Analysis.py 8.27 KB
#!/bin/python

from sys import argv
from numpy import append, savetxt, shape, array, newaxis, zeros, arange
from Modules.Read import ReadEnergy, ReadTime, ReadExtraFile, ReadProfile
from Modules.Read import ReadMomentumAngle, ReadPositionAngle, resultDirectory
from Modules.Spectrum import spectrum
from Modules.Map import computeMap
from Modules.Angle import angle_vs_energy
from Modules.Timing import timing
from Modules.Constants import degre

def InProgress(i,Nmax):
   print "  ", (i*100)/Nmax, "% done"

if shape(argv)[0] < 2: 
   print "not enough arguments (at least 1)"
   exit()

PowerSpectrum=[1,1.5,2,2.5] 

for fileId in argv[1:]:
   print "#=============================================================================#"
   print "#    Analysis of", fileId
   print "#=============================================================================#"
   # read files
   print "# 1. Reading data" 
   time = ReadTime(fileId)
   energy = ReadEnergy(fileId)
   weightini, generation, theta_arrival, Esource, dir_source = ReadExtraFile(fileId,[2,3,4,5,6])
   #weightini, generation, theta_arrival, Esource = ReadExtraFile(fileId,[2,3,4,5])
   nbPhotonsEmitted=ReadProfile(fileId,[3]) 
   weightini /= nbPhotonsEmitted
   theta_arrival*= degre

   thetaDir,phiDir = ReadMomentumAngle(fileId)*degre
   thetaPos,phiPos = ReadPositionAngle(fileId)*degre
   theta = thetaDir - thetaPos
   phi = phiDir -phiPos

   Gen_contrib = []
   Gen_cont = zeros((int(max(generation))+1))
   Source = []
   Spectrum = []
   Timing = []
   Angle_Energy = []
   Radial = []

   print "# 2. Computing powerlaw spectrum" 
   #=============================================================================#
   #  VERSUS SOURCE SPECTRUM
   #=============================================================================#
   for powerlaw_index in PowerSpectrum:
      # apply source spectrum
      weight_source = (Esource/min(Esource))**(1-powerlaw_index)
      weight = weightini* weight_source

      # GENERATION CONTRIBUTION ====================================================#
      NbTotEvents = sum(weight)
      if Gen_contrib==[]:
         Gen_contrib = arange(0,max(generation)+1,1)[:,newaxis]

      for gen in list(set(generation)):
         Gen_cont[int(gen)] = sum(weight[generation==gen])/NbTotEvents *100
      Gen_contrib = append(Gen_contrib,Gen_cont[:,newaxis],axis=1)

      #  SPECTRUM (SOURCE AND MEASURED) ============================================#
      nbBins = 100
      # draw source spectrum
      Es=array(list(set(Esource)))
      Ws= (Es/min(Es))**(1-powerlaw_index) /nbPhotonsEmitted
      Es,Fs = spectrum(Es,Ws,nbBins=nbBins)
      Es=Es[:,newaxis]
      Fs=Fs[:,newaxis]
      if Source==[]:
         Source = Es
         Source = append(Source,Fs,axis=1)
      else: 
         Source = append(Source,Fs,axis=1)

      # primary gamma-rays contribution and full spectrum
      ener,flux,flux_0 = spectrum(energy,weight,generation,nbBins)
      ener=ener[:,newaxis]
      flux=flux[:,newaxis]
      flux_0=flux_0[:,newaxis]
      if Spectrum==[]:
         Spectrum = ener
         Spectrum = append(Spectrum,flux,axis=1)
         Spectrum = append(Spectrum,flux_0,axis=1)
      else:
         Spectrum = append(Spectrum,flux,axis=1)
         Spectrum = append(Spectrum,flux_0,axis=1)

      #  IMAGING, RADIAL DISTRIBUTION AND ANGLE VERSUS ENERGY ======================#
      nbBins = 60
      theta2,dndtheta2,ener,angle = angle_vs_energy(theta_arrival,energy,weight,nbBins)
      theta2=theta2[:,newaxis]
      dndtheta2=dndtheta2[:,newaxis]
      ener=ener[:,newaxis]
      angle=angle[:,newaxis]

      if Radial==[]:
         Radial = theta2
         Radial = append(Radial,dndtheta2,axis=1)
         Angle_Energy = ener
         Angle_Energy = append(Angle_Energy,angle,axis=1)
      else:
         Radial = append(Radial,dndtheta2,axis=1)
         Angle_Energy = append(Angle_Energy,angle,axis=1)


      #  TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE =============================#
      nbBins = 100
      delta_t,dNdt = timing(time,weight,nbBins)
      delta_t=delta_t[:,newaxis]
      dNdt=dNdt[:,newaxis]
      if Timing==[]:
         Timing = delta_t
         Timing = append(Timing,dNdt,axis=1)
      else:
         Timing = append(Timing,dNdt,axis=1)

