mountastro.py 69.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
# -*- coding: utf-8 -*-
import os
import time
import math
import numpy as np
import matplotlib.pyplot as plt

# --- celme imports
modulename = 'celme'
if modulename in dir():
    del celme
if modulename not in dir():    
    import celme

from mountaxis import Mountaxis
from mounttools import Mounttools
from mountlog import Mountlog
from mountpad import Mountpad

# #####################################################################
# #####################################################################
# #####################################################################
# Class Mountastro
# #####################################################################
# #####################################################################
# This is an abstract Class
# This class does not communicate to devices
# Use a child class to use the protocol language
# #####################################################################

class Mountastro(Mounttools):
    
    # === Constant for error codes
    NO_ERROR = 0
    ERR_UNKNOWN = 1
    
    ERR_FILE_NOT_EXISTS = 101
    
    # === Constants
    
    # === Private variables
    _last_errno = NO_ERROR
    
    # --- Axis parameters
    axisp = None
    axisb = None

    # === constants for saving coords
    SAVE_NONE = 0
    SAVE_AS_SIMU = 1
    SAVE_AS_REAL = 2
    SAVE_ALL = 3
    
    # === Constants for returning long or short outputs
    OUTPUT_SHORT = 0
    OUTPUT_LONG = 1
    
    # ===
    LX200_0X06 = 0x06
    LX200_HIGH_PRECISION = "HIGH PRECISION"
    LX200_LOW_PRECISION  = "LOW PRECISION"
    
    # === List of Threads for the pad GUI
    _threads = []
    
    _drift_hadec_ha_deg_per_sec = 0
    _drift_hadec_dec_deg_per_sec = 0
    _drift_radec_ra_deg_per_sec = 0
    _drift_radec_dec_deg_per_sec = 0

    _sideral_sec_per_day = 86164.0

    # --- last actions
    _last_goto_drift_deg_per_secs = []
    
# =====================================================================
# =====================================================================
# Private methods
# =====================================================================
# =====================================================================
    
    def _create(self, mount_name, mount_type):
        self._delete()

    def _delete(self):
        self._last_errno = self.NO_ERROR

# =====================================================================
# =====================================================================
# Methods for using a pad GUI
# =====================================================================
# =====================================================================
# to use it:
# mymount = Mountastro("HADEC", name="Test Mount")
# try:
#     mymount.pad_create("pad_dev1")
# except (KeyboardInterrupt, SystemExit):
#     mymount.pad_delete()
# except:
#     raise  
# =====================================================================

    def pad_create(self, pad_type):
        pad = Mountpad(self, pad_type)
        pad.start() # start the thread and continue
        self._pads.append(pad)
        self.pad = pad # to share the last pad

    def pad_delete(self):
        # --- kill gui and associated threads
        for pad in self._pads:
            try:
                self.pad.pad_gui_delete()
            except:
                pass
        self._pads = []
            
# =====================================================================
# =====================================================================
# Methods for debug
# =====================================================================
# =====================================================================

    def disp(self):
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]  
        increals, incsimus = self.read_encs(incsimus)
        increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu = self.enc2cel(incsimus, output_format=self.OUTPUT_LONG, save=self.SAVE_ALL)
        if self._mount_type=="HADEC":
            hareal, decreal = self.cel2hadec(celrealb, celrealp, "H0.2", "d+090.1")
            hasimu, decsimu = self.cel2hadec(celsimub, celsimup, "H0.2", "d+090.1")
        if self._mount_type=="AZELEV":
            azreal, elevreal = self.cel2azelev(celrealb, celrealp, "D0.2", "d+090.1")
            azsimu, elevsimu = self.cel2azelev(celsimub, celsimup, "D0.2", "d+090.1")
        print("{}".format(20*"-"))
        print("MOUNT name        = {} ".format(self._name))
        print("mount_type        = {} ".format(self._mount_type))
        print("home              = {} ".format(self.site.gps))
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            for disp_real in (False,True):
                if disp_real==True and current_axis.real == False:
                    continue
                # --- get inc and compute rot, cel
                if disp_real==True:
                    msg_simu = "REAL"
                    inc = increals[kaxis]
                else:
                    msg_simu = "SIMU"
                    inc = incsimus[kaxis]
                rot, pierside = current_axis.inc2rot(inc, self.SAVE_NONE)
                cel = current_axis.rot2ang(rot, pierside, self.SAVE_NONE)
                # --- additional informations
                msg_coord = ""
                if self._mount_type=="HADEC":
                    if current_axis.axis_type=="HA":
                        if disp_real==True:
                            msg_coord = hareal
                        else:
                            msg_coord = hasimu
                    if current_axis.axis_type=="DEC":
                        if disp_real==True:
                            msg_coord = decreal
                        else:
                            msg_coord = decsimu
                if self._mount_type=="AZELEV":
                    if current_axis.axis_type=="AZ":
                        if disp_real==True:
                            msg_coord = azreal
                        else:
                            msg_coord = azsimu
                    if current_axis.axis_type=="ELEV":
                        if disp_real==True:
                            msg_coord = elevreal
                        else:
                            msg_coord = elevsimu
                # ---
                print("{} {} {} {}".format(20*"-",current_axis.name,msg_simu,current_axis.axis_type))
                print("inc               = {:12.1f} : ".format(inc))
                print("rot               = {:12.7f} : ".format(rot))
                print("pierside          = {:d}            : ".format(pierside))
                print("cel               = {:12.7f} : {} {}".format(cel,current_axis.axis_type,msg_coord))
        
# =====================================================================
# =====================================================================
# Methods to read the encoders
# =====================================================================
# =====================================================================
# Level 1
# =====================================================================
                
    def _my_read_encs(self, incsimus:list)->list:
        """
        Inputs are simulated inc
        Outputs are real inc
        """
        # --- abstract method. 
        # --- Please overload it according your language protocol
        increals = incsimus
        return increals
    
    def read_encs(self, simulation_incs:list)->list:
        """
        Read the raw values of the axes
        
        For the simulation: 
            if simulation_incb=="" the value is calculated from simu_update_inc
            if simulation_incb==34.5 the value is taken equal to 34.5

        For real:
            if the axis is not real then real=simulated value
            else the encoder is read

        Output = Raw calues of encoders (inc)
        """
        # === Simulated values of inc
        incsimus = [0 for kaxis in range(Mountaxis.AXIS_MAX)]
        # --- Loop over all the possible axis types
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            # --- This axis is valid. We compute the simulation
            simulation_inc = simulation_incs[kaxis]
            if isinstance(simulation_inc,(int,float))==True:
                incsimus[kaxis] = simulation_inc
            else:
                incsimus[kaxis] = current_axis.simu_update_inc()
        # === Read real values of inc if possible
        increals = self._my_read_encs(incsimus)
        # ---
        if self._record_positions==True:
            with open("positions.txt","a",encoding='utf-8') as fid:
                msg = "{} {} {}\n".format(time.time(), increals[Mountaxis.BASE], incsimus[Mountaxis.BASE])
                fid.write(msg)
        # ---
        return (increals, incsimus)

# =====================================================================
# =====================================================================
# Methods to convert encoders into celestial
# =====================================================================
# =====================================================================
# Level 2
# =====================================================================
        
    def enc2cel(self, simulation_incs:list, output_format=OUTPUT_SHORT, save=SAVE_NONE)->tuple:
        """
        Read encoder values into celestial apparent coordinates
        
