5ubnIyMiA1WpFbm5u9xZGXb9K4rHxj1tbj+DFF+di4sQi\nXHnlnZrXw+NhHGcM/Lirw4VXrnsFURdG4ap7r4Ip2ITi4mKsWgWsWqWz+nms3HFQRBCOXHoECZcm\noKCgACEPh+Cfk/6JjvoOdOn9/NZjrfj7T/6OsIwwfPW6ryI8KxwbPtqgmzw85vFYHQeSrszFxcXY\nsmULampqfPbeel9BvwbAFVLKxZ3HNwOYK6VcMoz3VHoFvbi4uPs/DhUNN19d3d+xf/8dmDp1BcaP\nv95/hfkIz9/gnC1OVP1fFerW1KH1cCviF8Qj4boEJFxmhVOafFvoCPDcGdtw8w11F9XWY62o/l01\nmkub0bynZ1eZhEUJmPTopNEXPEw8f8Zl5GxcQQ+cFfQqAGm9jtPgXkUn8ighYSHCwiahpORqNDfv\nQUZGIYTQvpmj4QsKD0L6A+lIfyAd9go7XrmjDu2XleNhhEGIGdy8h8bUUPPnYalhfRpxV5sLLWUt\ncLV6vgj61NZTOPn2SUTMcM+4n21XmaF+OCAi9eh9BT0YQBmASwEcB7ANwA1Syr3DeE+lV9DJs/b2\nz1FSshAREbMxbdpvtS6HfChEuNCugxV0otFoLm1G7Wu1A1bcU+5JQcpdKX2e62kPeCI9MtoKektL\nCy677DJs2rRp2K8NmBV0IcSrAOYBiBNCHAWwXEq5UgjxvwDeARAE942IvG7OKXCFhEzAnDkfwG4/\nqHUp5GM/KfTcnB/8fwfhPO1EwrUJ3GeddC9iRoTHFXdTWM/Xra3YhqL1RQCAedfPw7fCvoWvX/n1\nIVfcicg7zz33HDZv3gyXywWTSV//PemmGinlDVLKZCllqJQyTUq5svPxf0spp0kpp0gpn9C6Tr1R\n/aKM0eQLCgpDZORM3xXjBzx/wzfYWEvKD1JgmWbpu8/6u/VwOfyzzzrPnbHpLZ8p1ITI2ZEIzwrv\nfsxWYOteOV97z1rMS5+H2tfc+7hvjNqIbdO34eS/Tnp8P73l8zWV86mcbShjeb+BnTt3IisrCyEh\nIaiurh6zz+st3TToRESjYcmwIP2BdORvzUfe9jxYpllQYauA88zQN6Eh0rPCeYWIviAakx6dhJl/\nm4m5++bi4qaLkfN6DiLzIz2+pvaNWpQXlqN2dS3OlJyBq92YNwQjtQzVgHf9xmg07+ENh8OB1atX\nY+HChUhMTERVVdWo39PXdDWD7g+cQaf+Ghs3IDr6Il48GsC6VtVNwfwaIDXVv1OPpk1NA2bcc17P\nQeRsz0090WgNNYM+2PUUvce5uhTOK/R4cbQvrsn49a9/jauuugqTJ0/G+eefjx/+8IdYuHAhAOCt\nt97ClClTkJ2dfdb38PcMOv91ooDicjlQXv4gSkuvhdPZrHU5pJGmjU3YnLQZZXf4dwyGSCuxl8d6\nXHEPywzz+PyD/++ge8X99YEr7mM5dkBqshXbIIrcPasoEgO+pnqPc8lCCVkoBzTnQ72Htw4dOoRt\n27Zh06ZNeOmll+BwOHD8+PHuj588eRJ1dXUjem9fYoNucKrPqvk6n8kUjDlz3kNQ0Djs3HkRWluP\nDv0iP+L500bMJTHuMZgsC8ofKu9u1k/vPO31e+g1m68wn7H1z9c14x4c6XlviOgLowEXUPt63xl3\nR5PDq7GDsaby+VMxW/8GfLBtQwvnFY76Pc5GSolVq1bh5Zdfxm233YbbbrsNF154YZ8Gfffu3Zg7\nd+5Z3mVssEGngGMyhSI7eyXGj78JO3ach6amLVqXRBroPbOe/3E+wqeFo6OuY+gXEiko4ZqEASvu\n65euh/lXZgB9VyxdDhdKry8ddMWdaDBna8CBoe83MBpbtmzB/PnzsX//frhc7q/XTZs2Yffu3Xj/\n/fexceNGAEB7eztKS0uxdOlSVFZW+q2eoXAGnQLaiRNvobz8QeTnfwyTyax1OaRTZ3afQfj0cJjM\nJthsvEESBZb+M7+udhfq/laHltKWPjPu4/LHIe+/eRpWSlobi33Q/XnjrqamJlx11VVYtmwZrrzy\nyrM+198z6GzQKeC5XA6YTLq5JQDpjJQSu76yC827mxG/MB43/SEB2zqsvMCUAoY3DZGrzYW2Y22w\nTLYM+Jj9kB2HfnQIETMiEJETgfAZ3MddVUa7UVF///nPf+B0OrF27VrYbDZYrVZYLAO/pgFeJEpD\nUHFWrbexyKdlc87zp39CCOS+n4sNN+Vj+R8s+A7Ksda8GQ/m/Fnr0vxKhXN3NsznPW9WK02hJo/N\nOQAExwUjYVHCgBn3PTfvGfpzD3IhoMrnT+VseldSUoK5c+di9uzZ2Lp166DN+VjgsiERkRd+/EwY\n8Ew6hEhikEdCAAAgAElEQVRHS7kd4s8ntC6JyBDMVjMmfHNCn8dcbS50nPR8zUf9e/U4/tvjiJgR\ngQ17NuBM/BmuuNOYeOCBBwAAd999t8aVcMSFyKPKyqcRHX0RoqPP17oU0pmhZtBPbTsFR5MD1ks4\nBkM0Em3VbXjh+Rfw8fqPkVGXgYzaDKSeSsWkH0/CpKJJWpdHZ2H0EZfh4Az6KLFBp5E4efJt7Nt3\nOyZP/gUSE2/RuhwykBNrT+DIT4+gtbwV8QvikXBdApt1ohHqukDV1eaCs9kJc+zAi/mrfluFhvca\nOOOuA2zQOYNOnVSfVdMqX1zc15Gb+yEqKmw4dGgZpPTP7eJ5/oxrsGzx/xOP/G357n3Wp/Xssz6c\nPdb1QOVzBzCfUXRty2cKNfVpznvni70i1uOMe82fasa6XJ9Q5dzR6HAGnWgQEREzkJe3FaWl16Ck\n5BuYPv3PCA4ep3VZZBBd+6ynP5CO1iOtME/gNp5Ew+XNBaqWDAssGX0v5nO1uSAdnldyDy09BHu5\n3asVd39u6Ud0NhxxIRqCy9WOiopCpKbeh5CQ8VqXQwpxNDlwaOkhJCzqHIMx85eaRP7Wsr8Fp3ec\ndu/jvqcZzaXufdxzP8hF9AXRfZ7bfw94OjuOuHAG3Wts0IlIrxxNDhz/w3HUralD62HOrBNpxdXm\nAkzo/iHZVmxD0foiAMCjrz6KaROm4ZyCczjjPgQ26JxBp06qz6rpOp8Pbiep63w+oHI+X2QLjg5G\n+gPpyN/ad2b9wP8e8Pj8sbyDqcrnDmA+o/N1PlOoqc9vsGwFtu6V8/v+eh++9L0vuWfcV/fMuA+2\nTeRoGf3cCSEC4o+/cQadaIRcjxZBFD4MIYK0LoUU0Htm3dXh8vicoqKxbdKJAl3hvEL3rPqMiD6P\nu9pcECEDmzRXhwuf5H8CS5YlIHeV8Wb1vLi4GAUFBf4vxuA44kI0XDYbUFSEYwuAhi8C053LEPzw\nE1pXRQrr/JLDj7EX7TAh7eYELFnJMRgivZEuieZS91x77xl3V7ML5x8d3n01eIGqMXEG3Uts0Mlf\nXMECB0rvwKlTH2HmzDdhsWRoXRIpLlHYse3pur4z69cmIObSGIgg///KlYhGxuVwefyBunlvM0q/\nUYrwGeEDVtyDngjiBaoGxBl0AmD8WbWh6Dmf6aFCZGX9FklJi7Fz5/lobNw07PfQcz5fUDmfFtnu\nKrQMmFk/+vRRSJfv/xFX+dwBzGd0Rss32G+7LFMsyFmd07OP++parPjyCvxy+i8BuHeRsRXbxrBS\n/zPaudMKZ9CJRspmgwCQmvoDhIdPQ2npN5Cd/RLi4r6mdWWkqN7z571n1j1xtjohggXHYIh0zGQ2\nIXJWJCJnRXY/dqL4BOZ9aR6WPrp0wAp63d/rUP6TcveKe457Nj58RjjCp4bDFMr/1lXCERciH2lu\n3oeQkAkwm2O0LoUItW/U4sD3DnDrRiKD8jSD7mpzoWV/y4AZ99jLYjH12anaFEp9cAbdS2zQiShQ\n2SvsqHuj78x6yj0piJwZOfSLicgwpJQet/478tgRfP7nz/uuuOd07irDFXe/4Aw6AVB/lov5jE3l\nfEbI1jUG03tm3dXieQvH/oyQbzSYz9hUzjeSbIPty532QFrPjLvs3Mf92lJUr6z2+PzeC5r+mn1X\n+dz5EmfQifzI5WpHc3MJxo3L07oUCnBdzfpgTm0/hcgvRHIMhkghptCBM+5ns/fmvTiz4wzCZ4Sj\nsq4Std+vda+4TwuMfdz1hCMuRH505sxu7Nr1FWRm/gxJSbdrXQ6RR64OFz6d9ynsB+ycWScKYK42\nF37xl1/g32//Gxl1Gcioy8A5Z87BBX++ANYvWQc8X7okhIlbvPbGGXQvsUEnrTU370NJyXzExy9A\nZuaTvPMo6Vb/mfWkxUnIfDyz++M2G+9kShQoRJEYch/2j/M+hsvu6tnHvWvGPTs8YH/A5ww6AVB/\nlkuFfBER2cjL24LTpz9GSckCOBynuj+mQr6zUTmfitl6z6yfee4MrF/uu2JWVKRRYX6g4vnrjfmM\nSy/ZCucVDvmcvM15yHm91z7ur9eidFEpHA0Oj893OVy6yad3bNCJxoDZHIfZs9chJCQZFRVDf9Mj\n0lpoYihivxILwL1q3nUNmhDAM7c2oP7dergc3l1wSkTG03+LR09MoSZEzo7EhG9OwKRHJ2HmX2di\n7r65CEkIGfBcl8OF/8b8F3tv3YuSRSUoLyxH7epanCk5g/6TDqrdnGkkOOJCNIaklJCyAybTwG9e\nRHonBCCle5Xs6C+PurduXBiPhGs5s05EQ3O1udBS5t6/vWsf9/bqduR91HcjBVEk4HrYBemQhrs4\nlTPoXmKDTkTkG/1n0Ltn1lfXobW8FXlb82DJtGhVHhEZnK3YhqL17lm6tBNpWPW7VYicHNkz454T\ngYg5EYjIjtC40sFxBp0A6GdWzV+Yz9hUzqdyNsBzvv4XiHbPrG9z77MelhE2JrX5QiCeP5WonE/l\nbMDZ89kKbN0XplY+V4mC0wV9Z9xX16LyyUqPr3W1ueBqV2fsjvugE2nM6bSjoqIQEyc+hODgKK3L\nIRoRS4bnlfPWI6048tMjPWMwZq4LEdHZdV2g2jXjHjl76H3cG95rQMk1JbBMsvRZcR/3xXGG/M0e\nR1yINOZydeDAgf9FU9N/MWvWm7BYJmldEpHPdJzsQPXK6u6tG+MXxLNZJyK/8DTjPi5vHCY+OHHA\ncx2nHTCFmjzOuNuKbV5dJOsJZ9C9xAadjEBKiaqq51BZ+QRyclbDar1Y65KIfK73PusxX4lB5mOZ\nQ7+IiMgPjj5zFIeXHR6w4h51YRQsL1iG3AN+MJxBJwCBPaumgq58Qgikpv4A2dmrUFp6DaqrV2pb\nmI+ofP5Uzgb4J1/vfdYnPaLtb4p4/oxN5XwqZwP0ky/t3jRc3HRxnxn39b9Zj6/f93UA7p1ktNzu\nkTPoRDoSG3s5cnM3oKbmRUgpIQRvoUxqEkGev7Z3XbELYWlhSLiu79aNvIspEfla/xn3SZiEa3Gt\nV3dR9TeOuBARkW70HoPpvc963GUx8MFvjYmIhsQZ9DHABp2IyJhaj7Tiz4vrUPVuE2yYAUCgsJAr\n6USkX5xBJwD6meXyF+brIaXTf4X4icrnT+VsgD7yhU0Mw3fXpaFQzgQgIGXf5txxxgFXx8j2PdZD\nPn9iPuNSORugfj5fYYNOZABSSuzefYUyF48SDVdh4cDHal+txebkzShbXIb6d+vhcqhzkxIiCmwc\ncSEyiObmfSgpmY/4+AXIfNkCYXtE65KINDdgZn1BPNKWpiE8K1zr0ogoAHEG3Uts0EklHR31KC1d\nhKC3P8T0HzbxzqNEvXQ16/Hz4xE+jQ06EY09zqATAPVnuZivL/Njz2L2OR8i5ASw80/R6PjpMv8U\n5iMqnz+VswHGzNe1z/pgzXnjhsbuMRgj5hsO5jMulbMB6ufzFe6DTmQkNhtMNhuyhEDDyXcRHHOp\n1hURGYKjyYFDSw91j8GcyjoF14UumMxcpyIi/TH8iIsQIgJAMQCblPJfHj7OERdSD+/aQjQivWfW\n7YfsSL03FRkPZWhdFhEpgjPonYQQRQBOA9jLBp2IiLzVeqQVbcfbEH1+tNalEJEilJpBF0K8KIT4\nXAjxWb/HrxBC7BNCHBBC/MjD674KYA+AurGqVW9Un+VivuGx28vhcJzy6XuOhsrnT+VsQGDkC5sY\nNmhzXvePOtSvq+/eZ91ov7AKhPOnKpWzAern8xVdNOgAVgK4ovcDQoggACs6H88BcIMQYroQ4hYh\nxK+EEMkA5gE4D8CNABYLIXgfaApon3/+Z+zYcQHs9nKtSyEyNGeTE+UPl3fvs/6vovoR3xSJiGi4\ndDPiIoTIAPCmlHJW5/H5AAqllFd0Hi8DACnlkx5eexuAOinl2x4+JufMmYPc3FxkZGTAarUiNzcX\nBQUFAHp+kuMxj1U4/vDDD3HixN+RkrIGOTmr8emnTl3Vx2MeG+34lRVtaPrrdBSgDifxEcqvn44X\nXvuKburjMY95rO1x19+3bNmCmpoa7Nq1S60ZdA8N+iIAl0spF3ce3wxgrpRyyTDflzPoFHDq69/B\n3r23IDPzKSQlfUvrcogMTwig9VgbQlNCtS6FiHRMqRn0QbCr9kLvn+BUxHwjExt7OXJzN6Cy8nE0\nNW3xy+fwhsrnT+VsAPP1V1iIQZvz0ztPo+yOMtS/W9+9z7rWeP6MS+VsgPr5fEXP+6BXAUjrdZwG\n4JhGtRAZTkRENs45ZxeCgnhHRaLROttFoqHJobBkWVD+YDlay937rCdclwDrJVaYgvW8DkZEeqXn\nEZdgAGUALgVwHMA2ADdIKfcO83054kJERGOi9z7r428Yj7R704Z+EREpQ6l90IUQr8K9I0scgFoA\ny6WUK4UQXwPwDIAgAC9IKZ8YwXuzQSciojEnpYSnzcUGe5yIjE+pGXQp5Q1SymQpZaiUMk1KubLz\n8X9LKadJKaeMpDkPBKrPcjGf7505sxvV1avG5HOpfP5UzgYwny8M1px/cs4nKFvs35l1nj/jUjkb\noH4+X9FFg05EY0eIEFRWPoZDh5ZCSqfW5RAFFCEEZvx1BizTLCh/qBybk9z7rNe/V691aUSkI7oY\ncfEnjrgQDdTRcRKlpYsQFBSJ6dP/guDgKK1LIgpIXTPr9gN2TPvdNI/PsdmMdydTokCl1Ay6P7FB\nJ/LM5erAgQNL0NS0CbNmvQmLZZLWJRFRPx2NHQiLCYJT8hfeREag1Aw6jZzqs1zM5z8mkxlZWc8j\nOflOnDq11S+fQ+Xzp3I2gPn0wGYDbo2pxl+xGQ+IMvz6lnq4OrybWTdCvtFQOZ/K2QD18/mKnvdB\nJyI/E0IgNXVYN+clojFiswGwpSNRJGDb03WoW1OOzcnufdYnPjQRYRPDtC6RiPyEIy5EREQ61nsG\nvWtmfcLNExCa6PnOpkSkHc6ge4kNOtHIcK9mImNxOVxoLG6EtYB3MCXSCmfQCYD6s1zMpw27vRw7\ndsyF3V4xqvfRaz5fUDkbwHxG1F7TjvIH3Vs3/umqP/l1n3WtqXj+uqicDVA/n6+wQSeiAcLCMjBh\nwi3YufN8NDZu0rocIvJCWGoY8rfmI297HkLTQrub9WO/PqZ1aUQ0TBxxIaJB1de/g717b0Fm5lNI\nSvqW1uUQ0TDZK+xwNjkROSdS61KIAgJn0L3EBp1odJqb96GkZD7Gj/8mJk16VOtyiMhHav5Ug5DE\nEFgvscJk5i/UiXyBM+gEQP1ZLubTXkRENvLytsBqvbTnQS9va2iEfCOlcjaA+YzOm3yuVhfKHy7H\n5uTNKFtchvp13u+zrjWVz5/K2QD18/kKG3QiGpLZHIeYmIKeB4qKNKuFiHwj+Y7k7pl1yzQLyh8u\nx5aJW+BsdfZ5npc/jxORD3HEhYi8Z7P1bc4LC/mvN5FC2mvbETI+pM9jQgD8Z5TIOxxxIaKxZ7P1\n/EstJVp+eLOm5RCRb/Vuzm02d3MOAPmiAa/klSm9dSORnrBBNzjVZ7mYT6cKC+FydaCk5GocPPgA\npHR6fJph83lB5WwA8xmdL/L1/nn8o6pwXHSjBeUPubduLLtD22Zd5fOncjZA/Xy+wgadiIbPZoPJ\nZMYXvrABZ87swGefXQ2H45TWVRGRHxQWAqHJoUh/IL1nZj3LgvIHy1H7Wq3W5REpiTPoRDQqLlcH\nDhxYgqamTZg1601YLJO0LomIxoiUEkIMHLcd7HEi1XEGnYh0wWQyIyvreSQn34nPPvs6XC6H1iUR\n0Rjx1IS72l3YOmWr4bZuJNITNugGp/osF/MZgxACqalLkJe3BSZTcPfjquTzROVsAPMZnZb5TCEm\nzHl/TvfWjV37rDd80OCzz6Hy+VM5G6B+Pl