      InProgress(PowerSpectrum.index(powerlaw_index)+1,shape(PowerSpectrum)[0])

   #=============================================================================#
   #  VERSUS JET OPENING ANGLE
   #=============================================================================#
   Jet_Opening=[180,60,30] # degre (180 <=> isotrop)
   powerlaw_index = 2
   Elim = 1e-1 # GeV
   thetalim = 50 # degre

   # apply source spectrum
   weight_source = (Esource/min(Esource))**(1-powerlaw_index)
   weight = weightini* weight_source

   print "# 3. compute images and radial distribution" 
   for jet_opening_angle in Jet_Opening:
      # apply selection ( /!\ USE DECREASING VALUES OF jet_opening_angle )
      cond = (dir_source*degre <= jet_opening_angle) & (energy>Elim) #& (abs(theta)<thetalim) & (abs(phi)<thetalim)
      dir_source = dir_source[cond]
      theta_arrival = theta_arrival[cond]
      theta = theta[cond]
      phi = phi[cond]
      weight = weight[cond]
      energy = energy[cond]
      time = time[cond]
      generation = generation[cond]

      # GENERATION CONTRIBUTION ====================================================#
      NbTotEvents = sum(weight)
      if Gen_contrib==[]:
         Gen_contrib = arange(0,max(generation)+1,1)[:,newaxis]

      for gen in list(set(generation)):
         Gen_cont[int(gen)] = sum(weight[generation==gen])/NbTotEvents *100
      Gen_contrib = append(Gen_contrib,Gen_cont[:,newaxis],axis=1)

      #  SPECTRUM (SOURCE AND MEASURED) ============================================#
      nbBins = 100
      # draw source spectrum
      Es=array(list(set(Esource)))
      Ws= (Es/min(Es))**(1-powerlaw_index) /nbPhotonsEmitted
      Es,Fs = spectrum(Es,Ws,nbBins=nbBins)
      Es=Es[:,newaxis]
      Fs=Fs[:,newaxis]
      if Source==[]:
         Source = Es
         Source = append(Source,Fs,axis=1)
      else: 
         Source = append(Source,Fs,axis=1)

      # primary gamma-rays contribution and full spectrum
      ener,flux,flux_0 = spectrum(energy,weight,generation,nbBins)
      ener=ener[:,newaxis]
      flux=flux[:,newaxis]
      flux_0=flux_0[:,newaxis]
      if Spectrum==[]:
         Spectrum = ener
         Spectrum = append(Spectrum,flux,axis=1)
         Spectrum = append(Spectrum,flux_0,axis=1)
      else:
         Spectrum = append(Spectrum,flux,axis=1)
         Spectrum = append(Spectrum,flux_0,axis=1)

      #  IMAGING, RADIAL DISTRIBUTION AND ANGLE VERSUS ENERGY ======================#
      nbBins = 60
      computeMap(theta,phi,weight,energy,fileId,jet_opening_angle,nbBins,borne=[thetalim,thetalim])
      theta2,dndtheta2,ener,angle = angle_vs_energy(theta_arrival,energy,weight,nbBins)
      theta2=theta2[:,newaxis]
      dndtheta2=dndtheta2[:,newaxis]
      ener=ener[:,newaxis]
      angle=angle[:,newaxis]

      if Radial==[]:
         Radial = theta2
         Radial = append(Radial,dndtheta2,axis=1)
         Angle_Energy = ener
         Angle_Energy = append(Angle_Energy,angle,axis=1)
      else:
         Radial = append(Radial,dndtheta2,axis=1)
         Angle_Energy = append(Angle_Energy,angle,axis=1)

      #=============================================================================#
      #  TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE
      #=============================================================================#
      nbBins = 100
      delta_t,dNdt = timing(time,weight,nbBins)
      delta_t=delta_t[:,newaxis]
      dNdt=dNdt[:,newaxis]
      Timing = append(Timing,dNdt,axis=1)

      InProgress(Jet_Opening.index(jet_opening_angle)+1,shape(Jet_Opening)[0])

   #=============================================================================#
   print "# 4. writing files" 
   savetxt(resultDirectory+fileId+"/Generation.txt",Gen_contrib)
   savetxt(resultDirectory+fileId+"/Spectrum.txt",Spectrum)
   savetxt(resultDirectory+fileId+"/Source_spectrum.txt",Source)
   savetxt(resultDirectory+fileId+"/Angle_vs_Energy.txt",Angle_Energy)
   savetxt(resultDirectory+fileId+"/Radial_distribution.txt",Radial)
   savetxt(resultDirectory+fileId+"/Timing.txt",Timing)
   print "#=============================================================================#"