        Input  = Raw encoder values (inc)
        Output = HA, Dec, pier side (any celme Angle units)
        """
        increals, incsimus = self.read_encs(simulation_incs)
        # --- shortcuts
        axisb = self.axis[Mountaxis.BASE]
        axisp = self.axis[Mountaxis.POLAR]
        incsimub = incsimus[Mountaxis.BASE]
        incsimup = incsimus[Mountaxis.POLAR]
        increalb = increals[Mountaxis.BASE]
        increalp = increals[Mountaxis.POLAR]
        # --- update the axis parameters (start with polar axis to deduce pierside)
        # --- update for simulations
        if save==self.SAVE_ALL or save==self.SAVE_AS_SIMU:
            savesimu = self.SAVE_AS_SIMU
        else:
            savesimu = self.SAVE_NONE
        rotsimup, piersidesimu = axisp.inc2rot(incsimup, savesimu)
        celsimup = axisp.rot2ang(rotsimup, piersidesimu, savesimu)
        rotsimub, dummy = axisb.inc2rot(incsimub, savesimu)
        celsimub = axisb.rot2ang(rotsimub, piersidesimu, savesimu)
        # --- update for real
        if save==self.SAVE_ALL or save==self.SAVE_AS_REAL:
            savereal = self.SAVE_AS_REAL
        else:
            savereal = self.SAVE_NONE
        rotrealp, piersidereal = axisp.inc2rot(increalp, savereal)
        celrealp = axisp.rot2ang(rotrealp, piersidereal, savereal)
        rotrealb, dummy = axisb.inc2rot(increalb, savereal)
        celrealb = axisb.rot2ang(rotrealb, piersidereal, savereal)
        # --- select results as simulation or real
        if axisp.real == False:
            celp = celsimup
            pierside = piersidesimu
        else:
            celp = celrealp
            pierside = piersidereal
        if axisb.real == False:
            celb = celsimub
        else:
            celb = celrealb
        # ---
        if output_format==self.OUTPUT_SHORT:
            return celb, celp, pierside
        else:
            # all angle output
            return increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu

    def cel2enc(self, celb:float, celp:float, pierside:int, output_format=OUTPUT_SHORT, save=SAVE_NONE):
        """
        Convert celestial apparent coordinates into encoder values
        
        Input  = celb, celp, pier side (deg units)
        Output = Raw encoder values (inc)
        """
        # --- shortcuts
        axisb = self.axis[Mountaxis.BASE]
        axisp = self.axis[Mountaxis.POLAR]
        # --- update for simulations
        if save==self.SAVE_ALL or save==self.SAVE_AS_SIMU:
            savesimu = self.SAVE_AS_SIMU
        else:
            savesimu = self.SAVE_NONE
        celsimub = celb
        celsimup = celp
        piersidesimu = pierside
        rotsimup = axisp.ang2rot(celsimup, pierside, savesimu)
        incsimup = axisp.rot2inc(rotsimup, savesimu)
        rotsimub = axisb.ang2rot(celsimub, pierside, savesimu)
        incsimub = axisb.rot2inc(rotsimub, savesimu)
        # --- update for real
        if save==self.SAVE_ALL or save==self.SAVE_AS_REAL:
            savereal = self.SAVE_AS_REAL
        else:
            savereal = self.SAVE_NONE
        celrealb = celb
        celrealp = celp
        piersidereal = pierside
        rotrealp = axisp.ang2rot(celrealp, pierside, savereal)
        increalp = axisp.rot2inc(rotrealp, savereal)
        rotrealb = axisb.ang2rot(celrealb, pierside, savereal)
        increalb = axisb.rot2inc(rotrealb, savereal)
        # --- select results as simulation or real
        if axisp.real == False:
            incp = incsimup
        else:
            incp = increalp
        if axisb.real == False:
            incb = incsimub
        else:
            incb = increalb
        # --- update the output axis parameters
        if output_format==self.OUTPUT_SHORT:
            # short output
            return incb, incp
        else:
            # all angle output
            return increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimup, incsimup, rotsimup, celsimup, piersidesimu

    def speedslew(self, *args):
        argc = len(args)
        karg = 0
        speedslew = ()
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            # --- read or update the speed
            if karg<argc:
                current_axis.slew_deg_per_sec = abs(args[karg]) # slew speed is always positive
            speedslew += (current_axis.slew_deg_per_sec,)
        return speedslew

# =====================================================================
# =====================================================================
# Methods to convert celestial into astronomical coordinates
# =====================================================================
# =====================================================================
# Level 3
# =====================================================================

    def hadec2cel(self, ha:celme.Angle, dec:celme.Angle)->tuple:
        # ---
        ha = celme.Angle(ha).deg()
        dec = celme.Angle(dec).deg()
        # ---
        meca = celme.Mechanics()
        if self._mount_type.find("HADEC")>=0:
            # --- astro coord are HADEC and cel are HADEC
            celb = ha
            celp = dec
            celr = 0
        if self._mount_type.find("AZELEV")>=0:
            # --- astro coord are HADEC and cel are AZELEV
            ha *= self._d2r
            dec *= self._d2r
            latitude = celme.Angle(self.site.latitude).rad()
            az, elev = meca._mc_hd2ah(ha, dec, latitude)
            rotator = meca._mc_hd2parallactic(ha, dec, latitude)
            celb = az * self._r2d
            celp = elev * self._r2d
            celr = rotator * self._r2d
        # ---
        return celb, celp, celr

    def azelev2cel(self, az:celme.Angle, elev:celme.Angle)->tuple:
        # ---
        az = celme.Angle(az).deg()
        elev = celme.Angle(elev).deg()
        # ---
        meca = celme.Mechanics()
        if self._mount_type.find("HADEC")>=0:
            # --- astro coord are AZELEV and cel are HADEC
            az *= self._d2r
            elev *= self._d2r
            latitude = celme.Angle(self.site.latitude).rad()
            ha, dec= meca._mc_ah2hd(az, elev, latitude)
            rotator = meca._mc_hd2parallactic(ha, dec, latitude)
            celb = ha * self._r2d
            celp = dec * self._r2d
            celr = rotator * self._r2d
        if self._mount_type.find("AZELEV")>=0:
            # --- astro coord are AZELEV and cel are AZELEV
            celb = az
            celp = elev
            celr = 0
        # ---
        return celb, celp, celr

    def astro2cel(self, astro_type:str, base:celme.Angle, polar:celme.Angle, base_deg_per_sec:str="", polar_deg_per_sec:str="")->tuple:
        """        
        drift_type = "HADEC" or "AZELEV"
        base = ha or az (according astro_type)
        polar = dec or elev (according astro_type)
        base_deg_per_sec = dha or daz (according astro_type)
        polar_deg_per_sec = ddec or delev (according astro_type)
        """
        base  = celme.Angle(base).deg()
        polar = celme.Angle(polar).deg()
        # --- special case when the drifts are diurnal
        if base_deg_per_sec=="diurnal" or polar_deg_per_sec=="diurnal":
            # --- compute ha,dec
            if astro_type.find("AZELEV")>=0:
                meca = celme.Mechanics()
                # --- here all angles are in radians
                latitude = celme.Angle(self.site.latitude).rad()
                az = base * self._d2r
                elev = polar * self._d2r
                ha, dec = meca._mc_ah2hd(az, elev, latitude)
                ha *= self._r2d
                dec *= self._r2d
            if astro_type.find("HADEC")>=0:
                ha = base
                dec = polar
            # ---
            if base_deg_per_sec=="diurnal":
                dha = 360.0/self._sideral_sec_per_day
            else:
                dha = base_deg_per_sec
            if base_deg_per_sec=="diurnal":
                ddec = 0
            else:
                ddec = polar_deg_per_sec
            astro_type = "HADEC"
            base = ha
            polar = dec
            base_deg_per_sec = dha
            polar_deg_per_sec = ddec
        # --- compute the derivative
        dt = 1.0 # sec
        base1  = base  - 0.5*dt*base_deg_per_sec
        polar1 = polar - 0.5*dt*polar_deg_per_sec
        base2  = base  + 0.5*dt*base_deg_per_sec
        polar2 = polar + 0.5*dt*polar_deg_per_sec
        if astro_type.find("HADEC")>=0:
            celb1, celp1, celr1 = self.hadec2cel(base1, polar1)
            celb2, celp2, celr2 = self.hadec2cel(base2, polar2)
            celb, celp, celr = self.hadec2cel(base, polar)
        if astro_type.find("AZELEV")>=0:
            celb1, celp1, celr1 = self.azelev2cel(base1, polar1)
            celb2, celp2, celr2 = self.azelev2cel(base2, polar2)
            celb, celp, celr = self.azelev2cel(base, polar)
        # ---
        dcelb = (celb2-celb1)/dt
        dcelp = (celp2-celp1)/dt
        dcelr = (celr2-celr1)/dt
        return celb, celp, celr, dcelb, dcelp, dcelr
    
