Time_distribution.py
3.01 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/python
from sys import argv
import os.path
import matplotlib.pyplot as plt
from Constantes import *
from scipy.integrate import quad
if argv[1] == "EGMF":
fileName="Results_EGMF"
elif argv[1] == "EBL":
fileName="Results_EBL"
B=10**(-15)
Model=["Kneiske and Doll - 'best fit'","Kneiske and Doll - 'lower limit'",
"Franceschini","Finke and Al","Gilmore and Al","Dominguez and Al"]
elif argv[1] == "prec":
fileName="Results_prec"
B=10**(-17)
else:
print "Used: ./Energy_distribution.py arg1 ind1 ind2 ..."
print " arg1 = EGMF or EBL "
print " ind1 = file number \n"
print "Examples: "
print " to study EGMF14: ./Energy_distribution.py EGMF 14 "
print " to study EBL1 and EBL2: ./Energy_distribution.py EBL 1 2 \n"
exit()
# figure: energy distribution
#=============================
zSource = 0.0308
nbBins = 100
convert= 180/pi
color=['b','r','g','c','m','y']
fig = plt.figure()
ax = fig.add_subplot(111)
def properTime(z):
return -1/(H0*(1+z)*sqrt(omegaM*(1+z)**3+omegaK*(1+z)**2+omegaL))
tlim = quad(properTime,zSource,0)[0]/s_to_yr
print tlim
time= loadtxt(fileName+argv[2]+"/Results_position",unpack=True,usecols=[0])
time=time[time>0]
time=time/tlim
tmax = max(time)
tmin = min(time)
print tmin, tmax
ind = 0
for fileId in argv[2:]:
time= loadtxt(fileName+fileId+"/Results_position",unpack=True,usecols=[0])
charge,weight,gen=loadtxt(fileName+fileId+"/Results_extra",unpack=True,usecols=[0,2,3])
time=time/tlim
prop = float(shape(time[time<0])[0])/shape(time)[0]
print "data shape",fileName+fileId,":", shape(time), "negative time:", shape(time[time<0]), "~", prop
cond= (gen<10) & (time>0) & (charge==0)
time=time[cond]
weight=weight[cond]
time=log10(time)
dN,dt=histogram(time,nbBins,range=(log10(tmin),log10(tmax)),weights=weight)
#time=10**time
timecenter=(dt[1:nbBins+1]+dt[0:nbBins])/2
binSize=dt[1:nbBins+1]-dt[0:nbBins]
dNdt=dN/binSize
if argv[1] == "EGMF":
ax.hist(time,nbBins,weights=weight,range=(log10(tmin),log10(tmax)),log=1,facecolor=color[ind],
alpha=.5, label="$10^{-%.0f"%float(fileId)+"}$Gauss")
ax.plot(timecenter[dNdt!=0],dNdt[dNdt!=0],"-"+color[ind],
label="$10^{-%.0f"%float(fileId)+"}$Gauss")
elif argv[1] == "prec":
ax.hist(time,nbBins,weights=weight,range=(log10(tmin),log10(tmax)),log=1,facecolor=color[ind],
alpha=.5)#, label="prec = $10^{-%.0f"%float(fileId)+"}$")
ax.plot(timecenter[dNdt!=0],dNdt[dNdt!=0],"-"+color[ind],
label="prec = $10^{-%.0f"%float(fileId)+"}$")
elif argv[1] == "EBL":
#plt.hist(time,nbBins,weights=weight,range=(tmin,tmax),log=1,facecolor=color[ind],alpha=.5,
ax.plot(timecenter,dNdt,"."+color[ind],
label=Model[int(fileId)-1])
ind=ind+1
#ax.set_xscale('log')
#ax.set_yscale('log')
ax.grid(b=True,which='major')
ax.legend(loc="best")
if argv[1]=="prec":
ax.legend(loc="best",title="$10^{-17}$Gauss")
ax.set_xlabel("Time [$\Delta t / t$ log scale]")
ax.set_ylabel("$t\ dN/dt$")
plt.show()