mountastro.py 111 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
# -*- coding: utf-8 -*-
import os
import sys
if sys.platform == 'win32':
    import winreg
import time
import math
import numpy as np
import matplotlib.pyplot as plt
import ast

try:
    from .mountaxis import Mountaxis
except:    
    from mountaxis import Mountaxis

try:    
    from .mounttools import Mounttools
except:
    from mounttools import Mounttools

try:
    from .mountlog import Mountlog
except:
    from mountlog import Mountlog

try:
    from .mountpad import Mountpad
except:
    from mountpad import Mountpad

path = os.path.join(os.path.dirname(__file__), '..')
if path not in sys.path:
    sys.path.append(path)    
# --- celme imports
modulename = 'celme'
if modulename in dir():
    del celme
if modulename not in dir():    
    import celme
    
# #####################################################################
# #####################################################################
# #####################################################################
# Class Mountastro
# #####################################################################
# #####################################################################
# This is an abstract Class
# This class does not communicate to devices
# Use a child class to use the protocol language
# #####################################################################

class Mountastro(Mounttools):
    """
    Class to define a mount.

    The first element of args is a string to define the mount type amongst:
    
        * HADEC: Eqquatorial mount.
        * HADECROT: Eqquatorial mount + field rotator.
        * AZELEV: Altazimutal mount.
        * AZELEVROT: Altazimutal mount + field rotator.
        
    Dictionnary of motion parameters are:

        * NAME: A string to identify the mount in memory.
        * LABEL: A string to identify the mount for prints.

    :Example:

    ::
        
        >>> mymount = Mountastro("HADEC", name = "My telescope")
    
    A mount is constituted of many axes instanciated automatically using the Mountaxis class.
    
    The class Mountastro provides methods to convert astronomical coordinates
    into low level orders for controlers (i.e. increments). For example:
    
        * radec_coord(): To read the current position of the mount axes.
        * radec_synchronize(): To synchronize the current position of the mount axes.
        * radec_goto(): To slew the mount axes to a target position.

    These methods are implemented only in simulation mode in the Mountastro class.
    All these mods call a second one prefixed by _my_ to communicate physically with
    the controller. For example, radec_coord() calls _my_radec_coord(). In the class
    Mountastro the methos _my_* are only abstracts. The concrete methods will be defined
    in another class specific to the langage of the controller. For exemple the
    AstroMECCA commands are written in the class Mount_Astromecca which inherites
    metohds of the Mountastro class.
    
    :Example:

    ::
    
        >>> mymount = Mountastro_Astromecca("HADEC", name = "My telescope")
        >>> mymount.set_channel_params("SERIAL", port="COM1", baud_rate=115200)
        >>> ra, dec, pierside = mymount.radec_coords()
    
    
    """
    
    # === Constant for error codes
    NO_ERROR = 0
    ERR_UNKNOWN = 1
    
    ERR_FILE_NOT_EXISTS = 101
    
    # === Constants
    
    # === Private variables
    _last_errno = NO_ERROR
    
    # --- Axis parameters
    axisp = None
    axisb = None

    # === constants for saving coords
    SAVE_NONE = 0
    SAVE_AS_SIMU = 1
    SAVE_AS_REAL = 2
    SAVE_ALL = 3
    
    # === Constants for returning long or short outputs
    OUTPUT_SHORT = 0
    OUTPUT_LONG = 1
    
    # ===
    LX200_0X06 = 0x06
    LX200_HIGH_PRECISION = "HIGH PRECISION"
    LX200_LOW_PRECISION  = "LOW PRECISION"
    
    # === List of Threads for the pad GUI
    _threads = []
    
    _drift_hadec_ha_deg_per_sec = 0
    _drift_hadec_dec_deg_per_sec = 0
    _drift_radec_ra_deg_per_sec = 0
    _drift_radec_dec_deg_per_sec = 0