    def cel2astro(self, celb:float, celp:float, unit_ha:str="", unit_dec:str="", unit_az:str="", unit_elev:str="")->tuple:
        meca = celme.Mechanics()
        # --- here all angles are in radians
        latitude = celme.Angle(self.site.latitude).rad()
        if self._mount_type.find("HADEC")>=0:
            ha = celb * self._d2r
            dec = celp * self._d2r
            az, elev = meca._mc_hd2ah(ha, dec, latitude)
        if self._mount_type.find("AZELEV")>=0:
            az = celb * self._d2r
            elev = celp * self._d2r
            ha, dec = meca._mc_ah2hd(az, elev, latitude)
        # --- rotator computation
        rotator = meca._mc_hd2parallactic(ha, dec, latitude)
        # --- conversion into degrees
        ha *= self._r2d
        dec *= self._r2d
        az *= self._r2d
        elev *= self._r2d
        rotator *= self._r2d
        # --- default units
        if unit_ha=="":
            unit_ha="H0.2"
        if unit_dec=="":
            unit_ha="d+090.1"
        if unit_az=="":
            unit_az="D0.2"
        if unit_elev=="":
            unit_elev="d+090.1"
        # --- conversion into sexagesimal if needed
        if unit_ha!="deg":
            ha = celme.Angle(ha).sexagesimal(unit_ha)
        if unit_dec!="deg":
            dec = celme.Angle(dec).sexagesimal(unit_dec)
        if unit_az!="deg":
            az = celme.Angle(az).sexagesimal(unit_az)
        if unit_elev!="deg":
            elev = celme.Angle(elev).sexagesimal(unit_elev)
        return ha, dec, az, elev, rotator

    def cel2hadec(self, celb:float, celp:float, unit_ha:str="", unit_dec:str="")->tuple:
        # ---
        ha, dec, az, elev, rotator = self.cel2astro(celb, celp, unit_ha, unit_dec, "", "")
        return ha, dec

    def cel2azelev(self, celb:float, celp:float, unit_az:str="", unit_elev:str="")->tuple:
        # ---
        ha, dec, az, elev, rotator = self.cel2astro(celb, celp, "", "", unit_az, unit_elev)
        return az, elev, rotator

# =====================================================================
# =====================================================================
# Methods hadec for users
# =====================================================================
# =====================================================================
# Level 4
# =====================================================================

    def hadec_travel_compute(self, ha_target:celme.Angle, dec_target:celme.Angle, pierside_target:int=Mountaxis.PIERSIDE_AUTO)->tuple:
        # --- shortcuts
        axisb = self.axis[Mountaxis.BASE]
        axisp = self.axis[Mountaxis.POLAR]
        # === Read the current position
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]        
        increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimup, incsimup, rotsimup, celsimup, piersidesimu = self.enc2cel(incsimus,self.OUTPUT_LONG, self.SAVE_ALL)
        if axisb.real==True:
            incb_start = increalb
        else:
            incb_start = incsimub
        if axisp.real==True:
            incp_start = increalp
            pierside_start = piersidereal
        else:
            incp_start = incsimup
            pierside_start = piersidesimu
        # === Read the target position
        if pierside_target==Mountaxis.PIERSIDE_AUTO:
            pierside_target = pierside_start
        celb, celp, celr, dcelb, dcelp, dcelr = self.astro2cel("HADEC", ha_target, dec_target, self._hadec_speeddrift_ha_deg_per_sec, self._hadec_speeddrift_dec_deg_per_sec)
        increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimup, incsimup, rotsimup, celsimup, piersidesimu = self.cel2enc(celb, celp, pierside_target, self.OUTPUT_LONG, self.SAVE_NONE)
        if axisb.real==True:
            incb_target = increalb
        else:
            incb_target = incsimub
        if axisp.real==True:
            incp_target = increalp
        else:
            incp_target = incsimup
        # --- delta incs for the travel (signed incs)
        dincb = incb_target - incb_start
        dincp = incp_target - incp_start
        #print("dincb={} incb_target={} incb_start={} dincp={} incp_target={} incp_start={}".format(dincb, incb_target, incb_start, dincp, incp_target, incp_start))
        # --- slew velocity (positive inc/sec)
        inc_per_secb = axisb.slew_deg_per_sec * axisb.inc_per_deg
        if dincb<0:
            inc_per_secb *= -1
        inc_per_secp = axisp.slew_deg_per_sec * axisb.inc_per_deg
        if dincp<0:
            inc_per_secp *= -1
        #print("inc_per_secb={} inc_per_secp={}".format(inc_per_secb, inc_per_secp))
        # --- delays of slewing (sec)
        delayb = abs(dincb / inc_per_secb)
        delayp = abs(dincp / inc_per_secp)
        if delayb>delayp:
            delay = delayb
        else:
            delay = delayp
        return delayb, delayp
        #print("delayb={} delayp={} delay={}".format(delayb, delayp, delay))
        # --- fraction of a turn of 360 deg (no unit)
        fincb = abs(dincb / axisb._inc_per_sky_rev)
        fincp = abs(dincp / axisp._inc_per_sky_rev)
        if fincb>fincp:
            finc = fincb
        else:
            finc = fincp
        # --- Compute the number of positions during the travel
        ddeg = 1.0 ; # increment in degrees
        npos = math.ceil(finc*360.0/ddeg)
        if npos<3:
            npos = 3
        #print("fincb={} fincp={} finc={}".format(fincb, fincp, finc))
        # --- list of positions
        ts = np.linspace(0,delay,npos) ; # sec
        pincbs = ts * 0
        pincps = ts * 0
        for kpos in range(0,npos):
            t = ts[kpos] ; # sec
            pincbs[kpos] =  incb_start + inc_per_secb * t
            if dincb>=0 and pincbs[kpos]>incb_target:
                pincbs[kpos] = incb_target
            if dincb<0 and pincbs[kpos]<incb_target:
                pincbs[kpos] = incb_target
            pincps[kpos] =  incp_start + inc_per_secp * t
            if dincp>=0 and pincps[kpos]>incp_target:
                pincps[kpos] = incp_target
            if dincp<0 and pincps[kpos]<incp_target:
                pincps[kpos] = incp_target
        
        print("pincbs={} pincps={}".format(pincbs, pincps))        
        # --- utc time
        #jdnow = celme.Date("now").jd()
        #jds = jdnow + ts/86400.
        # --- compute the az,elev
        azims = ts * 0
        elevs = ts * 0
        elevmin = 90
        incposs = ["" for kaxis in range(Mountaxis.AXIS_MAX)]
        for kpos in range(0,npos):
            incposs[Mountaxis.BASE] = pincbs[kpos] ; # inc
            incposs[Mountaxis.POLAR] = pincbs[kpos] ; # inc
            celb, celp, pierside = self.enc2cel(incposs,self.OUTPUT_SHORT, self.SAVE_NONE)
            ha, dec, az, elev, rotator = self.cel2astro(celb, celp, unit_ha="deg", unit_dec="deg", unit_az="deg", unit_elev="deg")
            azims[kpos] = az
            elevs[kpos] = dec
        elevmin = np.amin(elevs)
        # --- return
        return elevmin, ts, elevs

    def _my_hadec_init(self, ha:celme.Angle, dec:celme.Angle, pierside:int="")->tuple:
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res
    
    def hadec_init(self, ha:celme.Angle, dec:celme.Angle, pierside:int="")->tuple:
        # === Read the current position
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)] 
        increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu = self.enc2cel(incsimus, self.OUTPUT_LONG, self.SAVE_ALL)
        # === Assign the side at the current position if not notified
        if pierside=="":
            pierside = piersidereal
        # === Target celestial position
        celb, celp, celr = self.hadec2cel(ha, dec)
        # --- update inc0 on each axis
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue            
            if current_axis.real==True:
                if kaxis == Mountaxis.BASE:
                    inc = increalb
                    cel = celb
                elif kaxis == Mountaxis.POLAR:
                    inc = increalp
                    cel = celp
            else:
                if kaxis == Mountaxis.BASE:
                    inc = incsimub
                    cel = celb
                elif kaxis == Mountaxis.POLAR:
                    inc = incsimup
                    cel = celp
            print("kaxis={} inc={} cel={}".format(kaxis,inc,cel))
            current_axis.update_inc0(inc, cel, pierside)
        # --- Real inits
        err,res = self._my_hadec_init(ha, dec, pierside)
        # --- return the current new position
        return self.hadec_coord()