9hg05EPhMcHK11CUSkA5YMS9+Z9WkWNLzruwadSHWc\nQSciIiLNtNe1IzgmGKZgrhmS8XEGnYgMoabmz7Dby7Uug4h06tivjg26dSPvg0aBig26wak+y8V8\nxlZcXAynswk7d16AxsaNWpfjU4Fw7lTGfPqR+Xhmz9aNvfZZb/+8vc+Ni3szUr7hUjkboH4+X2GD\nTkR+lZJyN7KzX0Jp6SJUV6/Uuhwi0qHeM+v5H+djY0U4ohODALjvZsqVdAo0nEEnojHR3LwPJSXz\nERd3NSZPfgpCBGldEhHpnBA9dzMFAMcZB059dArWS6wwmbnGSPrDGXQiMpSIiGzk5W1BW9sRtLfX\naF0OERlAYWHf4/aq9j5bN/afWSdSBRt0g1N9lov5jK1/PrM5DjNmrEFoaIo2BflQoJ071TCfMfQf\nbQmfFo78rfk489wZ9z7rnTPrx/94XJP6/EGVczcY1fP5SvDQTyEiIiLSj9DEUKR/Mx3pD6TDXmGH\nbOcoK6mFM+hEpDkppcdbhhMRjcaxFccQPi3cPbPOfdZpDHAGnYiUUVX1Gxw8+ACkdGpdChGpxIWe\nrRsXl6F+XT1cHZxZJ/1jg25wqs9yMZ+xeZtvwoQbcebMDnz22dVwOE75tygf4bkzNuYzNm/zpf4g\nFflb8937rE+zoPzhcmybvg3Spd/frPPcEcAGnYh0wGyOxezZ7yA0NBU7dlzAO48SkU/12Wd9ez6E\niSN1pG+cQSci3ZBSoqpqBSorH8fMmf9EVNS5WpdERAGidk0tGtY1IOHahO591m023iSJhsdXM+hs\n0IlId+rr30NExHQltmMkImNoPdaK2tdqUbemDq2HWxG/IB43/TEB2zp4gSl5jxeJEgD1Z7mYz9hG\nmi829iu6b8557oyN+YzNH/nCUsO6x2A23pSH5X+04Dsox3nmxjFdRee5I4D7oBMRERH1sewZC/BM\nOoRIx2C/hJcuyVl28huOuBCRIUjpQnt7DUKf+D2HQoloTAw2g97R2IHt07cj7qo4JFyXwH3WqRtn\n0L3EBp1IDU1NH6G09Brk3FUD627+N01E2rJX2FH3Rl2fmfUJt0yA9UtWrUsjDXEGnQCoP8vFfMbm\ny3zRv1qH7HtrUFoEVH9daL6KznNnbMxnbHrI13vrxq591k9tHf19HPSQzZ9Uz+crnEEnImOw2RBr\nsyE3XaBkzRQ0x53BZOmEEEFaV0ZEAa6rWR9MW1UbzBPMHIMhr3HEhYiMxWZDx4M/QGnpIkRFXYDM\nzJ9qXRER0Vnt//5+1K2pQ/yCeM6sK44z6F5ig06kJperA07nGZjNMVqXQkQ0JE8z65lPZ8JsNWtd\nGvkQZ9AJgPqzXMxnbP7MZzKZNW3Oee6MjfmMzYj5+s+sR8yMQPC4gZPGXdlU3azKiOdOC4Zu0IXb\nY0KIZ4UQt2pdDxEREdFQLBkWpN6TChE0cKG1o6ED9e/W49EilwaVkV4YesRFCLEQwNUATgB4W0r5\ngYfncMSFKEC4XA7U1LyIpKTv8OJRIjKkn995GhG/348ktGIT4pF2cwKWvGiFyWzoNdWAodQMuhDi\nRQBXAqiVUs7q9fgVAJ4BEATgj1LKp/q97kcA6qWUfxBCrJFSXuvhvdmgEwUIh+MUSkoWICgoAtOn\n/wXBwVFal0RENCKJwo5tT/fMrE9dMRXjrx+vdVk0BNVm0FcCuKL3A8K9/LWi8/EcADcIIaYLIW4R\nQvxKCJEM4BiAxs6XOMeyYL1QfZaL+YxtrPMFB0dh9ux3EBKSgh07LoDdXu63z8VzZ2zMZ2wq5+vK\ndldh35n1qAvUWHBQ+dz5ki4adCnlRgAN/R4+F8BBKWWFlLIDwGsArpZSviylvE9KeRzA3wBcLoR4\nFsD6sa2aiPTIZDIjK+t5JCffiZ07L0Bj40atSyIiGrbeF4laMiwISwvz+Lwjjx1B/bv1cDk4s64S\nXYy4AIAQIgPAm10jLkKIRQAul1Iu7jy+GcBcKeWSYb6vnDNnDnJzc5GRkQGr1Yrc3FwUFBQA6PlJ\njsc85rF6x2vX/gz19e/i9tvf1UU9POYxj3nsy2MpJabsmILa1bX4aN9HiL44GlfdcxWsl1ixYdMG\nzesLhOOuv2/ZsgU1NTXYtWuXOjPogMcG/RoAV/iiQddLRiIiIiJ/6N5nfXUdIIH87flalxSQVJtB\n96QKQFqv4zS4Z86pl94/wamI+YxN5XwqZwOYz+iYz7hGmq17n/Vt+ZjzwRzfFuVDKp87X9Jzg/4x\ngKlCiAwhRAiA6wGs1bgmIiIiIl3zdAMkAKh6vgpli8tQv64erg7OrOuZLkZchBCvApgHIA5ALYDl\nUsqVQoivoWebxReklE+M4L054kJE3aSU2LPneqSkLIHVerHW5RARjZnWo62oW12H2tW1aD3civgF\n8Ui4NgHWS7jPuq8otQ+6P7FBJ6L+6uvXYe/em5GZ+RSSkr6ldTlERGOue2Z9TR2yns/CuLxxfT5u\ns/XdSYa8Ewgz6OQF1We5mM/Y9JovNvYy5OZuQGXl4zh0aCmkHP5tFPSazVeYz9iYz7jGKlv3zPrW\n/AHNOQAUFcEvWzeqfO58iQ06EQWkiIhs5OVtxenTn6CkZAGczhatSyIi0pzNBggBTIAda82b8Up+\nGfdZ1wBHXIgooLlcHaipeRFJSYshBNcsiIgAd5PeUt4zBtN6uBXxC+OReHsioi+I1ro83eIMupfY\noBMRERENT/8Z9NYjrah7ow7B1mAkfSdJq7J0jzPoBED9WS7mMzaV86mcDWA+o2M+49JLtv4XiIZN\nDEPa/WmDNuf2crtXWzfqJZ/esUEnIvKgo6N+RBePEhEFovKHy7E5ebN7n3XOrI8aR1yIiDw4cOAe\n2O2HkJPzCoKDo7Quh4hI93pv3di1z/rUFVNhCg2c9WDOoHuJDToRjYTL1YEDB5agqWkTZs16ExbL\nJK1LIiIyDHuFHQ3vNSD5u8lalzKmOINOANSf5WI+YzNyPpPJjKys55GcfCd27rwAjY0b+3zcyNm8\nwXzGxnzGpUo2S4bFY3NeXFwMe7mdYzBDYINORDQIIQRSU5cgO3sVSkuvwenTn/LWekREo9RW1Yby\nh8qxOWkzyu4YOLPOb7MccSEi8kpr61GEhqZCmEwAv6cQEY1a/5n17JeyEff1OAhh3G+zHHEhIhpD\nYU++4G7OAfcdPLjEQ0Q0KpYMC9IfSEf+1nzkf5yP3344DqKztQ30b7Ns0A1OlVm1wTCfsSmVz2br\nWdKREsUFBVpW43dKnTsPmM/YVM6ncjZg8HxhE8Pw4NMhvb/Ndn7blTj0w0OoX1fv1T7rqmCDTkQ0\nHIWF3X+128vR2LhJw2KIiNTT69ssZIeEebw54PZZ5ww6EdEINTZuQGnptcjMfBJJSd/SuhwiIqX1\nnlkPtgZjzjtztC5pAO6D7iU26ETkT83N+1BSMh9xcVdj8uSnIESQ1iURESnPaXciyKK/77e8SJQA\nBO6smiqYz7i6skVEZCMvbyvOnNmBzz67Gg7HKW0L8xGVzx3AfEancj6VswG+yzdYc17xaIXHrRuN\nhg06EdEomc2xmD37HYSGpqKu7m9al0NEFLASb02EJcvSs8/64jJDXmDKERciIh/p+l4jxKh/u0lE\nRKPUPbP+Rh1mrJmBsLQwv39OzqB7iQ06EREREfUnXRLSKWEy+26ghDPoBICzakbHfMalcjaA+YyO\n+YxL5WyAvvKd+fRMz9aNvcZg9HCDJDboRER+ZLcfxp49Nypz8SgRkSrG5Y1D3vY8WKZZuvdZP/CD\nAygq0royjrgQEfmVy9WBAweWoKlpE2bNehMWyyStSyIiIg+evNeOf/36DDYhAYD7hknDXU3nDLqX\n2KATkdaklKiqWoHKyseRk7MaVuvFWpdERESDEAIYaevIGXQCoK9ZLn9gPmNTOd9wsgkhkJq6BNnZ\nL6G0dBGqq1f5rS5fUfncAcxndCrnUzkbYIx8hYVaV8AGnYhozMTGXobc3PUICrJoXQoREQ1CDxeJ\ncsSFiIiIiMgHOOJCRERERKQgNugGZ4RZrtFgPmNTOZ+vs+ltG0aVzx3AfEancj6VswHq5/MVNuhE\nRBpzOlvx8ce5qK5eqXUpRESkA5xBJyLSgebmfSgpmY+4uKsxefJTECJI65KIiGiYuA+6l9igE5FR\ndHScRGnptTCZwpGT8wqCg6O0LomIiIaBF4kSAPVnuZjP2FTO549sZnMcZs9+B6Ghqdi161JI6fL5\n5/CWyucOYD6jUzmfytkA9fP5SrDWBRARUQ+TyYysrOdhtx+AEFxDISIKRBxxISIiIiLyAY64EBEF\nGj3c3o6IiPyODbrBqT7LxXzGpnI+LbI1rC0as/3SVT53APMZncr5VM4GqJ/PV9igExHpnc0GCIET\nFwA7Xo6G/cl7tK6IiIj8iDPoREQGIYVA1dFnUVn5OHJyVsNqvVjrkoiIqBfOoBMRBRhRWIjU1CXI\nzl6F0tJreOdRIiJFsUE3ONVnuZjP2FTOp0m2zotEY2MvR27uBlRVPYu2tmq/fCqVzx3AfEancj6V\nswHq5/MV7oNORGRAERHZyM//hHulExEpiDPoREREREQ+wBl0IiIiIiIFsUE3ONVnuZjP2FTOp9ds\n1dWrUF394qjfR6/5fIX5jE3lfCpnA9TP5yuGbtCFEOlCiL8LIV4QQvxI63qIiLQWFXUeKiufwMGD\nD0BKp9blEBHRCBh6Bl0I8XUAMVLKvwghXpNSftPDcziDTkQBpaOjHqWli2AyhSMn5xUEB0dpXRIR\nUUBQagZdCPGiEOJzIcRn/R6/QgixTwhxYJAV8q0AviOEeB/Af8akWCIinTObYzF79jsIDU3Fjh0X\nwG4v17okIiIaBl006ABWArii9wNCiCAAKzofzwFwgxBiuhDiFiHEr4QQyQBuB1AopbwUwJVjXLMu\nqD7LxXzGpnI+vWczmczIynoeKSl3Q8r2Yb9e7/lGi/mMTeV8KmcD1M/nK7rYB11KuVEIkdHv4XMB\nHJRSVgCAEOI1AFdLKZ8E8HLnY/8BYBNC3AiAS0RERL0IIZCS8j2tyyAiomHSzQx6Z4P+ppRyVufx\nIjd/ZYAAACAASURBVACXSykXdx7fDGCulHLJMN9XzpkzB7m5ucjIyIDVakVubi4KCgoA9Pwkx2Me\n85jHPOYxj3nMYx4P57jr71u2bEFNTQ127drlkxl0PTfo1wC4whcNul4yEhHpgZQSLlcrgoIsWpdC\nRKQUpS4SHUQVgLRex2kAjmlUi271/glORcxnbCrnM3K2hob38cknXzzrxaNGzucN5jM2lfOpnA1Q\nP5+v6LlB/xjAVCFEhhAiBMD1ANZqXBMRkeHFxFyK5OQ7sXPnBWhs3Kh1OURE1I8uRlyEEK8CmAcg\nDkAtgOVSypVCiK8BeAZAEIAXpJRPjOC9OeJCRORBff072Lv3FmRmPomkpG9rXQ4RkeH5asRFFw26\nP7FBJyIaXHPzPpSUzEdy8t1IS7tX63KIiAwtEGbQyQuqz3Ixn7GpnE+VbBER2cjL24qEhG/0eVyV\nfINhPmNTOZ/K2QD18/mKLvZBJyIi7ZjNsTCbY7Uug4iIOnHEhYiIiIjIBzjiQkREfiOlREPDh1qX\nQUQUkNigG5zqs1zMZ2wq51M5GwC8994/sH//HTh0aCmkdGpdjs+pfv6Yz7hUzgaon89X2KATEdEA\nZnMM8vK24vTpT1BSsgAOxynAZtO6LCKigMAZdCIiGpTL1YEDB5agqWkTZl1dCks1v58SEQ2GM+hE\nROR3JpMZWa9OQPKTpTj4vwCE4Eo6EZGfsUE3ONVnuZjP2FTOp3I2oG8+YStC6t8kZiwHIKUSDXog\nnT8VqZxP5WyA+vl8hQ06ERF5xfRwodYlEBEFBM6gExERERH5AGfQiYhIU1K6cPDg/bDby7UuhYhI\nKWzQDU71WS7mMzaV86mcDfA2n0BYWAZ27rwAjY2b/F2ST/H8GZvK+VTOBqifz1fYoBMR0YgIIZCa\nugTZ2S+htPQaVFev0rokIiIlcAadiIhGrbl5H0pK5iM+fiEyM5+AEEFal0RENOY4g05ERLoREZGN\nvLytACSkdGpdDhGRobFBNzjVZ7mYz9hUzqdyNmBk+czmWEye/DRMphDfF+RjPH/GpnI+lbMB6ufz\nFTboREREREQ6MqoZdCHENQD+CWCylLLMZ1X5EGfQiYi05XJ1wGQya10GEZHf6WUGvRLA+QCuH20h\nRESkpgMHvo9Dh5ZyNp2IyEsjatCFEE8LIWwAFsDdoP/Ul0WR91Sf5WI+Y1M5n8rZAN/my8x8EqdP\nf4KSkgVwOE757H1Hg+fP2FTOp3I2QP18vjLSFfRlUkobgN8BKANwv88qIiIipZjNcZg9+x2EhKRg\n584LYbdXaF0SEZGuDWsGXbg3tk0AML7zz01Sym/5qTaf4Aw6EZE+SClRVbUClZWPIzd3PcLDs7Qu\niYjIp3w1gz5kgy6E+BOAcwFEAXACOAEgBMAnAKZJKeeOtgh/YoNORKQvp05tRWRkPkymYK1LISLy\nqbG8SPQOAD8DsAzAVCnlFwA8K6W8FcD3R1sAjY7qs1zMZ2wq51M5G+DffFFRczVvznn+jE3lfCpn\nA9TP5ytDfoeUUrYCeFEIEQXgW0KIFrhX0CGl/MTP9RERERERBZRh74MuhEgEcCeATwHUSyk3+qMw\nX+GICxGR/rW318LpbIHFkqF1KUREI6bZPuhSyhopZRGAEgDPj7YAIiKixsYN2LnzfDQ2btK6FCIi\nzY34RkVSykMA7vNhLTQCqs9yMZ+xqZxP5WzA2OcbP34RsrNfQmnpNaiuXuX3z8fzZ2wq51M5G6B+\nPl8Z1Z1EpZTv+qoQIiIKbLGxlyE3dz0qKx/jnUeJKKANewbdaDiDTkRkLB0d9SgtXYTExNuQmHib\n1uUQEXltzPZBNzo26ERExuNydUCIIAjR+Ytem839h4hIxzS7SJT0RfVZLuYzNpXzqZwN0D6fyWTu\nac4BoKjIp++vdT5/Yz7jUjkboH4+X2GDTkRE+mWzAaJzMUoIrqITUUDgiAsREemfEGi1H0VNzYuY\nOPFBCBGkdUVERANwxIWIiAJHYSGCgsLR2FiMkpIFcDhOaV0REZHfsEE3ONVnuZjP2FTOp3I2QIf5\nbDaYzbGYPfsdhISkYOfOC2G3l4/47XSXz8eYz7hUzgaon89X2KATEZFhmExmZGU9j6SkO7Bz5wVo\nbNyodUlERD7HGXQiIjKk+vp1aGnZi9TUe7QuhYgIAPdB9xobdCIiIiIaC7xIlACoP8vFfMamcj6V\nswHMZ3TMZ1wqZwPUz+crbNCJiEgpUjq1LoGIaFQ44kJERMpwOluwY8d5mDr1/2C1XqR1OUQUYDji\nQkRE1E9QUDgmT/45SkuvQXX1Kq3LISIaETboBqf6LBfzGZvK+VTOBhg7X2zsZcjNXY/Kysdw6NBS\njyMvRs7nDeYzLpWzAern8xVDNehCiElCiD8KIdZ0HkcIIV4SQvxeCHGj1vUREZE+RERkIy9vK06f\n/gQlJdeAo45EZCSGnEEXQqyRUl4rhLgFQL2U8l9CiNeklN/08FzOoBMRBSiXqwNNTRsRE/NlrUsh\nogBg6Bl0IcSLQojPhRCf9Xv8iv/f3t1HZ1nfeR7/fPOkmNZJA3UaHjSkFQOD8ZZxdIvjKec4Lbit\nxRbdjh2Zjq0Pnd3SWc+O63TXLTenU5Xu7NppOdW2KnZdxwemD6udtrjTM1S0S1slWBJhihw0goAd\nQgBj1IT89g9uxpQGycN137/r9837dQ7n5Hd5c9/fjz+SfHPne12XmW01s21mdtMInmqapBdLH3Pa\nPgDgN1RV1dKcA0hOrBGX1ZIWDT1gZtWSVpWOz5F0pZnNNrOlZna7mU0d5nl2SppR+jipcZ2seJ/l\nIl/aPOfznE0iX+rIly7P2ST/+bISpakNIayXtP+Yw+dLei6E8HwIoV/Sg5IWhxDuCyHcEEJ4ycwa\nzexOSeeW3mH/jqQlZvY1SY9UNAQAIFl9fc9zvXQAuRVtBt3MmiU9GkI4u7S+XNLCEMK1pfVVki4I\nISwb5+uEc845R4VCQc3NzWpoaFChUNCCBQskvfmTHGvWrFmznjjrjo6P6Oc/36MzzrhZF1/8wej1\nsGbNOs310Y83bNigPXv26JlnnslkBj1PDfoSSYvK0aBzkigAYKjBwX5t27ZMBw8+qblzH9WkSc2x\nSwLgQNIniR7HLr05T67Sxzsj1ZKMoT/BeUS+tHnO5zmb5D/f448/qVmz7lBT03Vqb3+venqeiF1S\nprzvn+d8nrNJ/vNlJU8N+lOSzjSzZjOrk/QxMVcOACgTM9P06cvU2nqvtmy5Uv39+2KXBACSIo24\nmNkDkt4nabKklyV9PoSw2swukfRlSdWS7g4h3JrBazHiAgB4S4cP96q6uj52GQASl9WIS5I3KhoN\nGnQAAABUgscZdIyB91ku8qXNcz7P2STypY586fKcTfKfLys06AAADONf/uUR9fSsj10GgAmIERcA\nAIbR3f2Ytmy5Si0tK9X09RekYjF2SQByjhn0EaJBBwCMVW/vVnV0XKopq59Tyx0DMquOXRKAHGMG\nHZL8z3KRL22e83nOJpHvqPr//qDmfeA5HTpL6ri1RgNf+Fx5C8sI+5cuz9kk//myQoMOAMDxFIuq\nPRDUdqN08hXL1Pcf/13sigBMAIy4AABwIsUiM+gATogZ9BGiQQcAAEAlMIMOSf5nuciXNs/5PGeT\nyDcaeXwTiP1Ll+dskv98WaFBBwBgjPbt+6E6Oj6sgYGDsUsB4AgjLgAAjNHgYL+2bVumgwef1Ny5\nj2rSpObYJQGIiBEXAAAiq6qq1axZd6ip6Tq1t79XPT1PxC4JgAM06InzPstFvrR5zuc5m0S+0TAz\nTZ++TK2t96qz86N6+eWHM3vusWL/0uU5m+Q/X1ZqYhcAAIAHjY0LVSg8rhAGYpcCIHHMoAMAAAAZ\nYAYdAAAAcIgGPXHeZ7nIlzbP+Txnk8iXtb6+7RV9PfYvXZ6zSf7zZYUGHQCAMnrttZ3auPG92r17\ndexSACSCGXQAAMqst3erOjou1ZQpl6ml5TaZVccuCUAZZDWDToMOAEAF9PfvU2fnFaqurtfs2fer\npubU2CUByBgniUKS/1ku8qXNcz7P2STylUNt7WS1ta1VXd00bd16dVlfi/1Ll+dskv98WeE66AAA\nVMjRO48ODByIXQqAHGPEBQAAAMgAIy4AAACAQzToifM+y0W+tHnO5zmbRL5KCyFo585VGhg4mMnz\n5S1f1jzn85xN8p8vKzToAABEN6je3s1qb79QfX07YhcDIDJm0AEAyIEQgnbt+qq6um7VnDkPq6Hh\notglARglroM+QjToAICUdHev1ZYtS9XSslJNTeW9HCOAbHGSKCT5n+UiX9o85/OcTSJfTI2NC1Uo\nPK59+76vwcE3pGJx1M+R53xZ8JzPczbJf76s0KADAJAz9fWtmjv326qqqpNWrIhdDoAKY8QFAIA8\nKhZ/szlfvnxM76YDqBxm0EeIBh0AkDQzie9jQBKYQYck/7Nc5Eub53yes0nky5Xly//1w1/96j9o\n9+7VJ/wrSeUbA8/5PGeT/OfLCg06AAB5NmSsZdq0ZerqukXbt9+oEA7HqwlAWTHiAgBAQvr796mz\n83JVV79Ns2ffr5qaU2OXBKCEERcAACag2trJamt7THV1U9XefqFef31X7JIAZIwGPXHeZ7nIlzbP\n+Txnk8iXd1VVtZo1606dfvrnVFPT+Fv/PfV8J+I5n+dskv98WamJXQAAABg9M9Pv/u7HY5cBoAyY\nQQcAAAAywAw6AAD4LQMDhzQwcDB2GQDGgQY9cd5nuciXNs/5PGeTyJeyvXvv1ze/eY76+nbELqVs\nPO+f52yS/3xZoUEHAMCRqVOv15Qpl6q9fb56etbHLgfAGDCDDgCAQ93da7Vly1K1tKxUU9PVscsB\nJoSsZtBp0AEAcKq3d6s6Oi5VS8tteuc7l8QuB3CPk0Qhyf8sF/nS5jmf52wS+VJ3NF99favmzfuZ\nJk++NG5BGfO8f56zSf7zZSWpBt3MZprZXWa2prRebGbfMLMHzez9sesDACBvamsbVVVVF7sMAKOQ\n5IiLma0JIVwxZN0g6W9CCNcM81hGXAAAAFB2SY+4mNk9ZrbXzDYfc3yRmW01s21mdtMonvJmSauy\nrRIAAJ/6+7v18ssPxS4DwHHEGnFZLWnR0ANmVq0jTfYiSXMkXWlms81sqZndbmZTj30SO2KlpB+G\nEDZVovC88T7LRb60ec7nOZtEvtSdKF9/f7d27LhZ27ffqBAOV6aoDHneP8/ZJP/5shKlQQ8hrJe0\n/5jD50t6LoTwfAihX9KDkhaHEO4LIdwQQnjJzBrN7E5JBTP7K0mfkXSxpMvN7PqKhgAAIFGnnPIe\nzZu3QYcOPaWOjsu48yiQM9Fm0M2sWdKjIYSzS+vLJS0MIVxbWl8l6YIQwrJxvk4455xzVCgU1Nzc\nrIaGBhUKBS1YsEDSmz/JsWbNmjVr1hNtPTg4oGnT1ujAgSe1f/9/1UknNeWqPtas874++vGGDRu0\nZ88ePfPMM2lfB32YBn2JpEXlaNA5SRQAgOGFELRr1yr19+/TzJnF2OUASUv6JNHj2CVpxpD1DEk7\nI9WSjKE/wXlEvrR5zuc5m0S+1I0mn5lp+vRlSTXnnvfPczbJf76s5KlBf0rSmWbWbGZ1kj4m6ZHI\nNQEAAAAVFWXExcwekPQ+SZMlvSzp8yGE1WZ2iaQvS6qWdHcI4dYMXosRFwAAxqpYPPIHwAllNeKS\n5I2KRoMGHQCA0RsYOKhnn71SZy78gSbt5vsoMBIeZ9AxBt5nuciXNs/5PGeTyJe6LPJV//X/UGPx\nB2pfJfW0Wa7eRfe8f56zSf7zZaUmdgEAACB/rLhC07VCp5xv6rzjnWppOUNNsYsCJghGXAAAwPEV\ni+q98Y/V0XGppky5TC0tX5LZuH+DD7jEDPoI0aADADB+/f37tG/f9/Wud30idilAbjGDDkn+Z7nI\nlzbP+Txnk8iXunLkq62dnJvm3PP+ec4m+c+XFRp0AAAAIEcYcQEAAGPW379PtbWTY5cB5AIjLgAA\nIKoQgjo6PqLt229UCIdjlwO4QYOeOO+zXORLm+d8nrNJ5EtdpfKZmebO/a4OHXpKHR2XaWDgYEVe\n1/P+ec4m+c+XFRp0AAAwZrW1k9XW9pjq6qapvf1C9fU9H7skIHnMoAMAgHELIWjXrlXq6rpN55//\nrGpqfid2SUDFcR30EaJBBwCgcl577QWdfPIZscsAouAkUUjyP8tFvrR5zuc5m0S+1MXMV4nm3PP+\nec4m+c+XFRp0AAAAIEcYcQEAAGV14MBPVVfXpEmTZsYuBSgrRlwAAEASens71d4+Xz0962OXAiSB\nBj1x3me5yJc2z/k8Z5PIl7q85Zs69Vq1tt6rzs4l2r179bifL2/5suQ5m+Q/X1Zo0AEAQNk1Ni5U\nofC4urpu4c6jwAkwgw4AACqmv3+fnn32Ss2ceYtOPfW82OUAmeI66CNEgw4AQL6EEGQ27h4GyB1O\nEoUk/7Nc5Eub53yes0nkS13e8423Oc97vvHwnE3yny8rNOgAAABAjjDiAgAAouvu/kft3/+YWlpu\nlVl17HKAMWHEBQAAuPH2t5+rQ4eeUkfHZRoYOBi7HCAqGvTEeZ/lIl/aPOfznE0iX+pSzFdbO1lt\nbWtVVzdN7e0Xqq9vh1QsDvvYFPONlOdskv98WaFBBwAAuVBVVatZs+5QU9N1R+48+u0VsUsComAG\nHQAA5EuxqO4frFBVn9TQIWn58uO+mw7kCddBHyEadAAAEmUm8T0cCeEkUUjyP8tFvrR5zuc5m0S+\n1LnJt3z5sIfd5BuG52yS/3xZoUEHAAD5NMxYy8DAocrXAVQYIy4AACAJfX071N5+oebMeUgNDRfF\nLgf4LYy4AACACWXSpJlqbV2tzs4l2r17dexygLKhQU+c91ku8qXNcz7P2STypc5zvsbGhTp48G/U\n1XWLtm+/USEcjl1SpjzvneQ/X1Zo0AEAQFImTTpd8+Zt0KFDT+tXv/p07HKAzDGDDgAAkjQ42K/X\nX+/SpEnvjl0KIInroI8YDToAAAAqgZNEIcn/LBf50uY5n+dsEvlSR750ec4m+c+XFRp0AADgyr59\nP3B38igmFkZcAACAG4OD/frlLxequrpes2ffr5qaU2OXhAmEERcAAIBjVFXVqq1trerqpqq9/UL1\n9e2IXRIwajToifM+y0W+tHnO5zmbRL7UTfR8VVW1mjXrTjU1Xav29vnq6VlfmcIyMNH3DkfQoAMA\nAHfMTNOnf1atrfdq+/YbNTg4ELskYMSYQQcAAK6FMCgz3pNE+TGDDgAAMAI050gN/2IT532Wi3xp\n85zPczaJfKkjX7o8Z5P858tKUg26mc00s7vMbM2QY/Vm9gsz+2DM2gAAQDp27Fiunp4nYpcBDCvJ\nGXQzWxNCuKL08QpJhyRtCSH8wzCPZQYdAAD8hu7utdqyZalaWr6kpqY/i10OnEh6Bt3M7jGzvWa2\n+Zjji8xsq5ltM7ObRvA875f0rKRfl6tWAADgT2PjQhUKj6ur64vavv1G7jyKXIk14rJa0qKhB8ys\nWtKq0vE5kq40s9lmttTMbjezqcM8z/sk/RtJH5d0rZmN+yeW1Hif5SJf2jzn85xNIl/qyDcy9fWt\nmjfvZzp06Gl1dFymgYGDmTzveLB3kKSaGC8aQlhvZs3HHD5f0nMhhOclycwelLQ4hHCbpPtKxxol\n3SKpYGY3hRBuLh3/hKRfH2+WpVAoqFAoqLm5WQ0NDSoUClqwYIGkN/+hpLretGlTruohH/kmUj7W\nrFn7WLe1rdXDD1+rvXsf1x/90Yei1nNUnv7/kO+t86xbt04bNmzQnj17lJVoM+ilBv3REMLZpfXl\nkhaGEK4tra+SdEEIYdk4X4cZdAAAAJRd0jPox0EXDQAA8qNYjF0BJqg8Nei7JM0Ysp4haWekWpJx\n7K+MvCFf2jzn85xNIl/qyJeNwS+uqPjJo+wdpHw16E9JOtPMms2sTtLHJD0SuSYAADDRFIuSmXYu\nkTbfVqOBL3wudkWYYKLMoJvZAzpyBZbJkl6W9PkQwmozu0TSlyVVS7o7hHBrBq/FDDoAABi1wRrT\nts7rdeDAEzr77Ec1adLM2CUh57KaQU/yRkWjQYMOAADGpFhUWL5cu3atUlfXLZoz52E1NFwUuyrk\nmMeTRDEG3me5yJc2z/k8Z5PIlzryZaRYlJlp+vRlam29V52dS9Td/Y9lfUn2DlKk66ADAACkpLFx\noc499wnV1Q1330QgW4y4AAAAABlgxAUAAABwiAY9cd5nuciXNs/5PGeTyJc68lXO4cOv6uDBn2f2\nfHnKVg7e82WFBh0AAGCMXn11izZvvlS7d6+OXQocYQYdAABgHHp7t6qj41JNmXKZWlpuk1l17JIQ\nCddBHyEadAAAUG79/d3q7Lxc1dX1mj37ftXUnBq7JETASaKQ5H+Wi3xp85zPczaJfKkjX+XV1jaq\nrW2t6uqmqatr5ZifJ4/ZsuQ9X1a4DjoAAEAGqqpqNWvWHQrhcOxSkDhGXAAAAIAMMOICAAAAOESD\nnjjvs1zkS5vnfJ6zSeRLHfnyZWDgoLZt+6wGBg6e8LGpZRst7/myQoMOAABQRlVVkzQ4+IY2bpyv\nvr4dsctBAphBBwAAKLMQgnbtWqWurls0Z87Dami4KHZJKAOugz5CNOgAACAvursf05YtS9XScpua\nmq6OXQ4yxkmikOR/lot8afOcz3M2iXypI19+NTZ+QIXCT/T66y8O+99TzjYS3vNlheugAwAAVFB9\nfavq6z8fuwzkGCMuAAAAQAYYcQEAAHBkcLA/dgnICRr0xHmf5SJf2jzn85xNIl/qyJeeEII2bVqg\nb3/7ptillJXHvSsHGnQAAIDIzExnnXW39u7939q+/UaFIjPqExkz6AAAADnR39+tzs7LVfXDf9Kc\nGw+opubU2CVhFJhBBwAAcKb2i19R23n/pJN+LW2873c08IX/ErskRECDnjjvs1zkS5vnfJ6zSeRL\nHfnStW7BAlUNBM26XZr1kfWq+W+3xC4pU573Lks06AAAADljy5eroeEPY5eBSJhBBwAAADLADDoA\nAMAE8+qr/6yBgYOxy0CZ0aAnzvssF/nS5jmf52wS+VJHvnSdKNvevfervf1C9fXtqExBGfO8d1mi\nQQcAAEhEc/MKNTVdp/b2+erpWR+7HJQJM+gAAACJ6e5eqy1blqqlZaWamq6OXQ5KsppBp0EHAABI\nUG/vVnV0fFi/93tr9La3nRO7HIiTRFHifZaLfGnznM9zNol8qSNfukaTrb6+VX/wB5uTas49712W\naNABAAASVVV1UuwSUAaMuAAAAAAZYMQFAAAAv+XAgf+n3btXxy4D40CDnjjvs1zkS5vnfJ6zSeRL\nHfnSlUW2mpp3qKvrFj333F8qhMPjLypDnvcuSzToAAAAjtTXt2revJ/plVc2avPmxdx5NEHMoAMA\nADg0ONivbduW6cCBJ3T22Y9q0qSZsUtyj+ugjxANOgAAmKhCCNq1a5VOPnmmpkz5UOxy3OMkUUjy\nP8tFvrR5zuc5m0S+1JEvXVlnMzNNn74sN825573LEg06AAAAkCOMuAAAAExAIQzKjPdqs8SICwAA\nAMakt3ernn7699XXtyN2KRhGUg26mc00s7vMbE1pXWVmXzSzr5jZn8auLwbvs1zkS5vnfJ6zSeRL\nHfnSValsp5xylt71rk+qvX2+enrWV+Q1Jd97l6WkGvQQwo4QwjVDDi2WNE3SG5J2xqkKAAAgLUdP\nHm1tvVednUu482jORJlBN7N7JH1Q0sshhLOHHF8k6cuSqiXdFUJYeZy/vyaEcIWZ3SSpO4TwzaPH\nhnksM+gAAADH0du7VR0dl+q00/5EM2cWY5eTtNRn0FdLWjT0gJlVS1pVOj5H0pVmNtvMlprZ7WY2\ndZjn2Smpp/Rxvu5lCwAAkIAjdx7doMmTL3nzYLEYrR5EatBDCOsl7T/m8PmSngshPB9C6Jf0oKTF\nIYT7Qgg3hBBeMrNGM7tT0rmld8+/I2mhmX1F0k8qGiInvM9ykS9tnvN5ziaRL3XkS1esbLW1k3Xq\nqRe8eWDFirK8jue9y1JN7AKGmCbpxSHrnZIuGPqAEEK3pE8f8/eu0QkUCgUVCgU1NzeroaFBhUJB\nCxYskPTmP5RU15s2bcpVPeQj30TKx5o1a9ZZr4+KVs+6ddKKFVonSWZasHy5VCz6yVeG/Vq3bp02\nbNigPXv2KCvRroNuZs2SHj06g25mSyQtCiFcW1pfJemCEMKycb4OM+gAAACjYSaFoN7eZ1VfPyd2\nNclIfQZ9OLskzRiyniGuzAIAAFB5y5fr8OHX1NHxUW3ffqNC4FS/SspTg/6UpDPNrNnM6iR9TNIj\nkWvKvWN/ZeQN+dLmOZ/nbBL5Uke+dOUmW7Go6uqTNW/eT3Xo0NPq6LhMAwMHx/20ucmXc1EadDN7\nQNJPJc0ysxfN7OoQwoCkz0haK+lZSQ+FELbEqA8AAABSbW2j2trWqq5umjZunM+dRysk2gx6pTCD\nDgAAMD4hBO3atUq7d9+l885rl1mehjDyI6sZdBp0AAAAjMjAwCuqqXlb7DJyy+NJohgD77Nc5Eub\n53yes0nkSx350pX3bONtzvOeLy9o0AEAAIAcYcQFAAAAY/bSS9/QO97xfk2aNDN2KdEx4gIAAIDo\nBgffUHv7fPX0rI9dihs06InzPstFvrR5zuc5m0S+1JEvXSlmmz79M2pt/ZY6Oy/X7t2r3/KxKeaL\ngQYdAAAA49LY+AEVCj9RV9ct3Hk0A8ygAwAAIBP9/d3atu2zes97/qfq6k6LXU7FcR30EaJBBwAA\nQCVwkigk+Z/lIl/aPOfznE0iX+rIly7P2ST/+bJCgw4AAICyYpphdBhxAQAAQFl1da3UG2/8Wu9+\n90qZVccup2wYcQEAAEASmpqu0SuvPK3NmxdrYOBg7HJyjwY9cd5nuciXNs/5PGeTyJc68qXL5lyk\nEwAACpRJREFUa7ba2slqa3tMmzZVaePG+err2xG7pFyjQQcAAEDZVVXVasaMGzR16vVqb5+vQ4ee\njl1SbjGDDgAAgIrav//Hqq8/R3V1U2KXkimugz5CNOgAAACoBE4ShSS/s2pHkS9tnvN5ziaRL3Xk\nS5fnbJL/fFmhQQcAAEB0g4P9eu21F6ViMXYp0THiAgAAgOj271+nLVuu1JxP71HDL9Ps3RhxAQAA\ngBvv+Nt1av2LPepcIe2+xCb0O+k06InzPstFvrR5zuc5m0S+1JEvXZ6zSSfIVyyq8RdBhb+Quorv\n0falvQrhcMVqyxMadAAAAORG/SeXa968DTp06Cm98MKtscuJghl0AAAA5M7gYL8GB19TTc3bY5cy\nYlwHfYRo0AEAAFAJnCQKSRN8Vs0B8qXLczaJfKkjX