    _sideral_sec_per_day = 86164.0

    # --- last actions
    _last_goto_drift_deg_per_secs = []
    
    # --- slewing and tracking states for ASCOM
    _slewing_state = False
    _tracking_state = False
    
# =====================================================================
# =====================================================================
# Private methods
# =====================================================================
# =====================================================================
    
    def _create(self, mount_name, mount_type):
        self._delete()

    def _delete(self):
        self._last_errno = self.NO_ERROR

# =====================================================================
# =====================================================================
# Methods for using a pad GUI
# =====================================================================
# =====================================================================
# to use it:
# mymount = Mountastro("HADEC", name="Test Mount")
# try:
#     mymount.pad_create("pad_dev1")
# except (KeyboardInterrupt, SystemExit):
#     pass
# except:
#     raise  
# =====================================================================

    def pad_create(self, pad_type):
        Mountpad(self, pad_type)
            
# =====================================================================
# =====================================================================
# Methods for debug
# =====================================================================
# =====================================================================

    def disp(self):
        """ Display a summary of the Mount parameters, the current values of encoders and celestial angles.

        This method is used to check and debug the mount.
        """
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]  
        increals, incsimus = self.read_encs(incsimus)
        increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu = self.enc2cel(incsimus, output_format=self.OUTPUT_LONG, save=self.SAVE_ALL)
        if self._mount_type=="HADEC":
            hareal, decreal = self.cel2hadec(celrealb, celrealp, "H0.2", "d+090.1")
            hasimu, decsimu = self.cel2hadec(celsimub, celsimup, "H0.2", "d+090.1")
        if self._mount_type=="AZELEV":
            azreal, elevreal = self.cel2azelev(celrealb, celrealp, "D0.2", "d+090.1")
            azsimu, elevsimu = self.cel2azelev(celsimub, celsimup, "D0.2", "d+090.1")
        print("{}".format(20*"-"))
        print("MOUNT name        = {} ".format(self._name))
        print("mount_type        = {}  {}".format(self._mount_type, self._mount_params["CONFIGURATION"]))        
        print("home              = {} ".format(self.site.gps))
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            for disp_real in (False,True):
                if disp_real==True and current_axis.real == False:
                    continue
                # --- get inc and compute rot, cel
                if disp_real==True:
                    msg_simu = "REAL"
                    inc = increals[kaxis]
                else:
                    msg_simu = "SIMU"
                    inc = incsimus[kaxis]
                rot, pierside = current_axis.inc2rot(inc, self.SAVE_NONE)
                cel = current_axis.rot2ang(rot, pierside, self.SAVE_NONE)
                # --- additional informations
                msg_coord = ""
                if self._mount_type=="HADEC":
                    if current_axis.axis_type=="HA":
                        if disp_real==True:
                            msg_coord = hareal
                        else:
                            msg_coord = hasimu
                    if current_axis.axis_type=="DEC":
                        if disp_real==True:
                            msg_coord = decreal
                        else:
                            msg_coord = decsimu
                if self._mount_type=="AZELEV":
                    if current_axis.axis_type=="AZ":
                        if disp_real==True:
                            msg_coord = azreal
                        else:
                            msg_coord = azsimu
                    if current_axis.axis_type=="ELEV":
                        if disp_real==True:
                            msg_coord = elevreal
                        else:
                            msg_coord = elevsimu
                # ---
                label_pierside = "Unknown"
                if pierside==1:
                    label_pierside = self._mount_params["LABEL_REGULAR"]
                elif pierside==-1:
                    label_pierside = self._mount_params["LABEL_FLIPED"]
                # ---
                print("{} {} {} {}".format(20*"-",current_axis.name,msg_simu,current_axis.axis_type))
                print("inc               = {:12.1f} : ".format(inc))
                print("rot               = {:12.7f} : ".format(rot))
                print("pierside          = {:d}            : {}".format(pierside, label_pierside))
                print("cel               = {:12.7f} : {} {}".format(cel,current_axis.axis_type,msg_coord))

    def set_param(self, key, value):
        self._mount_params[key] = value
    
    def get_param(self, key):
        keys  = self._mount_params.keys()
        if key in keys:
            value = self._mount_params[key]
        else:
            value = None
        return value

    def get_params(self):
        return self._mount_params
        
# =====================================================================
# =====================================================================
# Methods to read the encoders
# =====================================================================
# =====================================================================
# Level 1
# =====================================================================
                
    def _my_read_encs(self, incsimus:list)->list:
        """
        Read the real raw increment values of the axes
        
