Analysis.py
5.41 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/bin/python
from sys import argv
from numpy import append, savetxt, shape, array, newaxis, zeros, arange
from Modules.Read import ReadEnergy, ReadTime, ReadExtraFile, ReadProfile
from Modules.Read import ReadMomentumAngle, ReadPositionAngle, resultDirectory
from Modules.Spectrum import spectrum
from Modules.Map import printMap, isotrop
from Modules.Angle import radial, angle_vs_energy
from Modules.Timing import timing
from Modules.Constants import degre
def InProgress(fileId,step,i,Nmax):
print "Work on ", fileId, "(step "+ step +": ", (i*100)/Nmax, "% done"
if shape(argv)[0] < 2:
print "not enough arguments (at least 1)"
exit()
#================================================================#
# Parameters
#================================================================#
PowerSpectrum=[1,1.5,2,2.5]
powerlaw_index = 2
Elim = 1e-1 # GeV
thetalim = 20 # degre
for fileId in argv[1:]:
# read files
time = ReadTime(fileId)
energy = ReadEnergy(fileId)
weightini, generation, theta_arrival, Esource = ReadExtraFile(fileId,[2,3,4,5])
nbPhotonsEmitted=ReadProfile(fileId,[3])
#=============================================================================#
# IMAGING
#=============================================================================#
thetaDir,phiDir = ReadMomentumAngle(fileId)*degre
thetaPos,phiPos = ReadPositionAngle(fileId)*degre
theta = thetaDir - thetaPos
phi = phiDir -phiPos
# apply source spectrum
weight_source = (Esource/min(Esource))**(1-powerlaw_index)
weight = weightini* weight_source
# apply selection
cond=(energy>Elim) & (abs(theta)<thetalim) & (abs(phi)<thetalim)
weight=weight[cond]
theta=theta[cond]
phi=phi[cond]
printMap(theta,phi,weight,fileId,source=isotrop(),borne=[thetalim,thetalim])
Gen_contrib = []
Gen_cont = zeros((int(max(generation))+1))
Source = []
Spectrum = []
Radial = []
Angle_Energy = []
Timing = []
for powerlaw_index in PowerSpectrum:
# apply source spectrum
weight_source = (Esource/min(Esource))**(1-powerlaw_index)
weight = weightini* weight_source
#=============================================================================#
# GENERATION CONTRIBUTION
#=============================================================================#
NbTotEvents = sum(weight)
if Gen_contrib==[]:
Gen_contrib = arange(0,max(generation)+1,1)[:,newaxis]
for gen in list(set(generation)):
Gen_cont[int(gen)] = sum(weight[generation==gen])/NbTotEvents *100
Gen_contrib = append(Gen_contrib,Gen_cont[:,newaxis],axis=1)
#=============================================================================#
# SPECTRUM (SOURCE AND MEASURED)
#=============================================================================#
nbBins = 100
# draw source spectrum
Es=array(list(set(Esource)))
Ws= (Es/min(Es))**(1-powerlaw_index)
Es,Fs = spectrum(Es,Ws,nbBins=nbBins)
Es=Es[:,newaxis]
Fs=Fs[:,newaxis]
if Source==[]:
Source = Es
Source = append(Source,Fs,axis=1)
else:
Source = append(Source,Fs,axis=1)
# primary gamma-rays contribution and full spectrum
ener,flux,flux_0 = spectrum(energy,weight,generation,nbBins)
ener=ener[:,newaxis]
flux=flux[:,newaxis]
flux_0=flux_0[:,newaxis]
if Spectrum==[]:
Spectrum = ener
Spectrum = append(Spectrum,flux,axis=1)
Spectrum = append(Spectrum,flux_0,axis=1)
else:
Spectrum = append(Spectrum,flux,axis=1)
Spectrum = append(Spectrum,flux_0,axis=1)
#=============================================================================#
# RADIAL DISTRIBUTION AND ANGLE VERSUS ENERGY
#=============================================================================#
nbBins = 100
ener,angle = angle_vs_energy(theta_arrival,energy,weight,nbPhotonsEmitted)
ener=ener[:,newaxis]
angle=angle[:,newaxis]
if Angle_Energy==[]:
Angle_Energy = ener
Angle_Energy = append(Angle_Energy,angle,axis=1)
else:
Angle_Energy = append(Angle_Energy,angle,axis=1)
theta,dndtheta2 = radial(theta_arrival,weight,nbPhotonsEmitted)
theta=theta[:,newaxis]
dndtheta2=dndtheta2[:,newaxis]
if Radial==[]:
Radial = theta
Radial = append(Radial,dndtheta2,axis=1)
else:
Radial = append(Radial,dndtheta2,axis=1)
#=============================================================================#
# TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE
#=============================================================================#
nbBins = 100
delta_t,dNdt = timing(time,weight,nbBins)
delta_t=delta_t[:,newaxis]
dNdt=dNdt[:,newaxis]
if Timing==[]:
Timing = delta_t
Timing = append(Timing,dNdt,axis=1)
else:
Timing = append(Timing,dNdt,axis=1)
InProgress(fileId,"1",PowerSpectrum.index(powerlaw_index)+1,shape(PowerSpectrum)[0])
savetxt(resultDirectory+fileId+"/Generation.txt",Gen_contrib)
savetxt(resultDirectory+fileId+"/Spectrum.txt",Spectrum)
savetxt(resultDirectory+fileId+"/Source_spectrum.txt",Source)
savetxt(resultDirectory+fileId+"/Angle_vs_Energy.txt",Angle_Energy)
savetxt(resultDirectory+fileId+"/Radial_distribution.txt",Radial)
savetxt(resultDirectory+fileId+"/Timing.txt",Timing)