Analysis.py
5.67 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/bin/python
from sys import argv
from numpy import append, savetxt, shape, array, newaxis, zeros, arange
from Modules.Read import ReadEnergy, ReadTime, ReadExtraFile, ReadProfile
from Modules.Read import ReadMomentumAngle, ReadPositionAngle, resultDirectory
from Modules.Spectrum import spectrum
from Modules.Map import computeMap
from Modules.Angle import angle_vs_energy
from Modules.Timing import timing
from Modules.Constants import degre
def InProgress(i,Nmax):
print " ", (i*100)/Nmax, "% done"
if shape(argv)[0] < 2:
print "not enough arguments (at least 1)"
exit()
#=============================================================================#
PowerSpectrum=[1,1.5,2,2.5]
Jet_Opening=[180,30,60] # degre (180 <=> isotrop)
for fileId in argv[1:]:
print "#=============================================================================#"
print "# Analysis of", fileId
print "#=============================================================================#"
# read files
print "# 1. Reading data"
time = ReadTime(fileId)
energy = ReadEnergy(fileId)
weightini, generation, theta_arrival, Esource, dir_source = ReadExtraFile(fileId,[2,3,4,5,6])
nbPhotonsEmitted=ReadProfile(fileId,[3])
weightini /= nbPhotonsEmitted
Gen_contrib = []
Gen_cont = zeros((int(max(generation))+1))
Source = []
Spectrum = []
Timing = []
print "# 2. Computing powerlaw spectrum"
for powerlaw_index in PowerSpectrum:
# apply source spectrum
weight_source = (Esource/min(Esource))**(1-powerlaw_index)
weight = weightini* weight_source
#=============================================================================#
# GENERATION CONTRIBUTION
#=============================================================================#
NbTotEvents = sum(weight)
if Gen_contrib==[]:
Gen_contrib = arange(0,max(generation)+1,1)[:,newaxis]
for gen in list(set(generation)):
Gen_cont[int(gen)] = sum(weight[generation==gen])/NbTotEvents *100
Gen_contrib = append(Gen_contrib,Gen_cont[:,newaxis],axis=1)
#=============================================================================#
# SPECTRUM (SOURCE AND MEASURED)
#=============================================================================#
nbBins = 50
# draw source spectrum
Es=array(list(set(Esource)))
Ws= (Es/min(Es))**(1-powerlaw_index) /nbPhotonsEmitted
Es,Fs = spectrum(Es,Ws,nbBins=nbBins)
Es=Es[:,newaxis]
Fs=Fs[:,newaxis]
if Source==[]:
Source = Es
Source = append(Source,Fs,axis=1)
else:
Source = append(Source,Fs,axis=1)
# primary gamma-rays contribution and full spectrum
ener,flux,flux_0 = spectrum(energy,weight,generation,nbBins)
ener=ener[:,newaxis]
flux=flux[:,newaxis]
flux_0=flux_0[:,newaxis]
if Spectrum==[]:
Spectrum = ener
Spectrum = append(Spectrum,flux,axis=1)
Spectrum = append(Spectrum,flux_0,axis=1)
else:
Spectrum = append(Spectrum,flux,axis=1)
Spectrum = append(Spectrum,flux_0,axis=1)
#=============================================================================#
# TIME DISTRIBUTION AND TIME DELAY VERSUS ANGLE
#=============================================================================#
nbBins = 100
delta_t,dNdt = timing(time,weight,nbBins)
delta_t=delta_t[:,newaxis]
dNdt=dNdt[:,newaxis]
if Timing==[]:
Timing = delta_t
Timing = append(Timing,dNdt,axis=1)
else:
Timing = append(Timing,dNdt,axis=1)
InProgress(PowerSpectrum.index(powerlaw_index)+1,shape(PowerSpectrum)[0])
#=============================================================================#
# IMAGING, RADIAL DISTRIBUTION AND ANGLE VERSUS ENERGY
#=============================================================================#
Angle_Energy = []
Radial = []
print "# 3. compute images and radial distribution"
for jet_opening_angle in Jet_Opening:
powerlaw_index = 2
Elim = 1e-1 # GeV
thetalim = 20 # degre
nbBins = 100
thetaDir,phiDir = ReadMomentumAngle(fileId)*degre
thetaPos,phiPos = ReadPositionAngle(fileId)*degre
theta = thetaDir - thetaPos
phi = phiDir -phiPos
# apply source spectrum
weight_source = (Esource/min(Esource))**(1-powerlaw_index)
weight = weightini* weight_source
# apply selection
theta2,dndtheta2,ener,angle = computeMap(theta,phi,weight,energy,dir_source,fileId,
jet_opening_angle,Elim,nbBins,borne=[thetalim,thetalim])
theta2=theta2[:,newaxis]
dndtheta2=dndtheta2[:,newaxis]
ener=ener[:,newaxis]
angle=angle[:,newaxis]
if Radial==[]:
Radial = theta2
Radial = append(Radial,dndtheta2,axis=1)
Angle_Energy = ener
Angle_Energy = append(Angle_Energy,angle,axis=1)
else:
Radial = append(Radial,dndtheta2,axis=1)
Angle_Energy = append(Angle_Energy,angle,axis=1)
InProgress(Jet_Opening.index(jet_opening_angle)+1,shape(Jet_Opening)[0])
#=============================================================================#
print "# 4. writing files"
savetxt(resultDirectory+fileId+"/Generation.txt",Gen_contrib)
savetxt(resultDirectory+fileId+"/Spectrum.txt",Spectrum)
savetxt(resultDirectory+fileId+"/Source_spectrum.txt",Source)
savetxt(resultDirectory+fileId+"/Angle_vs_Energy.txt",Angle_Energy)
savetxt(resultDirectory+fileId+"/Radial_distribution.txt",Radial)
savetxt(resultDirectory+fileId+"/Timing.txt",Timing)
print "#=============================================================================#"