    def hadec_coord(self, **kwargs:dict)->tuple:
        # --- Dicos of optional and mandatory parameters
        params_optional = {} 
        params_optional["UNIT_HA"] = (str,'H0.2')
        params_optional["UNIT_DEC"] = (str,'d+090.1')
        params_mandatory = {} 
        # --- Decode parameters
        params = self.decode_kwargs(params_optional, params_mandatory, **kwargs)
        # --- Get the simu and real coordinates of all axis
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]        
        celb, celp, pierside = self.enc2cel(incsimus,self.OUTPUT_SHORT, self.SAVE_ALL)
        ha, dec = self.cel2hadec(celb, celp, params["UNIT_HA"], params["UNIT_DEC"])
        return ha, dec, pierside
    
    def _my_hadec_speeddrift(self, deg_per_sec_ha, deg_per_sec_dec):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        return deg_per_sec_ha, deg_per_sec_dec

    def hadec_speeddrift(self, deg_per_sec_ha="", deg_per_sec_dec=""):
        if deg_per_sec_ha!="" and deg_per_sec_dec!="":
            if deg_per_sec_ha=="diurnal":
                deg_per_sec_ha = 360./self._sideral_sec_per_day
            if deg_per_sec_dec=="diurnal":
                deg_per_sec_dec = 0.0
            #print("deg_per_sec_ha={} deg_per_sec_dec={}".format(deg_per_sec_ha,deg_per_sec_dec))
            deg_per_sec_ha, deg_per_sec_dec = self._my_hadec_speeddrift(deg_per_sec_ha, deg_per_sec_dec)
            self._hadec_speeddrift_ha_deg_per_sec = deg_per_sec_ha
            self._hadec_speeddrift_dec_deg_per_sec = deg_per_sec_dec
        return self._hadec_speeddrift_ha_deg_per_sec, self._hadec_speeddrift_dec_deg_per_sec

    def _my_hadec_goto(self, ha_target, dec_target, pierside_target):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res
        
    def hadec_goto(self, ha:celme.Angle, dec:celme.Angle, **kwargs):
        err = self.NO_ERROR
        res = 0
        # --- Dicos of optional and mandatory parameters
        params_optional = {} 
        params_optional["BLOCKING"] = (bool,False)
        params_optional["SIDE"] = (int,Mountaxis.PIERSIDE_AUTO)
        params_mandatory = {}
        # --- Decode parameters
        params = self.decode_kwargs(params_optional, params_mandatory, **kwargs)
        # === Read the current position
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]        
        celb, celp, pierside = self.enc2cel(incsimus,self.OUTPUT_SHORT, self.SAVE_ALL)
        ha_start, dec_start = self.cel2hadec(celb, celp, "deg", "deg")
        pierside_start = pierside
        # === Target celestial position
        # --- convert angles into deg [-180 ; 180]
        ha_target  = math.fmod(720+celme.Angle(ha).deg(), 360)
        if ha_target>180:
            ha_target -= 360
        dec_target = math.fmod(720+celme.Angle(dec).deg(), 360)
        if dec_target>180:
            dec_target -= 360
        # --- compute the target pierside
        lim_side_east = +30 ; # Tube west = PIERSIDE_POS1 = [-180 : lim_side_east]
        lim_side_west = -30 ; # Tube east = PIERSIDE_POS2 = [lim_side_west : +180]
        if params["SIDE"]==Mountaxis.PIERSIDE_AUTO:
            if ha_target>lim_side_west and ha_target<lim_side_east:
                # --- the target position is in the both possibilitiy range
                pierside_target = pierside_start
            else:
                if ha_target>lim_side_east:
                    # --- the target is after the limit of side=PIERSIDE_POS1
                    pierside_target = Mountaxis.PIERSIDE_POS2
                else:
                    # --- the target is before the limit of side=PIERSIDE_POS2
                    pierside_target = Mountaxis.PIERSIDE_POS1
        else:
            pierside_target = params["SIDE"]
        #print("ha_start={:.4f} ha_target={:.4f} pierside_start={}  params[\"SIDE\"]={} pierside_target={}".format(ha_start, ha_target, pierside_start, params["SIDE"], pierside_target))
        # --- Compute incs of the target and the drifts (for any mount_type)
        celb, celp, celr, dcelb, dcelp, dcelr = self.astro2cel("HADEC", ha_target, dec_target, self._hadec_speeddrift_ha_deg_per_sec, self._hadec_speeddrift_dec_deg_per_sec)
        incb, incp = self.cel2enc(celb, celp, pierside_target, self.OUTPUT_SHORT, self.SAVE_NONE)
        increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimup, incsimup, rotsimup, celsimup, piersidesimu = self.cel2enc(celb, celp, pierside_target, self.OUTPUT_LONG, self.SAVE_NONE)
        #print("celrealb={:.4f} rotrealb={:.4f} pierside_target={} -> increalb={} incb={} incp={}".format(celrealb, rotrealb, piersidereal, increalb, incb, incp))
        incr = 0
        # ---
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            # === Target position and drift
            if kaxis == Mountaxis.BASE:
                inc = incb
                dcel = dcelb
            elif kaxis == Mountaxis.POLAR:
                inc = incp
                dcel = dcelp
            elif kaxis == Mountaxis.ROTATOR:
                inc = incr
                dcel = dcelr
            dslw = current_axis.slew_deg_per_sec
            # === Slew Velocity inc/sec
            inc_per_sec_slew  = dslw * current_axis.senseinc * current_axis.inc_per_deg
            # === Drift Velocity inc/sec
            inc_per_sec_drift = dcel * current_axis.senseinc * current_axis.inc_per_deg
            if self.site.latitude>=0:
                inc_per_sec_drift *= -1
            # === Simulation. It runs even if there is a real hardware)
            current_axis.simu_motion_start("ABSOLUTE", frame='inc', velocity=inc_per_sec_slew, position=inc, drift=inc_per_sec_drift)
        # === Real hardware
        err, res = self._my_hadec_goto(ha_target, dec_target, pierside_target)
        # === Wait the end of motion if needed
        if params["BLOCKING"]==True and dcelb==0 and dcelb==0 and dcelr==0:
            coord1 = self.hadec_coord(unit_ha="deg", unit_dec="deg")
            t0 = time.time()
            while True:
                time.sleep(0.1)
                dt = time.time()-t0
                if dt>60:
                    break
                coord2 = self.hadec_coord(unit_ha="deg", unit_dec="deg")
                if coord1 == coord2:
                    break
                coord1 = coord2
        # ---            
        return (err, res)

    def _my_hadec_move(self, ha_drift_deg_per_sec, dec_drift_deg_per_sec):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res

    def hadec_move(self, ha_drift_deg_per_sec, dec_drift_deg_per_sec, duration_s=0):        
        err = self.NO_ERROR
        res = 0
        # --- shortcuts
        axisb = self.axis[Mountaxis.BASE]
        axisp = self.axis[Mountaxis.POLAR]
        # === Simulation. It runs even if there is a real hardware)
        axisb.simu_motion_start("CONTINUOUS", frame='ang', drift=ha_drift_deg_per_sec)
        axisp.simu_motion_start("CONTINUOUS", frame='ang', drift=dec_drift_deg_per_sec)
        # === Real hardware
        err, res = self._my_hadec_move(ha_drift_deg_per_sec, dec_drift_deg_per_sec)
        return err, res

    def _my_hadec_move_stop(self):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res

    def hadec_move_stop(self):        
        err = self.NO_ERROR
        res = 0
        # --- shortcuts
        axisb = self.axis[Mountaxis.BASE]
        axisp = self.axis[Mountaxis.POLAR]
        # === Simulation. It runs even if there is a real hardware)
        ha_drift_deg_per_sec = self._hadec_speeddrift_ha_deg_per_sec
        dec_drift_deg_per_sec = self._hadec_speeddrift_dec_deg_per_sec
        axisb.simu_motion_start("CONTINUOUS", frame='ang', drift=ha_drift_deg_per_sec)
        axisp.simu_motion_start("CONTINUOUS", frame='ang', drift=dec_drift_deg_per_sec)
        # === Real hardware
        err, res = self._my_hadec_move_stop()
        return err, res

    def _my_hadec_stop(self):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res

    def hadec_stop(self):
        # === Real hardware
        err, res = self._my_hadec_stop()
        # === Read the current position
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]        
        celb, celp, pierside = self.enc2cel(incsimus,self.OUTPUT_SHORT, self.SAVE_ALL)
        # === Stop the simulation and update the simulated position by the real one if exists
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            current_axis.simu_motion_stop()
            if current_axis.real == True:
                current_axis.synchro_real2simu()
        return err, res