        :param incsimus: List of simulated increments.
        :type incsimus: list
        :returns: List of real increments.
        :rtype: list

        Inputs are simulated increments. Outputs are real increments if a real mount exists.
        This is an abstract method. Please overload it according your language protocol to read real increments.
        This conversion method is at level 1/4.
        """
        # --- abstract method. 
        # --- Please overload it according your language protocol
        increals = incsimus
        return increals
    
    def read_encs(self, simulation_incs:list)->list:
        """
        Read the simulated and real raw increment values of the axes

        :param incsimus: List of simulated increments.
        :type incsimus: list
        :returns: List of real increments.
        :rtype: list
        
        For the simulation: 
            * if simulation_incs=="" the value is calculated from simu_update_inc
            * if simulation_incs==34.5 the value is taken equal to 34.5

        For real:
            * if the axis is not real then real=simulated value
            * else the encoder is read

        Output = Raw calues of encoders (inc)
        
        This conversion method is at level 1/4.
        """
        # === Simulated values of inc
        incsimus = [0 for kaxis in range(Mountaxis.AXIS_MAX)]
        # --- Loop over all the possible axis types
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            # --- This axis is valid. We compute the simulation
            simulation_inc = simulation_incs[kaxis]
            if isinstance(simulation_inc,(int,float))==True:
                incsimus[kaxis] = simulation_inc
            else:
                incsimus[kaxis] = current_axis.simu_update_inc()
        # === Read real values of inc if possible
        increals = self._my_read_encs(incsimus)
        # ---
        if self._record_positions==True:
            with open("positions.txt","a",encoding='utf-8') as fid:
                msg = "{} {} {}\n".format(time.time(), increals[Mountaxis.BASE], incsimus[Mountaxis.BASE])
                fid.write(msg)
        # ---
        return (increals, incsimus)

# =====================================================================
# =====================================================================
# Methods to convert encoders into celestial
# =====================================================================
# =====================================================================
# Level 2
# =====================================================================
        
    def enc2cel(self, simulation_incs:list, output_format=OUTPUT_SHORT, save=SAVE_NONE)->tuple:
        """
        Read encoder values and convert them into celestial apparent coordinates
        
        :param simulation_incs: List of simulated increments.
        :type simulation_incs: list
        :param output_format: OUTPUT_SHORT or OUTPUT_LONG.
        :type output_format: int
        :param save: SAVE_NONE or SAVE_AS_SIMU or SAVE_AS_REAL or SAVE_ALL.
        :type save: int
        :returns: Celestial coordinates (degrees)
        :rtype: tuple of 3 or 14 elements
        
        Input  = Raw encoder values (inc)
        Output = HA, Dec, pier side (any celme Angle units)

