Analysis.py 5.56 KB
#!/bin/python

from sys import argv
from numpy import append, savetxt, shape, array, newaxis, zeros, arange
from Modules.Read import ReadEnergy, ReadTime, ReadExtraFile, ReadProfile
from Modules.Read import ReadMomentumAngle, ReadPositionAngle, resultDirectory
from Modules.Spectrum import spectrum
from Modules.Map import computeMap, isotrop
from Modules.Angle import angle_vs_energy
from Modules.Timing import timing
from Modules.Constants import degre

def InProgress(i,Nmax):
   print "  ", (i*100)/Nmax, "% done"

if shape(argv)[0] < 2: 
   print "not enough arguments (at least 1)"
   exit()

#=============================================================================#
PowerSpectrum=[1,1.5,2,2.5] 

for fileId in argv[1:]:
   print "#=============================================================================#"
   print "#    Analysis of", fileId
   print "#=============================================================================#"
   # read files
   print "# 1. Reading data" 
   time = ReadTime(fileId)
   energy = ReadEnergy(fileId)
   weightini, generation, theta_arrival, Esource = ReadExtraFile(fileId,[2,3,4,5])
   nbPhotonsEmitted=ReadProfile(fileId,[3]) 

   Gen_contrib = []
   Gen_cont = zeros((int(max(generation))+1))
   Source = []
   Spectrum = []
   Angle_Energy = []
   Timing = []

   print "# 2. Computing powerlaw spectrum" 
   for powerlaw_index in PowerSpectrum:
      # apply source spectrum
      weight_source = (Esource/min(Esource))**(1-powerlaw_index)
      weight = weightini* weight_source

      #=============================================================================#
      # GENERATION CONTRIBUTION
      #=============================================================================#
      NbTotEvents = sum(weight)
      if Gen_contrib==[]:
         Gen_contrib = arange(0,max(generation)+1,1)[:,newaxis]

      for gen in list(set(generation)):
         Gen_cont[int(gen)] = sum(weight[generation==gen])/NbTotEvents *100
      Gen_contrib = append(Gen_contrib,Gen_cont[:,newaxis],axis=1)

      #=============================================================================#
      #  SPECTRUM (SOURCE AND MEASURED)
      #=============================================================================#
      nbBins = 50
      # draw source spectrum
      Es=array(list(set(Esource)))
      Ws= (Es/min(Es))**(1-powerlaw_index)
      Es,Fs = spectrum(Es,Ws,nbBins=nbBins)
      Es=Es[:,newaxis]
      Fs=Fs[:,newaxis]
      if Source==[]:
         Source = Es
         Source = append(Source,Fs,axis=1)
      else: 
         Source = append(Source,Fs,axis=1)

      # primary gamma-rays contribution and full spectrum
      ener,flux,flux_0 = spectrum(energy,weight,generation,nbBins)
      ener=ener[:,newaxis]
      flux=flux[:,newaxis]
      flux_0=flux_0[:,newaxis]
      if Spectrum==[]:
         Spectrum = ener
         Spectrum = append(Spectrum,flux,axis=1)
         Spectrum = append(Spectrum,flux_0,axis=1)
      else:
         Spectrum = append(Spectrum,flux,axis=1)
         Spectrum = append(Spectrum,flux_0,axis=1)

      #=============================================================================#
      #  TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE
      #=============================================================================#
      nbBins = 100
      delta_t,dNdt = timing(time,weight,nbBins)
      delta_t=delta_t[:,newaxis]
      dNdt=dNdt[:,newaxis]
      if Timing==[]:
         Timing = delta_t
         Timing = append(Timing,dNdt,axis=1)
      else:
         Timing = append(Timing,dNdt,axis=1)

      InProgress(PowerSpectrum.index(powerlaw_index)+1,shape(PowerSpectrum)[0])

   #=============================================================================#
   #  IMAGING, RADIAL DISTRIBUTION AND ANGLE VERSUS ENERGY
   #=============================================================================#
   print "# 3. compute images and radial distribution" 
   powerlaw_index = 2
   Elim = 1e-1 # GeV
   thetalim = 20 # degre
   nbBins = 100
   Radial = []

   thetaDir,phiDir = ReadMomentumAngle(fileId)*degre
   thetaPos,phiPos = ReadPositionAngle(fileId)*degre
   theta = thetaDir - thetaPos
   phi = phiDir -phiPos

   # apply source spectrum
   weight_source = (Esource/min(Esource))**(1-powerlaw_index)
   weight = weightini* weight_source

   # apply selection
   cond=(energy>Elim) #& (abs(theta)<thetalim) & (abs(phi)<thetalim)
   theta=theta[cond]
   phi=phi[cond]
   weight=weight[cond]
   energy=energy[cond]
   theta2,dndtheta2  = computeMap(theta,phi,weight,energy,fileId,nbBins,
         source=isotrop(),borne=[thetalim,thetalim])
   ener,angle = angle_vs_energy(theta,energy,weight,nbBins)
   theta2=theta2[:,newaxis]
   dndtheta2=dndtheta2[:,newaxis]
   ener=ener[:,newaxis]
   angle=angle[:,newaxis]

   if Radial==[]:
      Radial = theta2
      Radial = append(Radial,dndtheta2,axis=1)
      Angle_Energy = ener
      Angle_Energy = append(Angle_Energy,angle,axis=1)
   else:
      Radial = append(Radial,dndtheta2,axis=1)
      Angle_Energy = append(Angle_Energy,angle,axis=1)

   #=============================================================================#
   print "# 4. writing files" 
   savetxt(resultDirectory+fileId+"/Generation.txt",Gen_contrib)
   savetxt(resultDirectory+fileId+"/Spectrum.txt",Spectrum)
   savetxt(resultDirectory+fileId+"/Source_spectrum.txt",Source)
   savetxt(resultDirectory+fileId+"/Angle_vs_Energy.txt",Angle_Energy)
   savetxt(resultDirectory+fileId+"/Radial_distribution.txt",Radial)
   savetxt(resultDirectory+fileId+"/Timing.txt",Timing)
   print "#=============================================================================#"