# =====================================================================
# =====================================================================
# Methods radec for users
# =====================================================================
# =====================================================================
# Level 4
# =====================================================================

    def _my_radec_speeddrift(self, deg_per_sec_ra, deg_per_sec_dec):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        return deg_per_sec_ra, deg_per_sec_dec

    def radec_speeddrift(self, deg_per_sec_ra="", deg_per_sec_dec=""):
        if deg_per_sec_ra!="" and deg_per_sec_dec!="":
            if deg_per_sec_ra=="diurnal":
                deg_per_sec_ra = 0
            if deg_per_sec_dec=="diurnal":
                deg_per_sec_dec = 0.0
            deg_per_sec_ra, deg_per_sec_dec = self._my_hadec_speeddrift(deg_per_sec_ra, deg_per_sec_dec)
            self._drift_radec_ra_deg_per_sec = deg_per_sec_ra
            self._drift_radec_dec_deg_per_sec = deg_per_sec_dec
        return self._drift_radec_ra_deg_per_sec, self._drift_radec_dec_deg_per_sec

    def radec_app2cat(self, jd, ha, dec, params):
        longuai = self.site.longitude*self._d2r
        ha *= self._d2r
        dec *= self._d2r
        meca = celme.Mechanics()
        ra = meca._mc_hd2ad(jd, longuai, ha)
        equinox = celme.Date(params["EQUINOX"]).jd()
        # --- calcul de la precession ---*/
        ra_equinox, dec_equinox = meca._mc_precad(jd,ra,dec,equinox)
        #ra_equinox, dec_equinox = (ra,dec)
        ra_equinox *= self._r2d
        dec_equinox *= self._r2d
        return ra_equinox, dec_equinox
    
    def radec_coord(self, **kwargs):
        # --- Dicos of optional and mandatory parameters
        params_optional = {} 
        params_optional["UNIT_RA"] = (str,'H0.2')
        params_optional["UNIT_DEC"] = (str,'d+090.1')
        params_optional["EQUINOX"] = (str,'J2000')
        params_mandatory = {}
        # --- Decode parameters
        params = self.decode_kwargs(params_optional, params_mandatory, **kwargs)
        # --- Get HA,Dec
        ha, dec, pierside = self.hadec_coord(UNIT_HA="deg",UNIT_DEC="deg")
        jd = celme.Date("now").jd()
        # --- app2cat
        ra_equinox, dec_equinox = self.radec_app2cat(jd, ha, dec, params)
        # --- Output unit conversion
        if params["UNIT_RA"]!="deg":
            ra_equinox = celme.Angle(ra_equinox).sexagesimal(params["UNIT_RA"])
        if params["UNIT_DEC"]!="deg":
            dec_equinox = celme.Angle(dec_equinox).sexagesimal(params["UNIT_DEC"])       
        return ra_equinox, dec_equinox, pierside

    def radec_cat2app(self, jd, ra_equinox, dec_equinox, params):
        equinox = celme.Date(params["EQUINOX"]).jd()
        meca = celme.Mechanics()
        ra_equinox *= self._d2r
        dec_equinox *= self._d2r
        # --- calcul de la precession ---*/
        ra, dec = meca._mc_precad(equinox,ra_equinox,dec_equinox,jd)
        #print("ra({})={} dec({})={}".format(params["EQUINOX"], ra_equinox*self._r2d, params["EQUINOX"], dec_equinox*self._r2d))
        #print("ra(date)={} dec(date)={}".format(ra*self._r2d, dec*self._r2d))
        #ra, dec = (ra_equinox,dec_equinox)
        longuai = celme.Angle(self.site.longitude).rad()
        ha = meca._mc_ad2hd(jd, longuai, ra)
        ha *= self._r2d
        dec *= self._r2d
        return ha, dec

    def radec_init(self, ra_angle:celme.Angle, dec_angle:celme.Angle, pierside:int="", **kwargs)->tuple:
        # --- Dicos of optional and mandatory parameters
        params_optional = {} 
        params_optional["EQUINOX"] = (str,'J2000')
        params_optional["BLOCKING"] = (bool,False)
        params_mandatory = {} 
        # --- Decode parameters
        params = self.decode_kwargs(params_optional, params_mandatory, **kwargs)
        # --- Get HA,Dec
        ra_equinox = celme.Angle(ra_angle).deg()
        dec_equinox = celme.Angle(dec_angle).deg()
        jd = celme.Date("now").jd()
        # --- cat2app
        ha_target, dec_target = self.radec_cat2app(jd, ra_equinox, dec_equinox,params)
        self.hadec_init(ha_target, dec_target, pierside)
        return self.radec_coord()
        
    def radec_goto(self, ra_angle:celme.Angle, dec_angle:celme.Angle, **kwargs):
        # --- Dicos of optional and mandatory parameters
        params_optional = {} 
        params_optional["EQUINOX"] = (str,'J2000')
        params_optional["BLOCKING"] = (bool,False)
        params_optional["SIDE"] = (int,Mountaxis.PIERSIDE_AUTO)
        params_mandatory = {} 
        # --- Decode parameters
        params = self.decode_kwargs(params_optional, params_mandatory, **kwargs)
        pierside_target = params["SIDE"]
        # --- Get HA,Dec
        ra_equinox = celme.Angle(ra_angle).deg()
        dec_equinox = celme.Angle(dec_angle).deg()
        jd = celme.Date("now").jd()
        # --- cat2app
        ha_target, dec_target = self.radec_cat2app(jd, ra_equinox, dec_equinox, params)
        # --- compute the time of slewing
        delayb, delayp = self.hadec_travel_compute(ha_target, dec_target, pierside_target)
        # --- Temporal offset to anticipate the delay of slewing
        dt = 2.4 + delayb ; # (sec)
        print("delayb={} dt={}".format(delayb,dt))
        jd += dt/86400
        # --- cat2app
        ha_target, dec_target = self.radec_cat2app(jd, ra_equinox, dec_equinox, params)
        # --- store the current HADEC drift values
        drift_hadec_ha_deg_per_sec = self._hadec_speeddrift_ha_deg_per_sec
        drift_hadec_dec_deg_per_sec = self._hadec_speeddrift_ha_deg_per_sec
        # --- change the HADEC drift values by the RADEC ones
        self._hadec_speeddrift_ha_deg_per_sec  = 360./self._sideral_sec_per_day - self._drift_radec_ra_deg_per_sec
        self._hadec_speeddrift_dec_deg_per_sec = self._drift_radec_dec_deg_per_sec
        # --- cal the HADEC GOTO
        #print("=== _drift_hadec_ha_deg_per_sec={}".format(self._drift_hadec_ha_deg_per_sec))
        err, res = self.hadec_goto(ha_target, dec_target, **kwargs)
        # --- restore the current HADEC drift values
        self._hadec_speeddrift_ha_deg_per_sec = drift_hadec_ha_deg_per_sec
        self._hadec_speeddrift_dec_deg_per_sec = drift_hadec_dec_deg_per_sec        
        # ---
        return (err, res)