        This conversion method is at level 2/4.
        """
        increals, incsimus = self.read_encs(simulation_incs)
        # --- shortcuts
        axisb = self.axis[Mountaxis.BASE]
        axisp = self.axis[Mountaxis.POLAR]
        incsimub = incsimus[Mountaxis.BASE]
        incsimup = incsimus[Mountaxis.POLAR]
        increalb = increals[Mountaxis.BASE]
        increalp = increals[Mountaxis.POLAR]
        # --- update the axis parameters (start with polar axis to deduce pierside)
        # --- update for simulations
        if save==self.SAVE_ALL or save==self.SAVE_AS_SIMU:
            savesimu = self.SAVE_AS_SIMU
        else:
            savesimu = self.SAVE_NONE
        rotsimup, piersidesimu = axisp.inc2rot(incsimup, savesimu)
        celsimup = axisp.rot2ang(rotsimup, piersidesimu, savesimu)
        rotsimub, dummy = axisb.inc2rot(incsimub, savesimu)
        celsimub = axisb.rot2ang(rotsimub, piersidesimu, savesimu)
        # --- update for real
        if save==self.SAVE_ALL or save==self.SAVE_AS_REAL:
            savereal = self.SAVE_AS_REAL
        else:
            savereal = self.SAVE_NONE
        rotrealp, piersidereal = axisp.inc2rot(increalp, savereal)
        celrealp = axisp.rot2ang(rotrealp, piersidereal, savereal)
        rotrealb, dummy = axisb.inc2rot(increalb, savereal)
        celrealb = axisb.rot2ang(rotrealb, piersidereal, savereal)
        # --- select results as simulation or real
        if axisp.real == False:
            celp = celsimup
            pierside = piersidesimu
        else:
            celp = celrealp
            pierside = piersidereal
        if axisb.real == False:
            celb = celsimub
        else:
            celb = celrealb
        # ---
        if output_format==self.OUTPUT_SHORT:
            return celb, celp, pierside
        else:
            # all angle output
            return increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu

    def cel2enc(self, celb:float, celp:float, pierside:int, output_format=OUTPUT_SHORT, save=SAVE_NONE) -> tuple:
        """
        Convert celestial apparent coordinates into encoder values.
        
        :param celb: Celestial coordinate of the base axis (degrees).
        :type celb: float
        :param celp: Celestial coordinate of the polar axis (degrees).
        :type celp: float
        :param pierside: Pier side: Mountaxis().PIERSIDE_AUTO or Mountaxis().PIERSIDE_POS1 or Mountaxis().PIERSIDE_POS2.
        :type pierside: int
        :param output_format: OUTPUT_SHORT or OUTPUT_LONG.
        :type output_format: int
        :param save: SAVE_NONE or SAVE_AS_SIMU or SAVE_AS_REAL or SAVE_ALL.
        :type save: int
        :returns: Increment coordinates
        :rtype: tuple of 2 or 14 elements
        
        Input  = celb, celp, pier side (deg units)
        Output = Raw encoder values (inc)

        This conversion method is at level 2/4.
        """
        # --- shortcuts
        axisb = self.axis[Mountaxis.BASE]
        axisp = self.axis[Mountaxis.POLAR]
        # --- update for simulations
        if save==self.SAVE_ALL or save==self.SAVE_AS_SIMU:
            savesimu = self.SAVE_AS_SIMU
        else:
            savesimu = self.SAVE_NONE
        celsimub = celb
        celsimup = celp
        piersidesimu = pierside
        rotsimup = axisp.ang2rot(celsimup, pierside, savesimu)
        incsimup = axisp.rot2inc(rotsimup, savesimu)
        rotsimub = axisb.ang2rot(celsimub, pierside, savesimu)
        incsimub = axisb.rot2inc(rotsimub, savesimu)
        # --- update for real
        if save==self.SAVE_ALL or save==self.SAVE_AS_REAL:
            savereal = self.SAVE_AS_REAL
        else:
            savereal = self.SAVE_NONE
        celrealb = celb
        celrealp = celp
        piersidereal = pierside
        rotrealp = axisp.ang2rot(celrealp, pierside, savereal)
        increalp = axisp.rot2inc(rotrealp, savereal)
        rotrealb = axisb.ang2rot(celrealb, pierside, savereal)
        increalb = axisb.rot2inc(rotrealb, savereal)
        # --- select results as simulation or real
        if axisp.real == False:
            incp = incsimup
        else:
            incp = increalp
        if axisb.real == False:
            incb = incsimub
        else:
            incb = increalb
        # --- update the output axis parameters
        if output_format==self.OUTPUT_SHORT:
            # short output
            return incb, incp
        else:
            # all angle output
            return increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimup, incsimup, rotsimup, celsimup, piersidesimu

    def speedslew(self, *args)-> tuple:
        """
        Update the speed slewing velocities (deg/sec).
        