7o8Z5P858sKDToAAACScPjwa9q586vuTx5l\nxAUAAABJ6O/vUWfnR1VVdYrmzPk71dScGruk38CICwAAACaU2toGtbWt1UknTdfGjfPV17cjdkll\nQYOeOO+zXORLm+d8nrNJ5Esd+dLlOZuUTb6qqlrNmnWHpk69Xu3t89XTs378heVMTewCAAAAgNEw\nM02fvkynnHKW9u69Xw0NF8UuKVPMoAMAAAAZYAYdAAAAcIgGPXHMqqWNfOnynE0iX+rIly7P2ST/\n+bJCgw4AAAA3QhjUL3/5oaRPHmUGHQAAAK50d6/Vli1L1dKyUk1NV1fsdbOaQadBBwAAgDu9vVvV\n0XGpJk9erHe/e6XMqsv+mpwkCkn+Z7nIlzbP+Txnk8iXOvKly3M2qbL56utbNW/eBr3yykZt3rxY\nhw+/VrHXHi8adAAAALhUWztZbW1rddppV6iq6qTY5YwYIy4AAABABhhxAQAAAByiQU8cs2ppI1+6\nPGeTyJc68qXLczYpX/neeONlhXA4dhnDokEHAADAhLNjx+fV0XGZBgYOxi7ltzCDDgAAgAlncLBf\n27Yt08GDT2ru3Ec0adLMcT8nM+gAAADAGFVV1WrWrDvU1HSd2tvn5+rOo0k16GY208zuMrM1pfXp\nZvZdM7vbzG6KXV8MeZrlKgfypc1zPs/ZJPKljnzp8pxNyl8+M9P06cvU2nqvOjuXqLd3i1Qsxi4r\nrQY9hLAjhHDNkENzJf19COFTks6NVFZUmzZtil1CWZEvbZ7zec4mkS915EuX52xSfvM1Ni7Ueec9\no1NOaZVWrIhdTpwG3czuMbO9Zrb5mOOLzGyrmW0b4TviP5P0KTP7saQflaXYnOvp6YldQlmRL22e\n83nOJpEvdeRLl+dsUr7znXTr12VVpdbYLOo76bHeQV8tadHQA2ZWLWlV6fgcSVea2WwzW2pmt5vZ\n1GGe588kLQ8hXCzpg2WuOZeef/752CWUFfnS5jmf52wS+VJHvnR5ziblPF+xKB29sEgIE69BDyGs\nl7T/mMPnS3ouhPB8CKFf0oOSFocQ7gsh3BBCeMnMGs3sTkmF0jvsP5L0WTO7Q9KOiobIibz+qigr\n5Eub53yes0nkSx350uU5m5RIvuXLY1egmtgFDDFN0otD1jslXTD0ASGEbkmfPubvXXGiJzYb99Vu\nco18aSNfujxnk8iXOvKly3M2KZF8kefQ89Sgl+Vi5VlcixIAAAColDxdxWWXpBlD1jN05F10AAAA\nYMLIU4P+lKQzzazZzOokfUzSI5FrAgAAACoq1mUWH5D0U0mzzOxFM7s6hDAg6TOS1kp6VtJDIYQt\nMeoDAAAAYrEQyjL6DQAAAGAM8jTiAgAAAEx4E7ZBN7OZZnaXma2JXUuWzKzezL5lZt8ws4/Hridr\nXvftKDNbXNq7B83s/bHryZKZtZrZHWa2xsyOvVyqC6XPv1+Ymbsbp5nZAjNbX9rD98WuJ2t2xBfN\n7Ctm9qex68mamf1hae++aWZPxq4nS2Z2upl918zuHuFdyJNiZnPM7CEz+5qZLYldT1aG+37uqYc5\nTr4R9zATtkEPIewIIVwTu44y+Kikh0MI10n6cOxisuZ43yRJIYT/U9q7T+vIidJuhBC2hhD+XEdy\nXRi7njL5z5Ieil1EmQxKOiTpJPm8wtZlOnI/jjfkMF8I4YnS59/3Jd0buZyszZX09yGET0k6N3Yx\nZbBI0ldDCP9ekpsfHo/z/dxNDzNcvtH0MMk36GZ2j5ntNbPNxxxfZGZbzWxb6j9RjzLj0Bs+Ha5o\noWPkfQ/HmO9mSasqV+XYjDabmV2qIw3CDypd61iMJl/pNx7PSvp1jFrHYpT7tz6E8G8l/ZWkuHfw\nGKFR5psl6ckQwl9K+vOKFzsGY/za8nFJf1e5KsdmlNl+JulTZvZjHbnDeO6NMt99kv7YzL4kaXLF\nix2FDL6f57qHqWi/EkJI+o+ki3TkJ+bNQ45VS3pOUrOkWkmbJM2WtFTS7ZKmDnnsmtgZMs54laQP\nlh7zQOzas86X0r6Ncf9M0kpJF8euu1x7V3rM92PXXoa9++vS15e1kr6n0kn4ef4zxs+9ulQ+/0a5\nf38i6YrSYx6MXXs59k/S6ZK+EbvuMuzdf5J0Uekx7v5tHvPfvxe79jLkWjPk41z3MOPN91bHjv2T\n/DvoIYT1kvYfc/h8Sc+FEJ4PIfRLelDS4hDCfSGEG0IIL5lZo5ndKamQ93dnR5NR0nckLTGzrymR\n68iPJl9K+3bUKPfvM5IulnS5mV1f2UpHb5R79z4z+9vS/v1DpWsdi1F+fbk5hHCDjrw7+Y1Q+iqc\nZ6Pcv4+U9u5/SfpqhUsdkzF87VxoZl+R9JPKVjo2o8wnSZ+UdE8FSxyzUWb7kaTPmtkdknZUttKx\nGeXn3hlm9nVJ35L0pQqXOioZfD/PdQ8z3nyj6WFqylB/Hgz9FYl0ZJ7wgqEPCCF068icb6qGzRhC\neFVHvgin7nj5Ut+3o46Xb5kSaX7ewvGy/USJND4n8JZfX0II36p4Rdk63v7dJum7cUrK1PHy9Uny\ncH7Lcf99hhCKMQrK0PH2rlPSFXFKytTx8r0gKfdv2LyFEX8/T7SHGU2+Efcwyb+Dfhy5f+cqA94z\nki9dnrNJ5Esd+dLlOZvkN5/XXEeVJZ/XBn2XpBlD1jPk76x87xnJly7P2STypY586fKcTfKbz2uu\no8qSz2uD/pSkM82s2czqdOSybrmbZRon7xnJly7P2STypY586fKcTfKbz2uuo8qTL/YZsRmcUfuA\npJckva4jM0BXl45fIumfdeTM2s/FrpOM5POYz3M28pEv73885/OczXM+r7li5LPSEwMAAADIAa8j\nLgAAAECSaNABAACAHKFBBwAAAHKEBh0AAADIERp0AAAAIEdo0AEAAIAcoUEHAAAAcoQGHQDwr0p3\nw9scuw4AmMho0AEAAIAcoUEHAAzLzFrMbKOZ/X7sWgBgIqmJXQAAIH/M7CxJD0j6RAiBkRcAqCAa\ndADAsU6T9D1JHwkhbI1dDABMNIy4AACO1SPpBUkXxS4EACYi3kEHABzrDUkflbTWzF4JITwQuyAA\nmEho0AEAxwohhFfN7EOS/q+ZHQohfD92UQAwUVgIIXYNAAAAAEqYQQcAAAByhAYdAAAAyBEadAAA\nACBHaNABAACAHKFBBwAAAHKEBh0AAADIERp0AAAAIEf+P3y+1PZRE3L/AAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7ffaf92bb750>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "%matplotlib inline\n",
    "from numpy import loadtxt, mean, arange, shape, sqrt\n",
    "from matplotlib.pyplot import show, hist, subplots, suptitle\n",
    "\n",
    "def G_k(k,q,s):\n",
    "   return k**q / (1+k**2)**(float(q+s)/2)\n",
    "\n",
    "def A_k(k,alpha,q,s):\n",
    "   delta_kn = (1-1/alpha)*k\n",
    "   return G_k(k,q,s)*delta_kn\n",
    "\n",
    "f,ax = subplots(figsize=(12,9))\n",
    "k,delta_k,Gk,Ak=loadtxt(\"Results/Ak.dat\",unpack=True)\n",
    "\n",
    "ax.scatter(k,Gk,color='r',marker='+',label=\"$G_k$\")\n",
    "ax.scatter(k,Ak*2,color='b',marker='+',label=\"$A_k^2$\")\n",
    "ax.scatter(k,sqrt(Ak*2),color='g',marker='+',label=\"$A_k$\")\n",
    "#ax.scatter(k,delta_k,color='g',marker='+',label=\"$\\delta k$\")\n",
    "\n",
    "Nm = shape(k)[0]\n",
    "kmin = min(k)\n",
    "kmax = max(k)\n",
    "alpha = (kmax/kmin)**(1./Nm)\n",
    "s=5/3.\n",
    "q=0\n",
    "kn = kmin*(kmax/kmin)**(arange(Nm)/(Nm-1.))\n",
    "ax.plot(kn,G_k(kn,q,s),'--y',linewidth=1)\n",
    "ax.plot(kn,A_k(kn,alpha,q,s)*2,'--m',linewidth=1)\n",
    "ax.plot(kn,sqrt(A_k(kn,alpha,q,s)*2),'--m',linewidth=1)\n",
    "\n",
    "ax.grid(b=True,which='major')\n",
    "ax.legend(loc=\"best\")\n",
    "ax.set_xlabel('k')\n",
    "ax.set_ylabel('$A_k$')\n",
    "ax.set_xscale('log')\n",
    "ax.set_yscale('log')\n",
    "\n",
    "show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtwAAAJGCAYAAABoVFJMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xu8JFV56P3fw3BHFMGICoOQOEZQEoUIRkOYxAvjJaCR\nN0Ci8hqCiSgYz/GCHg9skhyV8yaveIlGI4zgBfEuICqo7IToQSRCRAGB6CQzgwyCAoJRQZ7zR9We\n6d3sS/feVV1V3b/v59Of3XVdq3r302tV1aq1IjORJEmSVI+tms6AJEmSNM6scEuSJEk1ssItSZIk\n1cgKtyRJklQjK9ySJElSjaxwS5IkSTWywi1JkiTVaOumMyBJw4qI+0eYXGbmihGmJ0kaM+HAN5Ik\nSVJ9bFIiSZIk1cgKt6SJFhG/FRGHRsTrms6LJGk8WeGW1GkRsd0yd/FbwNeBh0XEgyrIkiRJs1jh\nltRZEfE8YOfy/Ysj4tyIeGbP8tdHxPUR8WcR8bKI+ExE7B8RT55ZJzP/AbgXWJGZd1ecvzVl+jdG\nxOvnWedVEXFNRHw7Il41yLIF5u8SEZ+IiOsi4tqIeErPsleX618TER+ZOVGJiLMiYlNEXFPRMd8f\nEX/bM/2aiDi1in2X+1sZEZdGxHfK4zmpZ9min7ckNcEKt6ROiohHAg/OzNvKWTtk5jGZeUnPal8H\nPpmZ78/M9wHfBX4P+N2I2KZnvSOBt/TNW27+VgDvAtYA+wHHRMS+fes8Afgz4MnAbwLPi4hfW2jZ\nQtsAbwcuysx9gd8Ariv3tQdwInBgZu4PrACOLrdZW+axKr8AXhARu5XTVT+Zfy/w6sx8PPAU4BUR\n8bhBPm9JaooVbkld9VLg0z3TB0fE4/rWORj4KkBEPAx4GvBZ4BKKSjYR8cfAs4C3AFV2N3gQcFNm\nrsvMe4GPAkf0rfM44OuZ+bPM/CXwT8Aflsv2nWfZnNtExEOAQzLzLIDMvC8z7+xJa2tgx4jYGtgR\n2Fiudxnw4wqP+17gfcCre2dGxKPLq89rI+K7EfGhiHhGRPxLRNzQe9dhIZl5S2ZeXb6/m+KkYg8G\n+7wlqRFWuCV11cMz878AIuIw4Cbg7/rWeTKwQ0Q8G3gH8BeZ+R+Z+S3gtwEy8yOZeVxmHl9WYOcV\nEf8cEVfN8fr9OVbfA1jfM72hnNfr28AhEbFrROwIPBfYc5Fl883fG/hhWaH9ZkT8Y7mczNxYfjb/\nCdwM3JGZX1roWJfp3cCfRMSD++b/GvC3FCcNjwOOzszfAV4DvHFmpUE/54jYG3gSxZ2MQT5vSWqE\nA99I6qrtASLiMcCTM/NvIuLbfes8LDM/Wa73XeBDwFPLZTFsgpn5u8OsPsD+ro+I04GLgXuAqyiv\nsmfmdXMtW2CbrYEDgFdm5jci4gzgZOCUiHgocDhFpfxO4OMR8SeZ+eEhjmdgmfmTiDgHOAn4r55F\n38/M7wBExHeAL5fzv13mbWb7RT/n8gHXTwCvysy7I8JBJSS1lle4JXXVTHvr44Bzy/ffn1lYtlu+\ntWf924An9EzvOGyCEXHZPFdenz7H6huBlT3TKymuus6SmWdl5m9l5qHAHRTtzBdcNs/8DcCGzPxG\nufknKCrgAM+gqOzenpn3AZ9iy4nHsJ/BCeUxfzMiHrHAqmdQ/G926pn3857391O09555v/kC0GKf\nc9nW/pPAhzLzM+VmA33ektQEr3BL6qqZ5h/bAxsjYleKZiUzDgK+2TP9MopK6Iyh22tn5iFDrH4l\nsKps9nAzcBRwTP9KEfHwzLw1IvYCXkDR7nzBZXPNz8y7ImJ9RDw2M2+gqGR/p9zVfwBPiYgdgJ+V\ny65YKPMR8WXgRZn5g77P4N0UTUYWlJk/joiPUVS6z1xs/b5t5/2cIyLK/V2bmWf0LBro85akJljh\nltRVPy3/vgc4Fngo8DcAEbEa+AtgQ0S8AtgN2B14xRzb1yIz74uIVwJfpOgV5MzMnOk15HPAcZl5\nC/CJskePe4ETMvOunt3Mt2y++ScCH46IbYF/p3iwlMy8IiI+QXECcl/5931lXs4FDgV2i4j1wCnA\n2RTtrX+0lEPvef93wCvnWdY/PWiTkKcBLwK+FRFXlfPekJlfmO/zlqSmRabN3iR1T0S8hqJSNXQP\nG2W770Mzc6grr5MiIh4PvDQzX9N0XiRpHFjhltRJZTd4R5X9aw+77UnA+zLzZ9XnTJKk2XxoUlIn\nlX1MX1e2Yx5YRPwq8C0r25KkUfEKt6SJEhHbZebPF19TkqRqWOGWJEmSamSTEkmSJKlGVrglSZKk\nGlnhliRJkmpkhVuSJEmqkRVuSZIkqUZWuCVJkqQaWeGWJEmSamSFW5IkSaqRFW5JkiSpRla4JUmS\npBpZ4ZYkSZJqtHXTGZCkUYqI+5vOwwhlZq5oOhOSNOkiM5vOQ6dNWOENFuCSpBGaoHLW8nWMWeGW\nJEmSamSTEknqoIhYBTwB+A3ggsz8ZsNZkiTNw4cmtVlErIqIF0TEqRFxQNP5keoWEfs0nYdleB6w\nEfj/gdc0nBdJC7B8lRXuCnW88AYLcE2QiPhV4ClN52MQEbFXRBzVOy8z35aZVwArge83kzNptDpc\nzlq+Tjgr3BXpUuENFuAS8OeZeW7diUTEzhHx68vZR2b+J7BTROw3x+LnA/9rOfuXuqBL5Wx/GWv5\nKivc1RlJ4Q0W4NJyRcRvAhv65v1uRLwiIi6JiCeV8w6MiM9FxFci4rjydUZETA2R3B8Bd8+TzgE9\n8xdL68PAK/vyfDjwTmCPIfIzlIjYNSI+HRF3R8S6iDhmnvW2jYgzy3XuioirImLNHOsdHRHXlfu7\nKSJ+Z8BlH4qImyPizoj4bkQc17ffuyPiJz2v+yLi7eWyV0bElRHxs4hYW92noxEbh5Nky9dJlZm+\nlvkCfhM4sW/e7wKvAC4BnlTOOxD4HPAV4LjydQYwNWR6xwF7zJPWAT3zF0wP2A54d9++Dwd2BlbV\n+HntCnyaohKyDjhmwO1WAT8DPjjsvubadtDtF9h2Gvgv4Cfl67qmv4u+Bv4O/g/g8X3zXgc8dI51\nPwo8p2f6QcAvgR0HTGtqkHQGSQs4E9i5fP+HwDfKuP8fNX5W55avHYGnAXcA+82x3o7AqcBe5fRz\ngbuAR/es88wyzg4qpx8JPGqxZeX0fsA25ftfB37Q+3vXl5edypj8nXL6BcARwLuBtU1//3wt6Xs4\nsnKWhcvYgdOhr4xlBOVrmc7AZSzwIeBm4E7gu8BxPcu2LX9z1pWxfBWwpmf5vuXx3wHcCDx/2HwA\nRwPXlevcVP7GLJhuV1+NZ2AcXoyw8C63mRokrUHSo8UF+BzbXQz8M3DOsPuaa9tBt19g20uBP236\n++drSd/Bz1B2i9oz74Dyf7113/x1wPbl+6C4OvWOAdN5HHD0IOkMkhZwInDYCD+nnYCfA4/pmXcO\n8JYBt/834AU9018DXjrPuvMum2PdX6eoJBw5z/JjgZvmmP/XWOHu5GuU5eygZewg6cyUsaMqX8s0\nBy5jWeBElvlPovei6OXuBuAvy9+q36OoNK8aNB/Mc5K9QLqPbvp7uJyXTUqq8WTg2r55XwLOi4j+\nrhefQnFGSEQE8Abg7zPzp4MkFBGPA64fMK1B0rsaeCpAZn4qM5+cmc/MzFpueUXEThQ/PP8zM3+a\nmV8FzgdevMh2RwM/Br5MEdwD72uubQfdfr5te3c/+NGrRXbM8pccivaWwOpy8i975j8euB04tGwe\n8S5gXWaeNGA6RwCfWiydIdK6meKOy9Ai4sKI+PE8r/Pn2eyxwH2ZeVPPvH8DHj9AeruX23+nnF5B\ncVXw4RFxY0Ssj4h3RsT2Cy3r2+e7I+IeiitiNwMXzZP8sRQnBg/I1mL5VmuNpJwdsowdJJ2rgaeO\nonwt8zFUGZuZ12bmvb2zgF8tl/00M0/LonkMmfk5ivbnB1JcTHhkZp6RhUuBr86kM2A+TgNOy6Jt\nO5n5g8y8eYF0O927ixXuaoyq8IYJLMAj4sEUgflqZheYi+5rgW0X3X6RbWe8JSJ+GBH/EhGHzncM\nap3No7lFxM4U7aDfCbwFeHbPer8HfDIzv5iZX6D4LpwcEY9ZLIGyErlNZv5igHQGTesO4MFDHWkp\nM5+XmQ+d53X4PJs9iOLKUq+7KK7YzSsitqFoc/6BzLyhnL07sA3wQuB3gCcCTwLeBDx8gWW9x3BC\nmadDKG5V/2KOtB9N0QTg7Dmy5khv3dWqk+Qh0ulCGTvQiWz/SfQctqIYG2DRfAx6kj1gup1ghbsa\ntRfe5b4ntQD/a+D9mXkzswvMQfY137aDbL/QtgCvB/ahuAX2PuCCKJ6iV/vd1/P+KOCS8irPjygK\n0RmHAv8yM1HG3k8Y4Aov8AyKpiODpDNoWjsA9wyQdlXu5oG/Dw+myNecImIr4IMUzz30PuT5X+Xf\nd2bmpsy8naKLtOcssmyW8mraV4E9gZfPkYUXA5dl5n/Mlb358q3Wa9tJ8qDptL6MHfBEtv8k+rvA\nrRHx2ojYJiKeRXGiu8OA+VjoBHyhdDvLCnc1RlF4wwQW4BHxRODpFA+jwOwCc8F9LbLtgtsPsC2Z\neUVm3pOZ92bmORS30x5QQVArbYqIB5XvdwD+vXz/TIof95lbxE8FrpjZKCKeCzyE4hbzYp4yc6t0\noXSGTGtX4JYB0n6AiPh8zO7Fo/f1uXk2uwHYuq8S8ZvAt+dJIyjarP4K8MLM/OXMssz8MX09w2xZ\nlHfMs2wh21De+u7zEua+ug1e4e6ytp0kD5pOq8vYGQudyM51El1+Js+naF/9A4oTjo+xJY4Xy8ei\nJ9kLnLx3kkO7V2NTRDwoM++mCK6ZWyhzFd697YOHKbyhKMBP65meM60h01tWAU5xZjqXf87M584x\nf3MB3nOrad4CnOJHbW/gP4tD4kHAiojYl+JseqF9rZ5v28z8rUXyMm+65bbqtn8CDqJof/kB4MTy\nalZk5mej6Bbwjyh+I48rvwO7UdzROCQzFyxAI2IXirb/vR6QTrnuMGn9BvC2pRxwZvbfARtkm3si\n4lPAX0XEn1FcgToc+O15NnkPRdvOZ2Tmz+dYvpbiM/gCRQXq1cCFCyy7ACAifoXiBPhCioL6GRS9\nGxzdu/OIeCrFHaeP981fQVFB35oijrejuN39S9QVoyhnBypjh0yn7WVsv1knsn0n0c/pO4m+hi3N\nbYiIr1HE8aL5yMwfR8S8J9kLpdtZ2YInN7v+ougO6PfL9zsDb6QoQF9bznsSxe2oTRRdC70COIXi\ni7nngGnsApzUN+8BaQ2bHvC39HR/NKLP61zgI8x+cnnfedbdgaJ958MpbkH9fxSF6W6L7WuxbRfa\nfoB0HwIcBmxPUYj/CcUZ/WPq+tx8VfodfCjwvyrYz5Mpe+ygeKr+QeX744FH1JDvMxv6rHq79urv\ndeUi4GSKngvuB37Klq4yf0JPV2BlrPw9xcnIDyjuIG07wLKHUXTD+WOK7sv+jZ7uy3r2/w/A2XPM\nnyrz1vs6penvoa+hvoe1lrMMWMYOmw4tLmMpKrNHU15QKsu0u4Hn9azzD8D/AXaaY/v9yzJwR4rR\nM/+dsseTQfJB8YzUFWU+HgpcRvEQ5YLpdvXVeAYW+dL8DsUVk38Evtp0fhbIZ1WF9yMpruK8GXgV\n8MyeZRNXgM+z7anM7hZwwX0ttO0w28+R7sPKH4q7KCoBXwOe3vR3sclXV+K1J7//HXjYMvfxSMp+\ndinaGG7+vtSQ34OAo5r+3HyNx6uD8VpJOVvu643lb/rJPfMmroxlkRNZ4NEscBIN/G+KpjY/oeiT\n/FeHzMecJ9mLpdvVV5QH3WoRcQTw8Mz8x6bzMp+I+O8UV1ZuW8Y+HpWZN0fEe4GT6LnlGRGn5uxb\nXcsWEQcB+2TmeVXuV5OtC/EKm9sHviwz/2EZ+3gw8Frgrygq3seXD87+ZmZ+uqKszjSJeG1mvrWq\nfUrQnXiFasrZcj9bU8Ts6Zl5ZznPMla1GvlDkxFxVkRsiohr+uaviYjry+5hXt+32R9T3JZos7cB\nRy5zH3eX3d/cSjFC1U4AZQH+rWXue5ayAP99fwi0kDGOVzLz/uVUtks/o7gV+1rgm+V+v1dlZbv0\nK8A7Kt6nxsw4x2tp2eVs2TZ4iqLnkW3LeZaxql0TvZSsBdb0zii/mO8q5+8HHFM+FDfTB+aduchD\nSk2rqPB+E8UDCPdQBOpd5b4twNWUsYzXqmTmLzLzjRQnxxcutv4y0rklBxwcSxNtrOO1onL2MIqH\npaeAx5T7tYxV7UbeS0lmXhYRe/fNPohiGN51ABHxUYrO568D/hQ4a4RZbExmvm6EaS3pqWlNFuN1\nYRHxUor2id/KzPVN50eTzXhdXBZ9ZkM5QmSN6VjGapa2dAu4B9BbWG0ADgbIzKkmMiRpXsZrKTPX\nLr6W1CjjVWqBtlS4l/zkZkS0/6lPacQys84R9ZYVc8as9EA1xqzxKlVsKfHalpEmNwIre6ZXMsSo\nY0139bLQ69RTT208D+ZtsvI3AsuKVxhtzI76f2V6pjfsq2bGq+mNdZqjTm+p2lLhvhJYFRF7R8S2\nFMOpnt9wniTNzXiVusN4lVqgiW4Bz6UYJOSxEbE+Il6amfcBrwS+CFwLnJeZ1w26z6mpKaanp2vJ\nr9QV09PTTE1NVbrPOuIVjFkJqo9Z41Wqz7LjddS3Gmq4tJ9tdumllzadhXmZt6Vrc/7KmGg8Nud7\njTpmR/2/Mj3TG1abY9Z4Nb22pznq9JYar50YaXIhEZFdPwapShFB1vvQ5LIYs9JsbY5Z41Wabanx\n2pY23JIkSdJYGosKt+3LpHracNfFmJW6E7PGq7T8eLVJiTRm2nx7GoxZqV+bY9Z4lWazSYkkSZLU\nQla4JUmSpBpZ4ZYkSZJqtHXTGZA0eS688EIA9t57b57whCc0nBtJkuo1FhXuqakpVq9ezerVq5vO\nitSY6enpzvQkcOSR/4377/8Fxx13BO95z9ubzo7UiK7ErGWstPx4HYteSvbaa8sVsqOPPoLTT/+b\nBnMkNavNPR5AEbOQwNt52cu+x3vfa4Vbk63NMWsvJdJsS43XsbjC/Z//+ZHy3Wf43ve+12heJEka\nJ7/2awcAsOOOK7jmmm80nBupm8aiwg37l3+vBKxwS5JUle997/3AfWy11VObzorUWWNS4ZYkSfU4\nALiv6UxInWa3gJIkSVKNrHBLkiRJNbLCLUmSJNXICrckSZJUozF5aHIKWN1wHqRmdWUQjcIUcBuw\nouF8SM3pTsxOAYc0nQmpUQ58s3kQDYC1HHnkP/Pxj69tNE9Sk9o8iAY48I3Ur80xuyVe72Orrbbn\nl7+0txJNtqXGq01KJEmSpBpZ4ZYkSZJqZIVbkiRJqlGrH5qMiAD+BtgZuDIzz2k4S5LmYbxK3WG8\nSqPV9ivczwf2AH4BbGg4L5IWNnS8vu997yAiZr0kjYTlqzRCI69wR8RZEbEpIq7pm78mIq6PiBsj\n4vXl7McCX83M1wAvH2T/n/jEByzApYrUHa+F7HlJWqq64/X++39p+SotURNXuNcCa3pnRMQK4F3l\n/P2AYyJiX4qz7jvK1X45eBIW4FJFRhCvkipi+Sq11Mgr3Jl5GfDjvtkHATdl5rrMvBf4KHAE8Cng\nsIh4B/BPo82pJONV6g7jVWqvtjw0uQewvmd6A3BwZv4X8GeLbz5V/r2q6nxJrdfAaHXLjFcoYvby\n8v00jhSrSTLimK0oXu8v309jvGqSVBWvjYw0GRF7Axdk5v7l9AuBNZl5fDn9IoofhBMH2NeskSbh\nT5l9qyvo+mia0jCqHrWuyngt19880iT8Jf3x2svY1SSoMmbri9f7gG2wfNWkW2q8tuUK90ZgZc/0\nSip8arr/wQ5/IKRlqTVetxToPpAlVcDyVWqBtlS4rwRWlWfmNwNHAccMvvkUC9/imv8KmjQuRnib\nepnxCkXM3lZtrqSOGVHMVhSvh8yzzPJVk2G58TryJiURcS5wKLAbcCtwSmaujYhnA2cAK4AzM/Mt\nA+5v0SYl3gLTJKn49nSl8Vruc5EmJVuucBurmgRVxWy98Tp3kxLLV02apcZrI224q2SFW5qt6jbc\nVRumwt3LuNW4anPMDlvh7mXMahx1vQ33SNnmTOoK23NL3WLMSnMZkwr3FMN1U2SbM42fBroHXIYp\nbMOtSdedmJ1i/jbc0mToXBvuqi2lSYlNTDTO2nx7GoZtUmJ7bo2/Nsfs8E1K5r/CbQxrHNikZBls\nYiK1n3EqdY13k6UZVrgBfxSkLjBOJUndZIV7Dr1X0ryKJknS8lm2apJZ4Z6TT1lLbWfhLXWNZasm\n15hUuKcYrpcSafx0p8cDqKaXEgtvdVt3YnaKqnsp8ZkMdY29lFTQS4lPWWuctLnHA1h6LyWOSKlx\n1eaYXV4vJYMvM4bVFfZSUhsf1JLazqtlkqQ2s8I9JAt2qY08MZa6zGcyNO6scA/Ngl1qOwtvqWt8\nJkPjzQr3MnnFW2ojC2+pqyxXNY6scC+bV7wlSaqO5arGjxXuinlmLrWLMSl1mzGscWCFu3Kzz8z9\noZCa5tUyqduMYXWfFe7a+UMhSVJVfChaXTQmFe4pujLSpFe8VZfujFoH1Yw0uTQW1mqL7sTsFFWP\nNLk8PhSt0XOkydpHmqxqX3NPd/3zV/u0edQ6qGekyaUuM/7UBm2O2VGNNLm0ctfRoDV6jjTZUV5t\nk5rjHSep62y2qW6wwt04b41JzbGwlsaJF7HUVla4W8SrbZIkLceWi1iWqWqTrZrOwEIiYnVEXBYR\n74mIQ5vOT/2y5yV1yzjEa0RsfknjbBzidXGWqWqPtl/hvh/4CbAdsKHhvIycZ+fqmDGIV5t4aWKM\nQbwOx+YmatLIr3BHxFkRsSkirumbvyYiro+IGyPi9eXsyzLzOcDJwGmjzmvzPDtXsyY5XnuvdnvF\nW10wyfE6GMtTNaeJJiVrgTW9MyJiBfCucv5+wDERsW9uOQW9g+IsfKJZAVADJjhePeFV50xwvA7H\n8lSjNvImJZl5WUTs3Tf7IOCmzFwHEBEfBY6IiMcBhwG7AO8cYTZbyh4VNFrGq9QdxuswZpenNjdR\n3drShnsPYH3P9Abg4Mx8K/DpxTefKv9eVXW+pNZrYLS6ZcYrFDF7efl+mi6MFGuBrKqMOGYritf7\ny/fTdCFeh+fzG5pbVfHayEiT5Rn4BZm5fzn9QmBNZh5fTr+I4gfhxAH21emRJpeX1mxWAgTVj1pX\nZbyW67dmpElHqFQbVBmz9cVrW0earGPZbMa7enV9pMmNwMqe6ZVMyFPTy2MTEzVi4uPVHoTUIRMf\nr8OzbFX12lLhvhJYVZ6Z3wwcBRwz+OZTjOctruFYCZhsI7xNvcx4hSJmb6s2VyNlgazlG1HMVhSv\nh1Sbqw6xbBUsP15H3qQkIs4FDgV2A24FTsnMtRHxbOAMYAVwZma+ZcD9TXCTkoWn/VGYTBXfnq40\nXst9dr5JibGmKlUVs/XG6yQ1KbFs1fyWGq+NtOGukhXuhaZn6/r/WoOpug131caxwt3LONOw2hyz\nVriNd83W9TbcqoW3vaXR6C2sJY03413DG5MK9xS24V6c3ZqNtwa6B1yGKbrdhnt+tvfUoLoTs1NM\nchvuhRjvk6NzbbirZpOSpaXV9f+75tfm29Mwrk1K5l9mrGkxbY5Zm5TYvEyzLTVemxjaXZIkaQwl\nsyvhUmFMmpRoWN4Gk0bDplzSZLKcVS8r3BPLByql0fABK2kyWc5qCyvcAjwTl0bBOJMml3e7JtuY\nVLinsJeS5fJMvOu60+MBjHMvJQszzrRFd2J2CnspqYJ3u7rMXkrspaSWtLr+vZhkbe7xACavlxJ7\nMNFi2hyz9lJSTxrGfnc58I0q5a1vqX7eYpYmk2Xs5LHCrXl461uqn7eYpclkGTtprHBLkiQ1yCve\n488Ktwbij4FUL2NMmmRe8R53Vrg1IH8MpHoZY5I0rqxwS1IL+UClNLmM//FjhVtL4u1vqW4+UClN\nLuN/3Fjh1hJ5+1uSpLp5gWs8jEmFewpHmtSk686odTC5I00ujQXueOpOzE7hSJNN8gJXGzjSpCNN\ntiSt2br+veqyNo9aB440WcUy42u8tDlmHWmyfWkY/81ypEk1zDNwSZLq5gOV3WSFW5I6xgJXmmQ+\nUNlFWzWdgcVExE4R8Y2IeG7TedHgImLzS5PDeB2VZPZdJWl4xqs0Ol24wv064LymM6FheQY+oYzX\nEfNqt5bBeO04H6jujpFf4Y6IsyJiU0Rc0zd/TURcHxE3RsTry3nPBK4FfjjqfEoyXrvBq90qGK+T\nKPE3oBuaaFKyFljTOyMiVgDvKufvBxwTEfsChwJPAf4YOD5sn9BJvc1L/Bd2jvEqdYfxKrXUyJuU\nZOZlEbF33+yDgJsycx1ARHwUOCIz31ROHwv8ML1X0lH2YNJVxmu3eHt5shmvsolZe7WlDfcewPqe\n6Q3AwTMTmXn2wptPlX+vqjhbUvs1MHjGMuMVipi9vHw/jQNXVcWT2y4YccxWFK/3l++nMV7bzOen\nqlZVvDYy8E15Bn5BZu5fTr8QWJOZx5fTLwIOzswTB9iXA990Lq3ZPAuvVtWDaFQZr+X6DnxTyzIH\nyOiqKmO2vnh14JuupWH816PrA99sBFb2TK+kOAvXWPIqXMcZrx3h7WVhvE4sm5i1S1v64b4SWBUR\ne0fEtsBRwPkN50nS3IzXzrD3Ahmvk8seTNpk5Fe4I+Jciqejd4uI9cApmbk2Il4JfBFYAZyZmdcN\nvtcpbFOmSVdHu9B64hWKmL2t0rxKXVN1zNYbr4dUlk+pi5Ybr4204a6Sbbi7n1bXv4NtU3Ub7qrZ\nhruuZYutN5tx1x5tjlnbcI9PGsZ8NbrehlsTzHZm0ij47IQ0ySxrm2WFWy1gRUCSpHpZ1jZpTCrc\nU9iGW5Ougf64l2EK23A3yx5MmtedmJ3CNtyadLbhtg33GKY1W9e/o6PW5vagYBvu+pYtfR/GWLPa\nHLO24R7fNIz7pbENt8aIt70kSaqTd7lGywq3JE04H6aSJlHv1XDVzQq3JE087ypJUp3GpMI9hQ9N\nji+vvg3QyiMMAAAgAElEQVSmOw9ggQ9NSl2K2Sl8aHK8Wc4uzocmfWhy4tLq+ne2bm1+AAt8aLK+\nZVXufwvjrX5tjlkfmpzMNIz7+S01XreqIzOSpC5LZhfAkqTlsMItSZIk1WhM2nBrktjWTJKk+thl\nYPWscKuD7FFBGhVPcKVJZJeBVbPCLUlagCe4krRctuGWJEmSauQVbkmSJM3JZmXVsMKtzvPhDml0\njDdp0tisrApjUuGewpEmJ5kPd0CXRq0DR5rsMuOtKt2J2SkcaVKTzpEmHWnStHrS6vr3uQptHrUO\nHGmyvmWjT9t4q0abY9aRJk3DUShnW2q8jskVbknSqNm2U5IGY4VbkrREtu2UJo3PcSyNFW6NFa+4\nSZJUJ5/jWIpW98MdEY+LiPdExMcj4i+azo+6IHteGiXjVeoO41UarVZXuDPz+sx8OXAU8LSm8yNp\nfsarImLzS+1mvEqjNfIKd0ScFRGbIuKavvlrIuL6iLgxIl7fM/8PgAuBi0adV2nSGa8ajneXmmS8\nSu3VxBXutcCa3hkRsQJ4Vzl/P+CYiNgXIDMvyMznAH8y6oxKMl6lDjFeNVK9d7W8s7WwkT80mZmX\nRcTefbMPAm7KzHUAEfFR4IiIeDjwh8B2wOdGmE2NCR+iXB7jVeoO41WjZ09Fg2pLLyV7AOt7pjcA\nB2fmPwH/tPjmU+Xfq6rOlzpv/H8MGhitbpnxCkXMXl6+n8aRYsePJ7vzG3