# =====================================================================
# =====================================================================
# Methods inc for users
# =====================================================================
# =====================================================================

    def _my_inc_goto(self, axis_id:int, inc:float, inc_per_sec_slew:float):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res
        
    def inc_goto(self, axis_id:int, inc:float, inc_per_sec_slew:float):
        # === Simulation. It runs even if there is a real hardware)
        err = self.NO_ERROR
        res = 0
        kaxis = axis_id
        current_axis = self.axis[kaxis]
        current_axis.simu_motion_start("ABSOLUTE", frame='inc', velocity=inc_per_sec_slew, position=inc, drift=0)
        # === Real
        err, res = self._my_inc_goto(axis_id, inc, inc_per_sec_slew)
        return err, res

    def _my_goto_park(self, incb:float, incp:float, incr:float):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res

    def goto_park(self, incb="", incp="", incr=""):
        err, res = self._my_goto_park(incb, incp, incr)
        return err, res
        
    def plot_rot(self, lati, azim, elev, rotb, rotp, outfile=""):
        """
        Vizualize the rotation angles of the mount according the local coordinates
        # --- Site latitude
        lati (deg) : Site latitude
        # --- Observer view
        elev = 15 # turn around the X axis
        azim = 140 # turn around the Z axis (azim=0 means W foreground, azim=90 means N foreground) 
        # --- rob, rotp
        """
        if lati=="":
            lati = self.site.latitude
        if lati>=0:
            latitude = lati
            cards="SNEW"
        else:
            latitude = -lati
            cards="NSWE"
        toplots = []
        # --- cartesian frame
        options = {"linewisth":0.5}
        toplots.append(["text",[0, 0, 0],"o",'k',{}])
        toplots.append(["line",[0, 0, 0],[1, 0, 0],'k',options])
        toplots.append(["line",[0, 0, 0],[-1, 0, 0],'k',options])
        toplots.append(["text",[1, 0, 0],cards[0],'k',{}])
        toplots.append(["text",[-1, 0, 0],cards[1],'k',{}])
        toplots.append(["text",[0, 1, 0],cards[2],'k',{}])
        toplots.append(["text",[0, -1, 0],cards[3],'k',{}])
        toplots.append(["line",[0, 0, 0],[0, 1, 0],'k',options])
        toplots.append(["line",[0, 0, 0],[0, -1, 0],'k',options])
        toplots.append(["line",[0, 0, 0],[0, 0, 1],'k',options])
        toplots.append(["line",[0, 0, 0],[0, 0, -1],'k',options])
        toplots.append(["text",[0, 0, 1.1],"zenith",'k',options])
        # --- great circle tangeant to the projection plane
        toplots.append(["circle",1,[[90,0,0], [-elev,0,0], [0,0,-azim]],0,360,'k',options])
        #toplots.append(["circle",1,[[90,-elev,-azim]],0,360,'k',{"linewisth":1}])
        # --- local horizon
        toplots.append(["circle",1,[[0,0,0]],0,360,'k',{"linewisth":0.5}])
        # --- local meridian
        toplots.append(["circle",1,[[90,0,0]],0,360,'k',{"linewisth":0.5}])
        # --- local equator
        rotxyzs = [[0, latitude, 0]]
        options = {"linewisth":2}
        color = 'r'
        toplots.append(["circle",1,rotxyzs,0,360,color,options])
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        toplots.append(["linefrom0",-1,rotxyzs,color,options])
        toplots.append(["textfrom0",1.05,rotxyzs,"x",color,options])
        rotxyzs = [[0, 0, 90]]
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        toplots.append(["linefrom0",-1,rotxyzs,color,options])
        toplots.append(["textfrom0",1.15,rotxyzs,"y",color,options])
        rotxyzs = [[0, latitude+90, 0]]
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        toplots.append(["linefrom0",-1,rotxyzs,color,options])
        toplots.append(["textfrom0",1.05,rotxyzs,"z = visible pole ({})".format(cards[1]),color,options])
        # --- pointing Rotp
        rotxyzs = [[90,0,0], [0,0,rotb], [0, latitude, 0]]
        options = {"linewisth":0.5}
        color = 'r'
        toplots.append(["circle",1,rotxyzs,0,360,color,options])
        options = {"linewisth":2}
        color = 'g'
        toplots.append(["circle",1,rotxyzs,90,90-rotp,color,options])
        rotxyzs = [[0,90-rotp,0], [0,0,rotb], [0, latitude, 0]]
        options = {"linewisth":1}
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        toplots.append(["textfrom0",1.1,rotxyzs,"rotp",color,options])
        rotxyzs = [[0,90,0], [0,0,rotb], [0, latitude, 0]]
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        # --- pointing Rotb
        rotxyzs = [[0,0,rotb], [0, latitude, 0]]
        options = {"linewisth":2}
        color = 'b'
        toplots.append(["circle",1,rotxyzs,0,-rotb,color,options])
        options = {"linewisth":1}
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        toplots.append(["textfrom0",1.3,rotxyzs,"rotb",color,options])
        rotxyzs = [[0, latitude, 0]]
        options = {"linewisth":1}
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        # ===
        fig = plt.figure()
        #ax = fig.add_subplot(1,1,1,projection='3d')
        #ax.view_init(elev=elev, azim=azim)
        ax = fig.add_subplot(1,1,1)
        for toplot in toplots:
            ptype = toplot[0]
            if ptype=="line":
                dummy, xyz1, xyz2, color, options = toplot
                xyz0s = []
                xyz0 = np.array(xyz1)
                xyz0s.append(xyz0)
                xyz0 = np.array(xyz2)
                xyz0s.append(xyz0)
                na = len(xyz0s)
            elif ptype=="text":
                dummy, xyz, text, color, options = toplot
                xyz0s = []
                xyz0 = np.array(xyz)
                xyz0s.append(xyz0)
                na = len(xyz0s)
            elif ptype=="linefrom0":
                dummy, length, rotxyzs, color, options = toplot
                xyz0s = []
                xyz0 = np.array([0, 0, 0])
                xyz0s.append(xyz0)
                xyz0 = np.array([length, 0 ,0])
                xyz0s.append(xyz0)
                na = len(xyz0s)
            elif ptype=="textfrom0":
                dummy, length, rotxyzs, text, color, options = toplot
                xyz0s = []
                xyz0 = np.array([length, 0 ,0])
                xyz0s.append(xyz0)
                na = len(xyz0s)
            elif ptype=="circle":
                dummy, radius, rotxyzs, ang1, ang2, color, options = toplot
                na = 50
                alphas =np.linspace(ang1,ang2,na)
                # --- cercle dans le plan (x,y)
                xyz0s = []
                for alpha in alphas:
                    alpha = math.radians(alpha)
                    x = radius*math.cos(alpha)
                    y = radius*math.sin(alpha)
                    z = 0
                    xyz0 = np.array([x, y, z])
                    xyz0s.append(xyz0)
                na = len(xyz0s)
            else:
                continue
            # --- rotations
            if ptype=="linefrom0" or ptype=="textfrom0" or ptype=="circle":
                for rotxyz in rotxyzs:
                    rotx, roty, rotz = rotxyz
                    cosrx = math.cos(math.radians(rotx))
                    sinrx = math.sin(math.radians(rotx))
                    cosry = math.cos(math.radians(roty))
                    sinry = math.sin(math.radians(roty))
                    cosrz = math.cos(math.radians(rotz))
                    sinrz = math.sin(math.radians(rotz))
                    rotrx = np.array([ [1, 0, 0], [0, cosrx, -sinrx], [0, sinrx, cosrx] ])
                    rotry = np.array([ [cosry, 0, -sinry], [0, 1, 0], [sinry, 0, cosry] ])
                    rotrz = np.array([ [cosrz, -sinrz, 0], [sinrz, cosrz, 0] , [0, 0, 1] ])
                    xyz1s = []
                    for xyz in xyz0s:
                        xyz = np.dot(rotrx, xyz)
                        xyz = np.dot(rotry, xyz)
                        xyz = np.dot(rotrz, xyz)
                        xyz1s.append(xyz)
                    xyz0s = xyz1s # ready for a second rotation
            else:
                xyz1s = xyz0s
            # --- projections
            cosaz = math.cos(math.radians(azim))
            sinaz = math.sin(math.radians(azim))
            cosel = math.cos(math.radians(elev))
            sinel = math.sin(math.radians(elev))
            rotaz = np.array([ [cosaz, -sinaz, 0], [sinaz, cosaz, 0] , [0, 0, 1] ])
            #rotel = np.array([ [cosel, 0, -sinel], [0, 1, 0], [sinel, 0, cosel] ])
            rotel = np.array([ [1, 0, 0], [0, cosel, -sinel], [0, sinel, cosel] ])
            xyz2s = []
            for xyz in xyz1s:
                xyz = np.dot(rotaz, xyz)
                xyz = np.dot(rotel, xyz)
                xyz2s.append(xyz)
            # --- plot
            if ptype=="textfrom0" or ptype=="text":
                x,y,z = xyz2s[0]
                h = ax.text(x,z,text)
                h.set_color(color)
            else:
                for ka in range(0,na-1):
                    xyz1 = xyz2s[ka]
                    xyz2 = xyz2s[ka+1]
                    x = [xyz1[0], xyz2[0]]
                    y = [xyz1[1], xyz2[1]]
                    z = [xyz1[2], xyz2[2]]
                    if y[0]>1e-3 or y[1]>1e-3:
                        symbol = color+':'
                    else:
                        symbol = color+'-'
                    h = ax.plot(x,z,symbol,'linewidth',1.0)
                    for option in options.items():
                        key = option[0]
                        val = option[1]
                        if key=="linewisth":
                            h[0].set_linewidth(val)
        # ---
        ax.axis('equal')
        #fig.patch.set_visible(False)
        ax.axis('off')        
        plt.title("Rotation angles for latitude {} deg".format(lati))
        plt.show()
        if outfile!="":
            plt.savefig(outfile, facecolor='w', edgecolor='w')
        
