Analysis.py 5.41 KB
#!/bin/python

from sys import argv
from numpy import append, savetxt, shape, array, newaxis, zeros, arange
from Modules.Read import ReadEnergy, ReadTime, ReadExtraFile, ReadProfile
from Modules.Read import ReadMomentumAngle, ReadPositionAngle, resultDirectory
from Modules.Spectrum import spectrum
from Modules.Map import printMap, isotrop
from Modules.Angle import radial, angle_vs_energy
from Modules.Timing import timing
from Modules.Constants import degre

def InProgress(fileId,step,i,Nmax):
   print "Work on ", fileId, "(step "+ step +": ", (i*100)/Nmax, "% done"

if shape(argv)[0] < 2: 
   print "not enough arguments (at least 1)"
   exit()

#================================================================#
#  Parameters
#================================================================#
PowerSpectrum=[1,1.5,2,2.5] 
powerlaw_index = 2
Elim = 1e-1 # GeV
thetalim = 20 # degre

for fileId in argv[1:]:
   # read files
   time = ReadTime(fileId)
   energy = ReadEnergy(fileId)
   weightini, generation, theta_arrival, Esource = ReadExtraFile(fileId,[2,3,4,5])
   nbPhotonsEmitted=ReadProfile(fileId,[3]) 

   #=============================================================================#
   #  IMAGING 
   #=============================================================================#
   thetaDir,phiDir = ReadMomentumAngle(fileId)*degre
   thetaPos,phiPos = ReadPositionAngle(fileId)*degre
   theta = thetaDir - thetaPos
   phi = phiDir -phiPos

   # apply source spectrum
   weight_source = (Esource/min(Esource))**(1-powerlaw_index)
   weight = weightini* weight_source

   # apply selection
   cond=(energy>Elim) & (abs(theta)<thetalim) & (abs(phi)<thetalim)
   weight=weight[cond]
   theta=theta[cond]
   phi=phi[cond]
   printMap(theta,phi,weight,fileId,source=isotrop(),borne=[thetalim,thetalim])

   Gen_contrib = []
   Gen_cont = zeros((int(max(generation))+1))
   Source = []
   Spectrum = []
   Radial = []
   Angle_Energy = []
   Timing = []

   for powerlaw_index in PowerSpectrum:
      # apply source spectrum
      weight_source = (Esource/min(Esource))**(1-powerlaw_index)
      weight = weightini* weight_source

      #=============================================================================#
      # GENERATION CONTRIBUTION
      #=============================================================================#
      NbTotEvents = sum(weight)
      if Gen_contrib==[]:
         Gen_contrib = arange(0,max(generation)+1,1)[:,newaxis]

      for gen in list(set(generation)):
         Gen_cont[int(gen)] = sum(weight[generation==gen])/NbTotEvents *100
      Gen_contrib = append(Gen_contrib,Gen_cont[:,newaxis],axis=1)

      #=============================================================================#
      #  SPECTRUM (SOURCE AND MEASURED)
      #=============================================================================#
      nbBins = 100
      # draw source spectrum
      Es=array(list(set(Esource)))
      Ws= (Es/min(Es))**(1-powerlaw_index)
      Es,Fs = spectrum(Es,Ws,nbBins=nbBins)
      Es=Es[:,newaxis]
      Fs=Fs[:,newaxis]
      if Source==[]:
         Source = Es
         Source = append(Source,Fs,axis=1)
      else: 
         Source = append(Source,Fs,axis=1)

      # primary gamma-rays contribution and full spectrum
      ener,flux,flux_0 = spectrum(energy,weight,generation,nbBins)
      ener=ener[:,newaxis]
      flux=flux[:,newaxis]
      flux_0=flux_0[:,newaxis]
      if Spectrum==[]:
         Spectrum = ener
         Spectrum = append(Spectrum,flux,axis=1)
         Spectrum = append(Spectrum,flux_0,axis=1)
      else:
         Spectrum = append(Spectrum,flux,axis=1)
         Spectrum = append(Spectrum,flux_0,axis=1)

      #=============================================================================#
      #  RADIAL DISTRIBUTION AND ANGLE VERSUS ENERGY
      #=============================================================================#
      nbBins = 100
      ener,angle = angle_vs_energy(theta_arrival,energy,weight,nbPhotonsEmitted)
      ener=ener[:,newaxis]
      angle=angle[:,newaxis]
      if Angle_Energy==[]:
         Angle_Energy = ener
         Angle_Energy = append(Angle_Energy,angle,axis=1)
      else:
         Angle_Energy = append(Angle_Energy,angle,axis=1)

      theta,dndtheta2 = radial(theta_arrival,weight,nbPhotonsEmitted)
      theta=theta[:,newaxis]
      dndtheta2=dndtheta2[:,newaxis]
      if Radial==[]:
         Radial = theta
         Radial = append(Radial,dndtheta2,axis=1)
      else:
         Radial = append(Radial,dndtheta2,axis=1)

      #=============================================================================#
      #  TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE
      #=============================================================================#
      nbBins = 100
      delta_t,dNdt = timing(time,weight,nbBins)
      delta_t=delta_t[:,newaxis]
      dNdt=dNdt[:,newaxis]
      if Timing==[]:
         Timing = delta_t
         Timing = append(Timing,dNdt,axis=1)
      else:
         Timing = append(Timing,dNdt,axis=1)

      InProgress(fileId,"1",PowerSpectrum.index(powerlaw_index)+1,shape(PowerSpectrum)[0])

   savetxt(resultDirectory+fileId+"/Generation.txt",Gen_contrib)
   savetxt(resultDirectory+fileId+"/Spectrum.txt",Spectrum)
   savetxt(resultDirectory+fileId+"/Source_spectrum.txt",Source)
   savetxt(resultDirectory+fileId+"/Angle_vs_Energy.txt",Angle_Energy)
   savetxt(resultDirectory+fileId+"/Radial_distribution.txt",Radial)
   savetxt(resultDirectory+fileId+"/Timing.txt",Timing)