HMVhSv95fvpzFeNUmq\nitdGRposz8AvyMz9y+kXAmsy8/hy+kUUPwgnDrCvdKRJ0xp03Uko9Kseta7KeC3XL2PWkSarXdbW\nfBXTkxB7S1VlzNYXr440aRqLL5uEOF9qvLall5KNwMqe6ZUUZ+GS2sd4lbrDeJVaoC1NSq4EVpVn\n5jdTdFN0zOCbT+EtLk26Ed6mXma8QhGzt1WbK6ljRhSzFcXrIdXmSmNpnEehXG68jrxJSUScCxwK\n7AbcCpySmWsj4tnAGcAK4MzMfMuA+7NJiWkNvO64/QDMpeLb05XGa7lPm5TUsqyt+SqmJyH2lqqq\nmK03Xm1SYhrDLRvXmF9qvDbShrtKVrhNa7i0Zuv6938uVbfhrpoV7rqWtTVfM9NbjGPcLUebY9YK\nt2lY4Z5tqfHaliYl0ogsXAGXVJfeQlqSJsuYVLinsA23Jl0D3QMuwxS24dak607MTmEbbk26zrXh\nrppNSkxrOWl1/fs/lzbfngablNS3rK35mmvZbOMYh8Noc8zapMQ0jPPZbFIiSeoIm3ZJ488479WW\nfrglSZKkseQVbk00h5+WJEl1s8KtCectL0mSVK8xqXBPYS8lmnTd6fEA7KVEvcZ5dLqFdCdmp7CX\nEk06eymxlxLTqjCtrscDtLvHA7CXkvqWtTVfwy0bhxgcVptj1l5KTKO6ZbN1NdbtpUSSJEktNdlN\nOO2lRJIkSaqRV7ilHvZaIjXLGJQ0jqxwS7NM9i0vqXnGoKTxY5MSSZIkqUZWuCVJkqQa2aREkiRJ\nIzVp/e97hVuSJEkjlsx+ZmO8jckV7ikcaVKTrjuj1oEjTUpditkpHGlSk86RJh1p0rRqTWu2LsRL\nm0etAxxpsrZlbc3Xcpdt0YX4W4o2x6wjTZrGKNLvUmw70qRUi4Ur4JLq1luAS1I3WeGWJHWCg+JI\n6ior3JKkjvCOkzSOJuFkutUV7og4Angu8GDgzMy8pOEsSZqH8Sp1izGr9hj/k+lWV7gz87PAZyNi\nF+BvAX8MpJYyXqVuMWal0Rl5P9wRcVZEbIqIa/rmr4mI6yPixoh4fd9mbwLeNbpcSnOLiM2vSWC8\nSt1izErt1MTAN2uBNb0zImIFRbCvAfYDjomIfaNwOvD5zLx69FmV+iWzb32NPeNV6hZjVmqhkTcp\nyczLImLvvtkHATdl5jqAiPgocATwDODpwIMj4jGZ+d4RZlWaeMar1C3GrNRObWnDvQewvmd6A3Bw\nZp4IvHPxzafKv1dVnS+p9RoYrW6Z8QpFzF5evp/GkWK1FL1Nu7rUq0H3YnYKuL98P43xqklSVbw2\nMtJkefZ9QWbuX06/EFiTmceX0y9iy4/BYvvKLbf41+JIk6Y1qrTaWsBXPWpdlfFarl/GrCNNVrus\nrfkazbK2xuMg2hyzjjRpGk2k3+Z47vpIkxuBlT3TKynOwCW1j/EqdYsxq07p6t2rhbSlwn0lsKo8\nK78ZOAo4ZvDNp/AWlybdCG9TLzNeoYjZ26rNldQx3YnZKeCQ6nMlzav36nc7LDdeR96kJCLOBQ4F\ndgNuBU7JzLUR8WzgDGAFRQf8bxlwf7nlH7MWm5SY1qjSautZd5W3p6uO13KfZczapKTaZW3N12iW\ntTUeB9HmmLVJiWk0nX7bYrszTUoyc86z6sz8PPD5EWdH0gKMV6lbjFmpndrSpESSpCUbxzafksbH\nmFS4p7ANtyZdA12NLcMUtuFWtXpvT3dDd2J2Cttwa9J1rg131WzDbVpNpdXW2Km6i7Gq2Ya7rmVt\nzdeol7U3NufT5pi1DbdpNJ1+2+J5qfHaxNDukiRJ0sQYkyYl0uj1thkFWncWLklS141LWWuFW1qy\n/ltgkiSpWuNR1tqkRJIkSarRmFzhnsJeSjTputPjAdhLidSlmJ3CXko06eylxF5KTKslabUlltrc\n4wFgLyW1LWtrvka9rD2xOKg2x6y9lJhG29JvOr7tpUSSJElqISvckiRJUo2scEuSJEk1GpOHJqXm\njUtfoZIktVVvWdulctYKt1SZ/oc+JDXBk19pnPU+UNkdVrilmljoS03x5FdSu1jhlmpjoS9Jksam\nwj2FA99o0nVnEA1w4BuNUlvbfHYnZqdw4BtNOge+ceAb0+pIWqOKtTYPogE48E1ty9qar1EvW3i9\nNpZ5bY5ZB74xjTan30Q8O/CNJEmS1EJWuCVJkqQaWeGWJEmSatTqCndE7BMR74+IjzedF0kLM16l\n7jBepdFqdYU7M7+fmX/WdD4kLc54lbrDeJVGa+QV7og4KyI2RcQ1ffPXRMT1EXFjRLx+1PmS6hYR\ns15dYLxK3WG8Su3VxBXutcCa3hkRsQJ4Vzl/P+CYiNi3gbxJNcqeV2cYr1J3GK+aKF26kDXyCndm\nXgb8uG/2QcBNmbkuM+8FPgocERG7RsQ/AE/0rFwaPeNV6g7jVZOnOxey2jLS5B7A+p7pDcDBmfkj\n4C8W33yq/HtV1fmSWq+B0eqWGa9QxOzl5ftpHClWk2TEMVtRvN5fvp/GeNUkqSpeGxlpMiL2Bi7I\nzP3L6RcCazLz+HL6RRQ/CCcOsK/ccmazFkeaNK2upFVX7FU9al2V8VquX8asI01Wu6yt+Rr1svaN\nTLeYKmO2vnh1pEnTaH/6o4jvro80uRFY2TO9kuIsXFL7GK9SdxivUgu0pUnJlcCq8sz8ZuAo4JjB\nN5/CW1yadCO8Tb3MeIUiZm+rNldSx4woZiuK10OqzZXUMcuN15E3KYmIc4FDgd2AW4FTMnNtRDwb\nOANYAZyZmW8ZcH+55ZbCWmxSYlpdSasLTUqqjtdyn2XM2qRklE0pJmfZwuuNc5OSeuPVJiWm0f70\n29ykZORXuDNzzjPrzPw88PkRZ0fSAoxXqTuMV6m92tKGW5IkSRpLbWnDvUxT2IZbk66B7gGXYQrb\ncKsJ/YNjNNnEpDsxO4VtuDXpOteGu2q24TatrqbVhTbcdbANd13L2pqvUS9rX5vPxbQ5Zm3DbRpd\nSr/NbbhtUiJJkiTVyAq3JEmSVCMr3JIkSVKNrHBLkiRJNbKXEqkh/b0l9Bv24Y/u9HgA9lKituiN\nw96YG0VvJt2J2SnspURdU3UM20uJvZSY1pimtdTYbHOPB4C9lNS2rK35GvWype/jgRXuuZdVrc0x\nay8lptGl9EcRw/ZSIkmSJLWQFW5JkiSpRla4JUmSpBpZ4ZYkSZJqZIVbkiRJqpEVbkmSJKlGVrgl\nSZKkGlnhliRJkmrkSJPSmOjOqHXgSJNqo8VGf61ad2J2Ckea1KRzpElHmjStMU3LkSbbMnJhV5a1\nNV+jXlbP/h1p0pEmTaP96TvSpCRJkjShrHBLkiRJNbLCLUmSJNWo1Q9NRsROwLuBnwPTmfmRhrMk\naR7Gq9Qdxqs0Wm2/wv2HwMcy82XA4U1nZmmmm87AAqabzsACppvOgIbX0nidNj3Ta3F6jWlpvI7a\ntOl1Ps1Rp7c0I69wR8RZEbEpIq7pm78mIq6PiBsj4vXl7D2A9eX7X440o5WZbjoDC5huOgMLmG46\nA2Jc4nXa9EyvxelVZzziddSmTa/zaY46vaVp4gr3WmBN74yIWAG8q5y/H3BMROwLbABWlqu1/Wq8\nNI6MV6k7jFeppUYeZJl5GfDjvtkHATdl5rrMvBf4KHAE8CnghRHxbuD80eZUkvEqdYfxKrVXIwPf\nRMTewAWZuX85fSRwWGYeX06/CDg4M08cYF+jPwCp5aocRKPKeC3XN2alPlXFrPEq1W8p8dqWXkqW\nHNBtHZ1LGmPLKoCNWWmkjFepBdrSbmsjW9qSUb7f0FBeJC3MeJW6w3iVWqAtFe4rgVURsXdEbAsc\nhW3KpLYyXqXuMF6lFmiiW8Bzga8Bj42I9RHx0sy8D3gl8EXgWuC8zLxugH3N1dVR4+brmqktImJl\nRFwaEd+JiG9HxElN52lGRGwfEV+PiKvLvE01nad+EbEiIq6KiAuazku/iFgXEd8q83dFBftbUrwO\nEpsR8Y5y+b9FxJOWmc8F04uI1RFxZ/m5XBURb1pmeovGeMXHt2B6NRzfQL8RVR3jIOlVeYyD/s5U\neHyLplfF8S2nfB3nmDVeN69nvFaY5tDHmJmdfAErgJuAvYFtgKuBfZvOV5m3Q4AnAdc0nZd58vcI\n4Inl+wcB323LZ1fmacfy79bA5RQP+DSer578/Tfgw8D5Tedljrx9H9i14TwsGpvAc4CLyvcHA5fX\nnN7qKv9fi8V4lcc3YHpVH9+ivxEV/w8HSa/qY1zwd6aG/+Fi6VV6fEPmbaxj1ng1XmtKc6hjbEuT\nkqWYr6ujxuXcXTO1RmbekplXl+/vBq4DHtVsrrbIzJ+Wb7el+DG+v8HszBIRe1IE9vuBtj5M1HS+\nBonNw4GzATLz68AuEbF7jelBhZ/LADFe5fEN+ptS5fEN8htR2TEO8ZtU5TEu9jtT9f9wkN+1pmJ3\nrGPWeAWM1zrShCGOscsV7t5RsqB4CGSPhvLSWVF0IfUk4OvN5mSLiNgqIq4GNgEXZ+Y3ms5Tj7cB\nr6VFJwF9Erg4Iq6MiOMbysMgsTnXOnvWmF4Cv13eHrwoIvZbYlrLydNSj28QtR3fAr8RtRzjAulV\neowD/M5UenwDpDfq72ivSY9Z47X69DodrwOmOdQxdrnCbd+gyxQRDwI+AbyqPEtthcy8PzOfSBEs\nB0fE45vOE0BEPA+4NTOvovmryPN5WmYeCDwbeEVEHNJAHgaNzf7PcKkxPch23wT2Kr9X7wQ+s8S0\nhlHV8Q2iluMb4Dei0mNcJL1Kj3HA35nKjm+A9Jr4jm7O3oDrjXPMGq/VptfpeB0wzaGOscsVbrs6\nWoaI2Ab4JPChzBzlD/vAMvNO4FL6hipu0FOBwyPi+8C5wO9HxDkN52mWzPxB+feHwKcpbt2O2iCx\n2b/OnuW8WtLLzJ/M3B7MzM8D20TErktMbyl5Ws7xLaqO4xvgN6LSY1wsvbr+hwv8ztTyP5wvvQa+\no70mPWaN14rTG5d4XSjNYY+xyxVuuzpaoogI4Ezg2sw8o+n89IqIh0XELuX7HYBnUrQPa1xmvjEz\nV2bmPsDRwFcy8yVN52tGROwYETuX73cCngU00VPOILF5PvASgIh4CnBHZm6qK72I2L383hMRB1GM\nsvujJaY3iCqPb1FVH9+AvxGVHeMg6VV5jAP+zlR5fIum18B3tNekx6zxWnF6XY7XQdMc9hjbMtLk\n0DLzvoiY6epoBXBmDtCV4ChE0TXTocBuEbEeOCUz1zacrV5PA14EfCsirirnvSEzv9BgnmY8Ejg7\nIlZQnBCel5kXNZyn+bStWdPuwKfL+N8a+HBmXjzqTMwXmxHx5+Xy92bmRRHxnIi4CbgHeGmd6QFH\nAi+PiPuAn1KcMC1ZT4w/rIzxUykeqqn8+AZJj4qPj7l/I94I7DWTZsXHuGh6VHuMc/7O1PUdHSQ9\nqv8fDmzcY9Z4NV7rSJMhjzEy21ZnkCRJksZHl5uUSJIkSa1nhVuSJEmqkRVuSZIkqUZWuCVJkqQa\nWeGWJEmSamSFW5IkSaqRFW5JkiSpRla4JUmSpBpZ4ZYkSZJqZIVbkiRJqpEVbkmSJKlGVrglSZKk\nGlnhliRJkmpkhVuSJEmqkRVuSZIkqUZWuCVJkqQaWeGWJEmSamSFW5IkSaqRFW5JkiSpRls3nQF1\nR0T8LrA/8HzgdZl5VUQcCPwVsAPw4XLV/YE7MnOqkYxKAoxZqUuM1/EWmdl0HtQREfE64B8z88d9\n8z8KnJOZF5XTDwLuBHbOzJ+OPqeSwJiVusR4HW82KdEwvgScFxH9d0aeAnwFICICeAPw9/4QSI0z\nZqXuMF7HmBVuDSQi9gJWl5N/2TP/8cDtwKERsQZ4F7AuM08aeSYlbWbMSt1hvI4/m5RoURGxM/Ah\n4Ejgd4A3ZebTy2WvBB6cmW8up7cFrgMOy8ybGsqyNNGMWak7jNfJ4BVuDeIo4JLMvBf4EcXZ9oxD\ngX+ZmcjMXwA/AR4/0hxK6mXMSt1hvE4AK9waxA7Av5fvn0n5pHTZluypwBUzK0bEc4GHULRFk9QM\nY1bqDuN1AtgtoAbxAeDE8rZXZOZnI+JJwB9RfIeOK34X2A3YBzgkM++JiEcC+wFPBzYB12bmJU0c\ngDRhPsDSYvbJwB9m5hsi4lTg7zLz7mYOQZoYH2AJ8QoQEW8EtgF+nplvbSLzGoxtuFWbiHhUZt4c\nEe8FTgLuy8xfNp0vSXMrT5L/Z2aeEBEfyMz/t+k8SZpf2aPJXwGnZ+adTedH8xuoSUlE7BIRn4iI\n6yLi2og4OCJ2jYhLIuKGiLg4InbpWf8NEXFjRFwfEc/qmX9gRFxTLnt7z/ztIuK8cv7lEfHonmXH\nlmncEBEvqerANRJ3R8TuwK3AdsBODednIhivWoZ7gNsjYhvg3qYzMwkiYl1EfCsiroqIK8p5xqsW\nVTY5mQLeCWzbbG60mEHbcL8duCgz9wV+A7geOJmikf9jgS+X00TEfhQPAOwHrAHeXX4pAN4DHJeZ\nq4BVZRc3AMcBt5fz3wacXu5rV+AU4KDydWrvD49a700U3RzdA/x+Zt7VbHYmhvGqpfoZsAJ4LfDN\nhvMyKRJYnZlPysyDynnGqwZxGEX/3FPAY5rNihazaIU7Ih5C0V7oLIDMvK+8bXE4cHa52tkUQ5EC\nHAGcm5n3ZuY64Cbg4PJW5c6ZOdP4/5yebXr39UmKNr9QfJkuzsw7MvMO4BKKHxl1QGa+LjPPy8y3\nZuZnms7PJDBetRyZ+YvMfCPF3agLm87PBIm+aeNVi8rML2TmVzLzzzPz/zSdHy1skCvc+wA/jIi1\nEfHNiPjHiNgJ2D0zN5XrbAJ2L98/CtjQs/0GYI855m8s51P+XQ9FBQG4MyJ2W2BfkuZmvGrJIuKl\nEfH/AN/KzPVN52dCJHBxRFwZEceX84xXacwM0kvJ1sABwCsz8xsRcQbl7a0ZmZkR4dOXUvOMVy1Z\nZq5tOg8T6GmZ+YOI+BXgkoi4vneh8SqNh0Eq3BuADZn5jXL6E8AbgFsi4hGZeUt5O+vWcvlGYGXP\n9nuW+9hYvu+fP7PNXsDNUTxx+5DMvD0iNrJlqFPK/X6lN3P+EEkP1NZ4BWNW6hcRFPXq+DRFe+pN\nxqvUXpnZ3wxsUYs2KcnMW4D1EfHYctYzgO8AFwDHlvOOBWba6J4PHB0R20bEPsAq4IpyP3eVPSYE\n8GLgsz3bzOzrSIqHRAAuBp5V9rrwUIoO4b84Rx4bfZ166qnmwTy0Iv3Momxsc7zWHbOj+B/UncY4\nHIOf0+Kve+65h7vuumsmZncCngVc0xdjYx2vfk/asf9xSWMUx7BUgw58cyLw4YjYlmI0pJdSPMn+\nsYg4DlhH0UE7mXltRHwMuBa4Dzght+TwBIoO3neg6EXhC+X8M4EPRsSNFEOaHl3u60cR8dfAzNW6\n07J4uEPSwoxXqeU2bdrEC17wgpnJrwMfzsyLI+JKjFdprAxU4c7MfwOePMeiZ8yz/puBN88x/1+B\n/eeY/3PKH5Q5lq0FbFcoDSEzjVep5fbZZx+uvvrqmSYlT5iZn5k/wniVxsqg/XBrAatXr246C+ah\nJXloOn2N5n9QdxrjcAyjSGMcjkF+T9qw/3FJo83x2vmh3SMiu34MUpVmHsBqOh/zMWal2docs8ar\nNNtS49Ur3JIkSVKNrHBLkiRJNbLCLUmSJNXICrckSZJUIyvckiRJUo2scEuSJEk1ssItSZIk1WjQ\nod0lSWMkYnY3sva1LEn18Qq3JE2sLF+SpDp5hVuSJkT/VW1J0mhY4ZakiTJzRdvKt9Rmc50g2/Sr\nu6xwS5IktVJvBduT5C6zwi1JktQBvVe9vdrdLVa4JWlMDdNm215LpOYtHrM2CesqK9ySNNYGvSXt\nrWupHQarVHuS3C1WuCVJkjrHk+QusR9uSZIkqUZWuCVJkqQa2aREkiSpAQ5GNTmscEuSJDWmmrbY\ndhnYbla4JUkPYOEtdY1dBraZFW5JGiPV3aK28JakqvjQpCSNnWT2bWpJUpOscEuSJEk1skmJJEnS\niNgzyWSywi1JkjRS9T4j4bDv7WOFW5Ikaaw47HvbDNSGOyLWRcS3IuKqiLiinLdrRFwSETdExMUR\nsUvP+m+IiBsj4vqIeFbP/AMj4ppy2dt75m8XEeeV8y+PiEf3LDu2TOOGiHhJNYctjTfjVZKk9hj0\nockEVmfmkzLzoHLeycAlmflY4MvlNBGxH3AUsB+wBnh3bLm38R7guMxcBayKiDXl/OOA28v5bwNO\nL/e1K3AKcFD5OrW3oqB2iIhZL7WC8SpJUksM00tJf03qcODs8v3ZwPPL90cA52bmvZm5DrgJODgi\nHgnsnJlXlOud07NN774+CTy9fH8YcHFm3pGZdwCXUFQK1Dp2Q9YyxqskSS0xzBXuiyPiyog4vpy3\ne2ZuKt9vAnYv3z8K2NCz7QZgjznmbyznU/5dD5CZ9wF3RsRuC+xL0sKMV0mSWmLQhyaflpk/iIhf\nAS6JiOt7F2ZmRoSXN6WWyMwDjdfJMIpmXPZ4IC2dTS0FA1a4M/MH5d8fRsSnKdpnboqIR2TmLeXt\n51vL1TcCK3s235PiStfG8n3//Jlt9gJujoitgYdk5u0RsRFY3bPNSuAr/fmbmpra/H716tWsXr26\nfxVpbE1PTzM9Pf2A+W2NVzBmq1d3jwT2eFCl+WJW48wYmnSx2JWKiNgRWJGZP4mInYCLgdOAZ1A8\nOHV6RJwM7JKZJ5cPYX2EopDfA/gS8JjyqtrXgZOAK4DPAe/IzC9ExAnA/pn58og4Gnh+Zh5dPoR1\nJXAAxTf0X4EDyvahM/lLr7Y0qzh739KnqP+P5vz0pz9lp512ogi39sUrGLNVmx1/UHz0Ocf7hZYN\ntw//f9WKCDKzlbUw43X5qonR5S7bwv/n8iw1Xge5wr078OnylsjWwIcz8+KIuBL4WEQcB6wD/ggg\nM6+NiI8B1wL3ASf0ROsJwAeAHYCLMvML5fwzgQ9GxI3A7cDR5b5+FBF/DXyjXO+0/sJbzVjoFlnv\nMgN7tDZtKpppR8TVGK+SJKDugXa0uEWvcLedZ9/N6L+qPd97/zej1+arZWDMVs0r3N1XXqS4GtiQ\nmX9Q3i06D3g05QnyzMlrRLwB+FPgl8BJmXlxOf9AihPk7SlOkF9Vzt+OopehAyhOkI/KzP8olx0L\n/I8yG3+TmefMkTfjdZnacYXbcrkqSy1jh+kWUJIk1eNattSK7DdfGjNWuCVJasiGDZt70nw/W+73\n22++NGascEuS1JBXv/rVM2/v75ltv/nSmBm0H25JklShCy+8kIc//OEzk3O2CW1Dv/l246lJVlU3\nnla4NZRhO/C3xxJJmtvXvvY1zj///JnJc4EHR8QHaXG/+dKk6T/JPO2005a0H5uUaAmGqTjnkOtL\n0mR485vfzPr162cmjwa+kpkvBs4Hji3nHwt8pnx/PnB0RGwbEfsAq4ArMvMW4K6IOLh8iPLFwGd7\ntpnZ15EUD2FC0Uf/syJil4h4KPBM4It1HOckiojNLwm8wi1JUlvMXJ14K/abPwbs+1pb2A+3hrKl\nP9HB+uG278/Rsx/uyWI/3N3X5pg1Xpdm/rEq+qebWDab/9/h1DnSpCRJm/lshtRl8w/7rvpY4Zak\njmm+Xai3yiVpGD40KUmd5APJktQVVrglSZKkGlnhliRJkmpkG24tqqr2oj5oJUmSJpFXuDWgKtqL\n2uZUkiRNHivckiRJUo2scEuSJEk1sg23JEnSMjTfN77azgq3JEnSsjmCo+ZnhVuSJGlC2YPYaNiG\nW5IkaWLZg9goWOGWJEmSamSFW5IkSaqRFW5JkiSpRj40qUb4kIY0Hvq7QzOeJemBrHBrTvX3KTpT\nKNt1krSYdvfxa1dokrQYK9xagJViqT2s2EpSV9mGW5IkSaqRFW5JkiSpRgNVuCNiRURcFREXlNO7\nRsQlEXFDRFwcEbv0rPuGiLgxIq6PiGf1zD8wIq4pl729Z/52EXFeOf/yiHh0z7JjyzRuiIiXVHPI\n0vgzZiVJao9Br3C/CriWLY0ITwYuyczHAl8up4mI/YCjgP2ANcC7Y8vTPu8BjsvMVcCqiFhTzj8O\nuL2c/zbg9HJfuwKnAAeVr1N7KwmSFmTMSpLUEotWuCNiT+A5wPvZ8qTO4cDZ5fuzgeeX748Azs3M\nezNzHXATcHBEPBLYOTOvKNc7p2eb3n19Enh6+f4w4OLMvCMz7wAuoagQSFqcMStJNYqIzS9pMYNc\n4dEMYawAAB6CSURBVH4b8Frg/p55u2fmpvL9JmD38v2jgA09620A9phj/sZyPuXf9QCZeR9wZ0Ts\ntsC+JC3OmJWk2iWzexCS5rZghTsingfcmplXMU8/VFmMcuC3TWqBCy+8EABjVpKk9lisH+6nAodH\nxHOA7YEHR8QHgU0R8YjMvKW89Xxruf5GYGXP9ntSXOXaWL7vnz+zzV7AzRGxNfCQzLw9IjYCq3u2\nWQl8Za5MTk1NbX6/evVqVq9ePddq0lianp5menoagC9/+csARMT3MWalVuqNWalNHDm2PjHohxkR\nhwKvycw/iIj/TfHQ1OkRcTKwS2aeXD6A9RGKB6b2AL4EPCYzMyK+DpwEXAF8DnhHZn4hIk4A9s/M\nl0fE0cDzM/Po8gGsK4EDKK7U/StwQNk2tDdf6ReiekXQ9Q580/9+seXDvC/4f6xGRFCEnDE7LmbH\nI8wfT0tdVt3+/d8ObyZmm87HXIzX+c1fTvZPd3eZ//sHWmq8DjvS5Mwn/1bgYxFxHLAO+COAzLw2\nIj5G0TvCfcAJPZF6AvABYAfgosz8Qjn/TOCDEXEjcDtwdLmvH0XEXwPfKNc7rb/gVrWae/BjpgKv\nGhizkiQ1bOAr3G3l2Xd1Fr+q3fu+yivcxf78P1ajzVfLwJhdCq9wj7c2x6zxOj+vcE+mpcarI01K\nkiRJNbLCLUmSJNXICrckSZJUo2EfmpQkaV69D1/b/lOSCla4JamFujtc9AO7/JSkSWeTEklqLQcF\nlaRxYIVbkqQG/OxnP+Pggw8GICK+HRFT5ftdI+KSiLghIi6OiF1mtomIN0TEjRFxfUQ8q2f+gRFx\nTbns7T3zt4uI88r5l0fEo3uWHVumcUNEvGQUxyxNKivckiQ1YPvtt+fSSy+dmXwisCYiDgZOBi7J\nzMcCXy6nKUeGPQrYD1gDvDu2tD16D3BcZq4CVkXEmnL+cRSjzK4C3gacXu5rV+AUilFmDwJO7a3Y\nS6qWFW5Jkhqy4447zrzdFtiGog3R4cDZ5fyzgeeX748Azs3MezNzHXATcHBEPBLYOTOvKNc7p2eb\n3n19Enh6+f4w4OLMvKMcEfYSikq8pBpY4VZrRMTmlyRNgvvvv3/m7SaKCvAVwO6Zualn/u7l+0cB\nG3o23wDsMcf8jeV8yr/rATLzPuDOiNhtgX1pHr1llOWUhmWFe8K168fDB8QkTZatttpcDO9JcbX6\nCb3Ly3HV/WFsjcSySktht4DCbrwkqVmZeWdEXErR1GNTRDwiM28pm4vcWq62EVjZs9meFFemN5bv\n++fPbLMXcHNEbA08JDNvj4iNwOqebVYCX5krb1NTU5vfr169mtWrV8+1mjSWpqenmZ6eXvZ+ousD\nE0REdv0YmlRc2e6tcA/6fqnbDbY//6dLFxFkZmvPnozZwcwfm/3TVSyrZ//+nxd22223sfXWW/PQ\nhz4UYEfgi8BbKSrCt2fm6RFxMrBLZp5cPjT5EYqHHPcAvgQ8JjMzIr7+f9u73xhJ6ju/4+8PBttc\njIzXtvi7Nhd5nZg7JAwKEF3sjIOM13lgOOli1lHOG3sVnby+4NyDxEt8wrtCkcB5gG2d8JNw8hpk\nDhRizAmMd/1nJEQEC47hwGuyIGWTZQ3reDk4W8Q5iL950DVs7zA70zPT1V3d/X5Jo6n+VXXVr7rr\n2/3tX/1+VcA1wD7gXuCrVXV/ku3ABVX1mSRbgKuqakszaPJR4CJ6b9yPgIua/tyvMV6POT4mYRQx\nNP55x3gc9Kz1O9YWbkmSxuC5555j69atCw/3AXdU1X1JHgLuTLINOAh8HKCq9ie5E9gPvAps78uG\ntwNfB04F7quq+5vyW4BbkzwNHAW2NOt6Icn1wCPNcrsWJ9uSZ8CHxxbuGWcL9/SxhXs62MI9O7oc\ns8brMbPZwm08L7bWeHXQpCRJktQiE25JkiSpRSbckiRJUotMuCVJkqQWmXBLkiRJLTLhliRJklrk\ndbhnUDdu4768/jp6KSJpMi3+rDGWJc0qE+6Z1fWL2Xe9ftJwTcIP4dU78V3rJGmWmHBLUmeYoErS\nNLIPtyRJktQiE25JkiSpRXYpkSRJWsJ0jq3QONjCLUmSdELF8eMrpNUz4ZYkSZJatGzCneTNSR5O\n8liSJ5PsbMo3JNmb5ECSPUlO73vOtUmeTvJUkiv6yi9O8kQz7yt95W9KckdT/lCSd/fN29ps40CS\nTw51z6Up9Otf/xoAY1aSNExJjvvT6iybcFfVr4EPVdWFwIXA5iSXAjuAvVX1XuD7zWOSnA9cDZwP\nbAZuzrF35WvAtqraBGxKsrkp3wYcbcpvAm5s1rUBuA64pPn7Yn+SIOn13vzmNwNgzEqShquwe83a\nrdilpKpebibfCJxC75X+GLC7Kd8NXNVMXwncXlWvVNVB4Bng0iRnAadV1b5muW/0Pad/XXcBlzfT\nHwH2VNWLVfUisJdeQiBpMMasJEkdsGLCneSkJI8BR+h9me4DzqiqI80iR4AzmumzgWf7nv4scM4S\n5Yebcpr/hwCq6lXgpSRvX2ZdWoNJPg00yXUfF2NWkqTuGKSF+zfN6elz6bV8/e6i+Z5fmBiT+lZN\nar3Hx5iVJKk7Br4Od1W9lOSH9E4bH0lyZlU935x6/nmz2GFgY9/TzqXXynW4mV5cvvCcdwE/S3Iy\n8NaqOprkMDDX95yNwA+WqtvOnTtfm56bm2Nubm6pxaSpND8/z/z8/OvKjVmpm04Us5KmV3qNXSeY\nmbwDeLWqXkxyKvBd4AZ6X6pHq+rGJDuA06tqRzMA65v0BkydA3wPeE9VVZKHgWuAfcC9wFer6v4k\n24ELquozSbYAV1XVlmYA1qPARUCAHwEXNX1D++tYy+2DenrdMRZep2FMj2d9vtfL+8UvfsE73/lO\neiFnzE6S42MUThwHbcwbzbZ935eWhKrqZJ+5WY/XE393Ln48e/Nm9bhYa7yu1MJ9FrA7yRvodT+5\no6ruS/IQcGeSbcBB4OMAVbU/yZ3AfuBVYHtfpG4Hvg6cCtxXVfc35bcAtyZ5GjgKbGnW9UKS64FH\nmuV2Lf7ilnS85557DoAkj2PMSpLUCcu2cE+CWf/1PShbuGdHl1vLwJg9EVu4Z1eXY3bW49UWbuN5\nsbXGq3ealCRJklo08KBJSZLWo//SnrPaOiZpNplwS9KYzN615ftPT0vS7LBLiSSNlZdFl6RpZwv3\nlJu2FjRPSUuS2jJt35nqDlu4Z8I0Jaa2BkqS2lT4XaNhM+GWJEmSWmSXEkmSJK2KXTxXxxZuSZIk\nrZLdblbDhFuSJElqkQm3JEmS1CITbkmSJKlFJtySJElSi0y4JUmSpBaZcGtiJXntT5ImzaFDh/jQ\nhz4EQJInk1zTTG9IsjfJgSR7kpy+8Jwk1yZ5OslTSa7oK784yRPNvK/0lb8pyR1N+UNJ3t03b2uz\njQNJPjmSnZZmlAn3FJqdRNRLEkmaXKeccgo33XTTwsPLgM8meR+wA9hbVe8Fvt88Jsn5wNXA+cBm\n4OYc+6D/GrCtqjYBm5Jsbsq3AUeb8puAG5t1bQCuAy5p/r7Yn9hLGi4T7qllMipJXXbmmWdy4YUX\nAlBVvwJ+CpwDfAzY3Sy2G7iqmb4SuL2qXqmqg8AzwKVJzgJOq6p9zXLf6HtO/7ruAi5vpj8C7Kmq\nF6vqRWAvvSReUgtMuCVJGrMk5wHvBx4GzqiqI82sI8AZzfTZwLN9T3uWXoK+uPxwU07z/xBAVb0K\nvJTk7cusS1ILvLW7JEnjdxfwuar65aJbZleSsZ6u3Llz52vTc3NzzM3Nja0u0qjNz88zPz+/7vWY\ncEuSRm7xGJOq2ewC98orryxM3lpVdzfTR5KcWVXPN91Fft6UHwY29j39XHot04eb6cXlC895F/Cz\nJCcDb62qo0kOA3N9z9kI/GCpOvYn3NNo+sc7aT0W/8jctWvXmtZjlxJJGpH+Ac1+yRezPtakqti2\nbdvC9Jf7Zt0DbG2mtwJ395VvSfLGJL8NbAL2VdXzwN8kubQZRPmHwLeXWNcf0BuECbAHuCLJ6Une\nBnwY+O6w93FyzPaxqPbZwi1JI9X/pT7rSfdse/DBB7ntttsASPLjpvha4AbgziTbgIPAxwGqan+S\nO4H9wKvA9jp2amA78HXgVOC+qrq/Kb8FuDXJ08BRYEuzrheSXA880iy3qxk8KakFmfTTeElq0vdh\n2HoNHAuvycL0UmXrme7W+jwGjklCVXU2k5vlmD0+NuHEx/So542/XrN6TEC3Y3YW4nXp70yWeOy8\nE8873jQfM2uNV1u4JUmStA6euVuJfbglSZKkFplwayo4CE2SJHWVXUqmhMnmQj9wSZKkbrGFe6p4\nWSNJkqSuMeGWJEmSWrRiwp1kY5IfJvlJkieTXNOUb0iyN8mBJHuSnN73nGuTPJ3kqSRX9JVfnOSJ\nZt5X+srflOSOpvyhJO/um7e12caBJJ8c3q5L0+fQoUMAGK+SJHXHIC3crwB/UlW/A1wGfDbJ+4Ad\nwN6qei+9O1ftAEhyPnA1cD6wGbg5xzoYfw3YVlWbgE1JNjfl24CjTflNwI3NujYA1wGXNH9f7E8U\nJB3vlFNOAcB4lSSpO1ZMuKvq+ap6rJn+FfBT4BzgY8DuZrHdwFXN9JXA7VX1SlUdBJ4BLk1yFnBa\nVe1rlvtG33P613UXcHkz/RFgT1W92NwBay+9pEDSEs4888zXpo1XSZK6YVV9uJOcB7wfeBg4o6qO\nNLOOAGc002cDz/Y97Vl6X/iLyw835TT/DwFU1avAS0nevsy6JK3AeJUkqRsGTriTvIVea9bnquqX\n/fOa+756eQypI4xXSVrawn0bvH+DRmmg63AnOYXel/etVXV3U3wkyZlV9Xxz+vnnTflhYGPf08+l\n19J1uJleXL7wnHcBP0tyMvDWqjqa5DAw1/ecjcAPFtdv586dr03Pzc0xNze3eBFpas3PzzM/P7+4\nuLPxCsasZtsJYlYj5a3INVrpNXYts0Dv599ueoOk/qSv/EtN2Y1JdgCnV9WOZhDWN+kNmjoH+B7w\nnqqqJA8D1wD7gHuBr1bV/Um2AxdU1WeSbAGuqqotzSCsR4GL6EXEj4CLmv6hC/WolfZhFvTepoXX\nYanpleavdrqL6wuzfixUFSeddBLAl7sYr01dZjZmj49TOPExPep5XajXMbN2fCShqjqZ9U1jvHY3\nDqdp3jHTePysJV4HaeH+PeBfAH+V5MdN2bXADcCdSbYBB4GPA1TV/iR3AvuBV4HtfdG6Hfg6cCpw\nX1Xd35TfAtya5GngKLClWdcLSa4HHmmW27X4y1vSMQ8++ODC5IeM127wlPWg+r+8JU0243mxFVu4\nu24af30P6vVf5JPWIj3s9U33r+pBdbm1DGYvZk989mnx41lv4T42b5aOD+h2zE5jvNrCbTyvx1rj\n1TtNTrzi+AN91vl6SJKkbjHhliRJklpkwi1JkiS1yIRbkiRJapEJtyRJktQiE25JkiSpRSbckiRJ\nUosGurW7JEnSpPIGVBo3W7glSdIM8D4NGh9buCVJktSKxWcXpu3Ok4My4ZYkSVJLFt/2fTaZcE8Y\n+6ENrv+1mtVf1JIkafxMuCfSQvJo8r08XydpEvljWdK0cdCkJKljHNwmabrYwi1JQ2S3L0nSYibc\nkjR0DhKSJB1jlxJJkiSpRSbckiRJUovsUiJJkqaKYynUNSbckiRpCjmWQt1hwi1JkqSRmNXr7NuH\nW5IkSSMym9fZN+GWJGlMPv3pTwOQ5ImFsiQbkuxNciDJniSn9827NsnTSZ5KckVf+cVJnmjmfaWv\n/E1J7mjKH0ry7r55W5ttHEjyydZ3VpphJtyaCUle+5OkrvjUpz61VPEOYG9VvRf4fvOYJOcDVwPn\nA5uBm3PsQ+1rwLaq2gRsSrK5Kd8GHG3KbwJubNa1AbgOuKT5+2J/Yi9puEy4J4DJ4jDM5iksSd32\ngQ98YKnijwG7m+ndwFXN9JXA7VX1SlUdBJ4BLk1yFnBaVe1rlvtG33P613UXcHkz/RFgT1W9WFUv\nAnvpJfGSWmDCPTFMGCVpRpxRVUea6SPAGc302cCzfcs9C5yzRPnhppzm/yGAqnoVeCnJ25dZl6QW\neJUSSVJnLT6zN0tXNQCoqkoy1p3euXPna9Nzc3PMzc2NrS7SqM3PzzM/P7/u9ZhwS9I62d2rTTN5\nLeUjSc6squeb7iI/b8oPAxv7ljuXXsv04WZ6cfnCc94F/CzJycBbq+poksPAXN9zNgI/WKoy/Qm3\nNGsW/8jctWvXmtZjlxJJGgq7fWlo7gG2NtNbgbv7yrckeWOS3wY2Afuq6nngb5Jc2gyi/EPg20us\n6w/oDcIE2ANckeT0JG8DPgx8t82dkmbZigl3kj9PcsRLFknd5yXGpMnyiU98YmHy7yU5lORTwA3A\nh5McAP5J85iq2g/cCewHvgNsr2N9bLYD/wl4Gnimqu5vym8B3p7kaeDf0FzxpKpeAK4HHgH2Abua\nwZMTywsMqMuyUn+4JB8AfgV8o6ouaMq+BPyiqr6U5PPA26pqR3PJom8C/4De4IvvAZuaPmj7gD+u\nqn1J7gO+WlX3J9kO/G5VbU9yNfD7VbWluWTRI8DFTVV+BFy8+AMhSU17n77eh8fCPq51ehjr6Pr6\nBlt2mo+XBx54gA9+8IMAT3YxXpv6TF3MnjhGFz/u6rzJqde0HTvQO36qqpNZ4iTF6+TH4ezNm5Rj\nq99a43XFFu6qegD460XFXrJI6iAvMSZJmhT9ZyWm/czEWvtwe8kiaXIYr5KkDqq+v+m27kGTzbmm\n6X+lpClgvEqSNHprvSxgZy9Z5DVCNWsGuEZop+IVjFnNtmFd11fS5Fhx0CRAkvOAv1w0COtoVd2Y\nZAdw+qJBWJdwbBDWe5pBWA8D19AbDX0vxw/CuqCqPpNkC3BV3yCsR4GL6PWy/xFw0awMmnx9X6Yu\nDErs+voGXfaYKT52Fg+a7ES8NvWZupid/MFak1OvaTt2wEGTwzL5cei8STjW1hqvK7ZwJ7kd+MfA\nO5IcAq6jd4miO5NsAw4CHweoqv1JFi5Z9Cqvv2TR14FTgfsWXbLo1uaSRUeBLc26XkiycMkimIJL\nFq3e0kmi1mt6X9fFlxjDeJUkaewGauHuskn69b0aw7kUYP/0LKxv9c+b1mOnq61lMJ0xO/kta5NT\nr2k7dqDbMTtJ8Tr5cei8STjWWmvhliS93rRfwqqr+l/3SfhyliQw4ZakdZje7knd5WuuHn/0apKY\ncEuSpAm1uLuC1E0m3JIkSRq7ae4ytu4b30iSJEnrVxx/1mJ6mHBLkiRJLTLhliRJklpkH+6OcdT1\naE1zfzFJktQNtnB3konf6ExvfzFJktQNtnBLkibS4jOCnqWS1FUm3JI0ALt7dZHXYJ41xqEmlQm3\nJA3MBE8aP+82qsljwi1JkqROmbYuYybckiRJ6pjpOqPoVUokSZKkFplwS5IkSS2yS0kHOOq6G7wJ\njiRJaoMJd2c46nr8fA90PH8MTxZ/NEvqKhNuSVqWP8Qmh+/VtPFHr6aFCbckSeqw6bpahWaTCbck\nSZI6bdK7jHmVEkmSJHVccfzZjsliC7ckaepM213qJE02E+4xcSBIty28P35JzxbjcprY71dSd9il\nZKwm+/TIdPN9mV2FsSlJGiZbuCVJUmd4pknTyIRbkiR1jNdU14lN4hgNE25JM83WtNkw6ZcUk9Rv\n8sZomHCPkF/sk8cv6Vlha9r08z2WND6dHzSZZHOSp5I8neTz467P+jkYa7L4fq3W9MWsNL26EK9J\njvuTplGnE+4kbwD+DNgMnA98Isn7xlur15ufnx93FTpiftwVYNx1mPVjoQsxu9J7MJwv9+W3sX5t\nr39U5ju5/tUcA9Mc012I12PavDrQfAvrHLX5cVeg0ybhB1unE27gEuCZqjpYVa8AfwFcOeY6vc5y\nH8iTcBAMz/y4K0CbdRjkvZzmL+cBjT1mB3sP1vvlPsg21qPt9Y/KfEfXf/z7v1xsT3lMjz1eR2N+\n3BUYgvlxV6Djun82uusJ9znAob7HzzZlE6b7B4IG4fs4gE7G7Gz98NXqzWxsjy1ejUm1patdlLqe\ncHfuE3DXrl2vvYknn3wyBw8efG3e4je5S2+0hmup99r3GxhyzF522WXHvb633XbbCZddWKY/Ro9/\nX2Y2qdIqLD52+o+nKTS0gHj55Zc5++yzj3vtvvWtb70235jU6Ax+BmuU0uUrLyS5DNhZVZubx9cC\nv6mqG/uW6e4OSGNSVWP5ZDFmpbUZR8war9LarCVeu55wnwz8d+By4GfAPuATVfXTsVZM0pKMWWly\nGK/S6HT6OtxV9WqSPwa+C7wBuMUPAqm7jFlpchiv0uh0uoVbkiRJmnRdHzQ5kCTXJ3k8yY+TfDfJ\nWWOow39M8tOmHv8lyVvHUId/luQnSf5fkotGuN2x3jghyZ8nOZLkiVFvu68OG5P8sHn9n0xyzRjq\n8OYkDyd5rKnDzlHXYYk6DRQX6zmGBj3ukxxM8lfN58S+lraxpv1IsiHJ3iQHkuxJcvqw9mGQOiX5\najP/8STvH7Teg6w/yVySl5o6/zjJn65y/SvG93rqP8g2hrAPA30+rHc/hqHtmJ2GeG2e20rMth2v\ng2yj6zHbdrw26xh+zFbVxP8Bp/VN/2vga2Oow4eBk5rpG4AbxlCHvw+8F/ghcNGItvkG4BngPOAU\n4DHgfSPe7w8A7weeGPVr3leHM4ELm+m30OsXOdLXodn2bzX/TwYeAi4d12vS1GPFuFjvMTTocQ/8\nD2DDGvdjxW2sZz+ALwH/rpn+/Ik+P1a7D4PUCfinwH3N9KXAQ0Ne/xxwzzqOoWXjez31X8U21rsP\nK34+DGM/hvHXdsxOQ7w2zx96zLYdr6vYRqdjtu14bdYx9Jidihbuqvpl38O3AL8ZQx32VtXCdh8G\nzh1DHZ6qqgMj3uzYb5xQVQ8Afz3KbS5Rh+er6rFm+lfAT4Gzx1CPl5vJN9L7MB15LPQbMC7WdQyt\n8rhf05UgBtzGevbjY8DuZno3cNUyy65mHwap02vbrqqHgdOTnDHE9a+2zscZIL7XU/9BtwHr24dB\nPh/WvR/D0HbMTkm8Qjsx23a8DrqN1dT5ddqO2bbjtdnG0GN2KhJugCT/Icn/Av45cN2Yq/Np4L4x\n12FUOnmjk3FKch69X98Pj2HbJyV5DDgC7KmqR0Zdh2WcKC5GdQwVsCfJo0n+VQvrX89+nFFVR5rp\nI8CJPrRXuw+D1GmpZQZtMBhk/QX8w/S6Ot2X5PwB1z2o9dR/UEPbh2U+H0axH6s1zpjtcrxCOzHb\ndrwOuo1Jj9mh1n9YMdvpq5T0S7KXXhP/Yv++qv6yqr4AfCHJDnrdSnaOug7NMl8A/raqvjns7Q9a\nhxFz1G2fJG8B/jPwueZX8Ug1LVMXNv0uv5Xkd6rqJ21ucwhxseIxNKTj/veq6rkk7wT2JnmqaSkZ\n1jaW3Y9l1v+F41ZSVTnxtY+X3YfV1qm/emt83iDL/TfgXVX1cpKPAnfTO90/TGut/6CGsg8DfD60\nvR8L9Wg1ZqchXlfYRlsx23a8DrrspMfs0Oo/zJidmIS7qj484KLfBO6lhYR7pTok+Zf0+vRcPuxt\nD1qHMTgMbOx7vJHer7yZk+QU4C7gtqq6e5x1qaqXkvwQ2Ay0mnAPIS5WPIaGcdxX1XPN//+d5Fv0\nTq0+0Dd/vdtYdj+WW38zAOjMqno+vUHfP19quZX2YbV1OsEy5zZlgxjkvftl3/R3ktycZENVvTDg\nNlZbh9XUfyDD2IcBPh9a348FbcfsNMTrSttoKWbbjteBtjHpMTus+g87ZqeiS0mSTX0Pr6TX12bU\nddgM/Fvgyqr69ai3v4RR3bXsUWBTkvOSvBG4GrhnRNvujCQBbgH2V9WXx1SHd6QZKZ/kVHqDn8Z6\nTd0B42KYx9CSx32S30pyWjP9d4ArgLVe1eZEsbWe/bgH2NpMb6XXInP8Rte2D4PU6R7gk816LwNe\n7DtVvpIV15/kjCY+SHIJvcvRDuuLG9ZX/4Gsdx8G/HxofT8GMeKYndR4hXZitu14HWgbkx6zw6h/\nKzFb6xjF2ZU/es39TwCPA98GzhpDHZ4G/ifw4+bv5jHU4ffp9Sf6P8DzwHdGtN2P0hvB+wxw7Rj2\n+3Z6d0n7v83+f2oMdfhH9AYoPtZ3DGwecR0uoHcq7fEmHv501K/DEnVaMi7oDT65dxjH0ImO+/5t\nAH+3eW8eA55sYxvr2Q9gA/A94ACwBzh9WPuwVJ2APwL+qG+ZP2vmP84qr3C00vqBzzb1fQz4r8Bl\nq1z/Qnz/bfMefHqY9R9kG0PYh6U+Hz467P0Yxl/bMTsN8do8t5WYbTteB9lG12O27Xht1jH0mPXG\nN5IkSVKLpqJLiSRJktRVJtySJElSi0y4JUmSpBaZcEuSJEktMuGWJEmSWmTCLUmSJLXIhFuSJElq\nkQm3JEmS1KL/D7N8GqU4yetlAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7f1280da98d0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "%matplotlib inline\n",
    "from numpy import loadtxt, mean, arange, shape, sqrt\n",
    "from matplotlib.pyplot import show, hist, subplots, suptitle\n",
    "\n",
    "nbBins=50\n",
    "Mpc=(3.0856776e+16)*1e8 # Mpc to cm\n",
    "Nm=20\n",
    "\n",
    "x,y,z,Bx,By,Bz,B2=loadtxt(\"Results/turbulent_EGMF.dat\",unpack=True)\n",
    "\n",
    "f,ax = subplots(2,3,figsize=(12,9))\n",
    "\n",
    "ax[0,0].hist(Bx**2,nbBins)\n",
    "ax[0,1].hist(By**2,nbBins)\n",
    "ax[0,2].hist(Bz**2,nbBins)\n",
    "ax[0,0].set_title(\"$\\overline{(\\delta B_x/\\delta B)^2}$ = %f\"%(mean(Bx[B2!=0]**2/B2[B2!=0])))\n",
    "ax[0,1].set_title(\"$\\overline{(\\delta B_y/\\delta B)^2}$ = %f\"%(mean(By[B2!=0]**2/B2[B2!=0])))\n",
    "ax[0,2].set_title(\"$\\overline{(\\delta B_z/\\delta B)^2}$ = %f\"%(mean(Bz[B2!=0]**2/B2[B2!=0])))\n",
    "ax[0,0].set_yscale('log')\n",
    "ax[0,1].set_yscale('log')\n",
    "ax[0,2].set_yscale('log')\n",
    "\n",
    "suptitle(\"$\\overline{(\\delta B)^2}$ = %f, - Nm=%i\"%(mean(B2),Nm))\n",
    "\n",
    "ax[1,0].hist(Bx,nbBins)\n",
    "ax[1,1].hist(By,nbBins)\n",
    "ax[1,2].hist(Bz,nbBins)\n",
    "ax[1,0].set_title(\"$\\delta B_x$\")\n",
    "ax[1,1].set_title(\"$\\delta B_y$\")\n",
    "ax[1,2].set_title(\"$\\delta B_z$\")\n",
    "\n",
    "show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "# Test lepton trajectory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/usr/lib64/python2.7/site-packages/numpy/lib/npyio.py:823: UserWarning: loadtxt: Empty input file: \"Results/lepton_deflection.dat\"\n",
      "  warnings.warn('loadtxt: Empty input file: \"%s\"' % fname)\n"
     ]
    },
    {
     "ename": "ValueError",
     "evalue": "need more than 0 values to unpack",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "\u001b[1;32m<ipython-input-2-ba7ddba6eae0>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m      5\u001b[0m \u001b[0mMpc\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m3.0856776e+16\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m*\u001b[0m\u001b[1;36m1e8\u001b[0m \u001b[1;31m# Mpc to cm\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      6\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 7\u001b[1;33m \u001b[0mx\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mz\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mux\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0muy\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0muz\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mloadtxt\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Results/lepton_deflection.dat'\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0munpack\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      8\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      9\u001b[0m \u001b[0mfig\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfigure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mValueError\u001b[0m: need more than 0 values to unpack"
     ]
    }
   ],
   "source": [
    "from matplotlib.pyplot import figure, show\n",
    "from mpl_toolkits.mplot3d import Axes3D\n",
    "from numpy import loadtxt\n",
    "\n",
    "Mpc=(3.0856776e+16)*1e8 # Mpc to cm\n",
    "\n",
    "x,y,z,ux,uy,uz = loadtxt('Results/lepton_deflection.dat',unpack=True)\n",
    "\n",
    "fig = figure()\n",
    "#ax = fig.add_subplot(111,projection='3d')\n",
    "#\n",
    "#ax.quiver(x/Mpc,y/Mpc,z/Mpc,ux,uy,uz,length=20)\n",
    "#\n",
    "#ax.legend(loc=\"best\")\n",
    "#ax.set_xlabel(\"x [Mpc]\")\n",
    "#ax.set_ylabel(\"y[Mpc]\")\n",
    "#ax.set_zlabel(\"z [Mpc]\")\n",
    "\n",
    "ax = fig.add_subplot(111)\n",
    "\n",
    "ax.quiver(x/Mpc,z/Mpc,ux,uz)\n",
    "ax.plot(x/Mpc,z/Mpc)\n",
    "ax.scatter(x[0]/Mpc,z[0]/Mpc,marker='o',color='r')\n",
    "\n",
    "ax.grid(b=True,which='major')\n",
    "ax.set_xlabel(\"x [Mpc]\")\n",
    "ax.set_ylabel(\"z [Mpc]\")\n",
    "\n",
    "show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}