    def pad(self, pad_type="dev"):
        self.pad = Mountpad(self,pad_type)
        self.pad.start()

    def remote_command_protocol(self, remote_command_protocol="LX200"):
        remote_command_protocol = remote_command_protocol.upper()
        if remote_command_protocol=="LX200":
            self._remote_command_protocol="LX200"
            self._lx200_precision = self.LX200_HIGH_PRECISION
            self._lx200_setra_deg = 0.0
            self._lx200_setdec_deg = 0.0
            self._lx200_24_12_hour_time_format = 24

    def _my_remote_command_processing(self, command):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        res = ""
        return res

    def remote_command_processing(self, command):
        res = ""
        if self._remote_command_protocol=="LX200":
            if command.startswith(chr(6))==True:
                res = "P"
            elif command.startswith(":Gg")==True:
                deg = self.site.longitude
                res = celme.Angle(deg).sexagesimal("d +0180")
                res = res[0:4] + "*"  + res[5:7]
            elif command.startswith(":Gm")==True:
                ha, dec, side = self.hadec_coord()
                if side==1:
                    res = "W"
                else:
                    res = "E"
            elif command.startswith(":Gt")==True:
                deg = self.site.latitude
                res = celme.Angle(deg).sexagesimal("d +090")
                res = res[0:3] + "*" + res[4:6]
            elif command.startswith(":GD")==True:
                ra, dec, side = self.radec_coord(UNIT_RA="H:0.0",UNIT_DEC="d:+090.0")
                dec = dec[0:3] + "*" + dec[4:6] + "'" + dec[7:9]
                if self._lx200_precision == self.LX200_LOW_PRECISION:
                    dec = dec[0:6]
                res = dec
            elif command.startswith(":GR")==True:
                ra, dec, side = self.radec_coord(UNIT_RA="H:0.0",UNIT_DEC="d:+090.0")
                if self._lx200_precision == self.LX200_LOW_PRECISION:
                    sec = int(ra[6:8])
                    sec = "{:.1f}".format(sec/60.0)
                    ra = ra[0:5]+sec[1:]
                res = ra
            elif command.startswith(":H")==True:                
                if self._lx200_24_12_hour_time_format == 24:
                    self._lx200_24_12_hour_time_format = 12
                else:
                    self._lx200_24_12_hour_time_format = 24
            elif command.startswith(":Gc")==True:
                res = str(self._lx200_24_12_hour_time_format)
            elif command.startswith(":GC")==True:
                iso = celme.Date("now").iso()
                res = iso[5:7] + "/" + iso[8:10] + "/" + iso[2:4]                
            elif command.startswith(":GL")==True:
                iso = celme.Date("now").iso()
                res = iso[11:19]
            elif command.startswith(":Q")==True:
                self.hadec_stop()
            elif command.startswith(":P")==True:
                res = self._lx200_precision
            elif command.startswith(":U")==True:
                if self._lx200_precision == self.LX200_HIGH_PRECISION:
                    self._lx200_precision = self.LX200_LOW_PRECISION
                else:
                    self._lx200_precision = self.LX200_HIGH_PRECISION
            elif command.startswith(":Sr")==True:
                angle = command[3:]
                self._lx200_setra_deg = celme.Angle(angle).deg() * 15.0
                res = str(1)
            elif command.startswith(":Sd")==True:
                angle = command[3:]
                self._lx200_setdec_deg = celme.Angle(angle).deg()
                res = str(1)
            elif command.startswith(":Sg")==True:
                angle = command[3:]
                self.site.longitude = celme.Angle(angle).deg()
                res = str(1)
            elif command.startswith(":Sts")==True:
                angle = command[3:]
                self.site.latitude = celme.Angle(angle).deg()
                res = str(1)                
            elif command.startswith(":CM")==True:
                self.radec_init(self._lx200_setra_deg, self._lx200_setdec_deg)
            elif command.startswith(":MS")==True:
                self.radec_goto(self._lx200_setra_deg, self._lx200_setdec_deg)
        if self._remote_command_protocol=="astromecca":
            if command.startswith(chr(6))==True:
                res = "P"
            elif command.startswith(":Gg")==True:
                deg = self.site.longitude
                res = celme.Angle(deg).sexagesimal("d +0180")
                res = res[0:4] + "*"  + res[5:7]       
                """
        while True:
            # --- read the ASCOM commands
            lignes = ""
            try:
                err, lignes = ascom_chan.read_chan()
                #print("lignes = {}".format(lignes))
                lignes = str(lignes[0])
            except:
                pass
            if err==ascom_chan.NO_ERROR and lignes != "":
                mount_scx11.log.print("===\nlignes recu ={}".format(lignes))
                mots = lignes.split()
                mount_scx11.log.print("mots recus ={}".format(mots))
                msg = ""
                # --- traiter la ligne recue de ASCOM
                if lignes.startswith("READ_RA")==True:
                    # --- on traite un goto
                    ra, dec, side = mount_scx11.radec_coord(UNIT_RA="deg")
                    mount_scx11.log.print("{} ra={}".format(mots[0],ra))
                    msg = str( float(ra)/15.)
                if lignes.startswith("READ_DEC")==True:
                    # --- on traite un goto
                    ra, dec, side = mount_scx11.radec_coord(UNIT_DEC="deg")
                    mount_scx11.log.print("{} dec={}".format(mots[0],dec))
                    msg = str(dec)
                # --- traiter la ligne recue de ASCOM
                if lignes.startswith("GOTO_RA_DEC")==True:
                    ra = float(mots[1])*15.
                    dec = float(mots[2])
                    mount_scx11.log.print("{} ra={} dec={}".format(mots[0],ra,dec))
                    mount_scx11.radec_goto(ra, dec, EQUINOX="NOW")
                if lignes.startswith("PARK")==True:
                    ha = 270.0
                    dec = 90.0
                    side = 1
                    mount_scx11.log.print("{} ha={} dec={} side={}".format(mots[0],ra,dec,side))
                    mount_scx11.hadec_goto(ha, dec, side=side)
                # --- send the EQMOD answer to ASCOM
                mount_scx11.log.print("msg renvoyé ={}".format(msg))
                ascom_chan.put_chan(msg)
                 """
        else:
            pass
        if res=="":
            res = self._my_remote_command_processing(command)
        return res
    
# =====================================================================
# =====================================================================
# Special methods
# =====================================================================
# =====================================================================
        
    def __init__(self, *args, **kwargs): 
        """
        Conversion from Uniform Python object into protocol language
        Usage : Mountastro("HADEC", name="SCX11")
        """
        # --- Dico of optional parameters for all axis_types
        param_optionals = {}
        param_optionals["MODEL"] = (str, "")
        param_optionals["MANUFACTURER"] = (str, "")
        param_optionals["SERIAL_NUMBER"] = (str, "")
        param_optionals["REAL"] = (bool, False)
        param_optionals["DESCRIPTION"] = (str, "No description.")
        param_optionals["SITE"] = (celme.Site,"GPS 0 E 45 100")
        # --- Dico of axis_types and their parameters
        mount_types = {}
        mount_types["HADEC"]= {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Equatorial"]} }
        mount_types["HADECROT"]= {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Equatorial"]} }
        mount_types["AZELEV"]= {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Altazimutal"]} }
        mount_types["AZELEVROT"]= {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Altazimutal"]} }
        # --- Decode args and kwargs parameters
        self._mount_params = self.decode_args_kwargs(0, mount_types, param_optionals, *args, **kwargs)
        # ===
        self._mount_type = self._mount_params["SELECTED_ARG"]
        self._name = self._mount_params["NAME"]
        self._description = self._mount_params["DESCRIPTION"]
        self._model = self._mount_params["MODEL"]
        self._manufacturer = self._mount_params["MANUFACTURER"]
        self._serial_number= self._mount_params["SERIAL_NUMBER"]
        # === local
        if type(self._mount_params["SITE"])==celme.site.Site:
            self.site = self._mount_params["SITE"]
        else:
            self.site = celme.Home(self._mount_params["SITE"])
        # === Initial state real or simulation
        real = self._mount_params["REAL"]
        # === Initialisation of axis list according the mount_type
        self.axis = [None for kaxis in range(Mountaxis.AXIS_MAX)] # or  Mountaxis.AXIS_NOT_DEFINED            
        if self._mount_type.find("HA")>=0:
            current_axis = Mountaxis("HA", name = "Hour angle")
            current_axis.update_inc0(0,0,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.BASE] = current_axis
        if self._mount_type.find("DEC")>=0: 
            current_axis = Mountaxis("DEC", name = "Declination")
            current_axis.update_inc0(0,90,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.POLAR] = current_axis
        if self._mount_type.find("AZ")>=0:
            current_axis = Mountaxis("AZ", name = "Azimuth")
            current_axis.update_inc0(0,0,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.BASE] = current_axis
        if self._mount_type.find("ELEV")>=0: 
            current_axis = Mountaxis("ELEV", name = "Elevation")
            current_axis.update_inc0(0,90,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.POLAR] = current_axis
        if self._mount_type.find("ROT")>=0: 
            current_axis = Mountaxis("ROT", name = "Rotator")
            current_axis.update_inc0(0,0,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.ROT] = current_axis
        if self._mount_type.find("ROLL")>=0:
            current_axis = Mountaxis("ROLL", name = "Roll")
            current_axis.update_inc0(0,0,current_axis.PIERSIDE_POS1)
        if self._mount_type.find("PITCH")>=0: 
            current_axis = Mountaxis("PITCH", name = "Pitch")
            current_axis.update_inc0(0,90,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.POLAR] = current_axis
        if self._mount_type.find("YAW")>=0: 
            current_axis = Mountaxis("YAW", name = "Yaw")
            current_axis.update_inc0(0,0,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.YAW] = current_axis
        # === Default Setup
        ratio_wheel_puley = 1 ; # 5.25
        ratio_puley_motor = 100.0 ; # harmonic reducer
        inc_per_motor_rev = 1000.0 ; # IMC parameter. System Confg -> System Parameters - Distance/Revolution
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            current_axis.slewmax_deg_per_sec = 30    
            current_axis.slew_deg_per_sec = 30    
            current_axis.real = real
            current_axis.latitude = self.site.latitude
            current_axis.ratio_wheel_puley = ratio_wheel_puley    
            current_axis.ratio_puley_motor = ratio_puley_motor    
            current_axis.inc_per_motor_rev = inc_per_motor_rev
        # ---
        self.hadec_speeddrift(0,0)
        # === Pads
        self._pads = []
        # === Remote commands        
        self._remote_command_protocol=""
        self.remote_command_protocol("LX200")
        # === Log positions
        self._record_positions = True        
        # === Log
        path_data = os.getcwd()
        self.log = Mountlog(self._name,self.site.gps,path_data)
        self.log.print("Launch log")

# #####################################################################
# #####################################################################
# #####################################################################
# Main
# #####################################################################
# #####################################################################
# #####################################################################

if __name__ == "__main__":
    cwd = os.getcwd()

    example = 4
    print("Example       = {}".format(example))
            
    if example == 1:
        # === SCX11
        home = celme.Home("GPS 2.25 E 43.567 148")
        site = celme.Site(home)
        mount = Mountastro("HADEC", name="Test Mount",site=site)

    if example == 2:
        home = celme.Home("GPS 2.25 E 43.567 148")
        #horizon = [(0,0), (360,0)]
        site = celme.Site(home)
        mount_scx11 = Mountastro("HADEC", name="Guitalens Mount", manufacturer="Astro MECCA", model="TM350", site=site)
        mount_eqmod = Mountastro("HADEC", name="Guitalens Mount", manufacturer="Astro MECCA", model="EQ 6",  site=site)
        # --- shortcuts
        mount_scx11_axisb = mount_scx11.axis[Mountaxis.BASE]
        mount_scx11_axisp = mount_scx11.axis[Mountaxis.POLAR]
        mount_eqmod_axisb = mount_eqmod.axis[Mountaxis.BASE]
        mount_eqmod_axisp = mount_eqmod.axis[Mountaxis.POLAR]
        # --- simulation or not
        mount_scx11_axisb.real = False
        mount_scx11_axisp.real = False
        mount_eqmod_axisb.real = False
        mount_eqmod_axisp.real = False
        # ======= SCX11
        incsimus = [0 for kaxis in range(Mountaxis.AXIS_MAX)]
        increals, incsimus = mount_scx11.read_encs(incsimus)
        # ---
        incb, rotb, celb, incp, rotp, celp, pierside, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu = mount_scx11.enc2cel(incsimus, mount_scx11.OUTPUT_LONG, mount_scx11.SAVE_ALL)        
        print("SCX11 incb={:.0f} rotb={:.3f} celb={:.3f} incp={:.0f} rotp={:.3f} celp={:.3f} pierside={:.0f}".format(incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu))
        incb, rotb, celb, incp, rotp, celp, pierside, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu = mount_scx11.enc2cel(incsimus, mount_scx11.OUTPUT_LONG, mount_scx11.SAVE_ALL)        
        print("SCX11 incb={:.0f} rotb={:.3f} celb={:.3f} incp={:.0f} rotp={:.3f} celp={:.3f} pierside={:.0f}".format(incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu))
        # --- update EQMOD parameters
        incb, rotb, celb, incp, rotp, celp, pierside, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu = mount_eqmod.enc2cel(incsimus, mount_scx11.OUTPUT_LONG, mount_scx11.SAVE_ALL)        
        print("EQMOD incb={:.0f} rotb={:.3f} celb={:.3f} incp={:.0f} rotp={:.3f} celp={:.3f} pierside={:.0f}".format(incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu))
        incb, rotb, celb, incp, rotp, celp, pierside, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu = mount_eqmod.enc2cel(incsimus, mount_scx11.OUTPUT_LONG, mount_scx11.SAVE_ALL)        
        print("EQMOD incb={:.0f} rotb={:.3f} celb={:.3f} incp={:.0f} rotp={:.3f} celp={:.3f} pierside={:.0f}".format(incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu))
               
    if example == 3:
        if True:
            # --- Site latitude
            latitude = 30
            # --- observer view
            elev = 15 # tourne autour de l'axe x
            azim = 140 # tourne autour de de l'axe z (azim=0 on regarde W devant, azim=90 N devant) 
            outfile = cwd+"/rotbp_n.png"
        else:
            # --- Site latitude
            latitude = -30
            # --- observer view
            elev = 15 # tourne autour de l'axe x
            azim = 140 # tourne autour de de l'axe z (azim=0 on regarde W devant, azim=90 N devant) 
            outfile = cwd+"/rotbp_s.png"
        # --- rob, rotp
        rotb = 60
        rotp = 30
        home = celme.Home("GPS 2.25 E 43.567 148")
        site = celme.Site(home)
        mount = Mountastro("HADEC", name="Example Mount", site=site)
        mount.plot_rot(latitude, azim, elev, rotb, rotp, outfile)

    if example==4:
        home = celme.Home("GPS 2.25 E 43.567 148")
        #horizon = [(0,0), (360,0)]
        site = celme.Site(home)
        mount_scx11 = Mountastro("HADEC", name="Guitalens Mount", manufacturer="Astro MECCA", model="TM350", site=site)
        # --- shortcuts
        mount_scx11_axisb = mount_scx11.axis[Mountaxis.BASE]
        mount_scx11_axisp = mount_scx11.axis[Mountaxis.POLAR]
        # --- simulation or not
        mount_scx11_axisb.real = False
        mount_scx11_axisp.real = False
        # ======= SCX11
        mount_scx11.speedslew(10,10)
        ha_start = 70
        dec_start = 60
        ha_target = 10
        dec_target = -25
        pierside_target = 1
        res = mount_scx11.hadec_travel_compute(ha_target, dec_target, pierside_target)