        The order of velocities must be respected.
        
        :returns: tuple of velocities
        :rtype: tuple of 1 to 3 elements        

        This conversion method is at level 2/4.
        """
        argc = len(args)
        karg = 0
        speedslew = ()
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            # --- read or update the speed
            if karg<argc:
                current_axis.slew_deg_per_sec = abs(args[karg]) # slew speed is always positive
            speedslew += (current_axis.slew_deg_per_sec,)
        return speedslew

# =====================================================================
# =====================================================================
# Methods to convert celestial into astronomical coordinates
# =====================================================================
# =====================================================================
# Level 3
# =====================================================================

    def hadec2cel(self, ha:celme.Angle, dec:celme.Angle)->tuple:
        """
        Convert (H.A,Dec) coordinates into celestial coordinates.
        
        :param ha: Hour angle (unit defined in celme.Angle).
        :type ha: celme.Angle
        :param dec: Declination (unit defined in celme.Angle).
        :type dec: celme.Angle
        :returns: tuple of celestial coordinates (basis, polar, rotation) (degrees)
        :rtype: tuple of 3 elements        

        This conversion method is at level 3/4.
        """
        # ---
        ha = celme.Angle(ha).deg()
        dec = celme.Angle(dec).deg()
        # ---
        meca = celme.Mechanics()
        if self._mount_type.find("HADEC")>=0:
            # --- astro coord are HADEC and cel are HADEC
            celb = ha
            celp = dec
            celr = 0
        if self._mount_type.find("AZELEV")>=0:
            # --- astro coord are HADEC and cel are AZELEV
            ha *= self._d2r
            dec *= self._d2r
            latitude = celme.Angle(self.site.latitude).rad()
            az, elev = meca._mc_hd2ah(ha, dec, latitude)
            rotator = meca._mc_hd2parallactic(ha, dec, latitude)
            celb = az * self._r2d
            celp = elev * self._r2d
            celr = rotator * self._r2d
        # ---
        return celb, celp, celr

    def azelev2cel(self, az:celme.Angle, elev:celme.Angle)->tuple:
        """
        Convert (azimuth, elevation) coordinates into celestial coordinates.
        
        :param ha: Azimuth (unit defined in celme.Angle).
        :type ha: celme.Angle
        :param dec: Elevation (unit defined in celme.Angle).
        :type dec: celme.Angle
        :returns: tuple of celestial coordinates (basis, polar, rotation) (degrees)
        :rtype: tuple of 3 elements        

        This conversion method is at level 3/4.
        """
        # ---
        az = celme.Angle(az).deg()
        elev = celme.Angle(elev).deg()
        # ---
        meca = celme.Mechanics()
        if self._mount_type.find("HADEC")>=0:
            # --- astro coord are AZELEV and cel are HADEC
            az *= self._d2r
            elev *= self._d2r
            latitude = celme.Angle(self.site.latitude).rad()
            ha, dec= meca._mc_ah2hd(az, elev, latitude)
            rotator = meca._mc_hd2parallactic(ha, dec, latitude)
            celb = ha * self._r2d
            celp = dec * self._r2d
            celr = rotator * self._r2d
        if self._mount_type.find("AZELEV")>=0:
            # --- astro coord are AZELEV and cel are AZELEV
            celb = az
            celp = elev
            celr = 0
        # ---
        return celb, celp, celr

    def astro2cel(self, astro_type:str, base:celme.Angle, polar:celme.Angle, base_deg_per_sec:str="", polar_deg_per_sec:str="")->tuple:
        """
        Convert any astronomical coordinate system (astro_type) into celestial coordinates and the corresponding velocities.

        astro_type can be "HADEC" or "AZELEV":
            * base = ha or az (according astro_type)
            * polar = dec or elev (according astro_type)
            * base_deg_per_sec = dha or daz (according astro_type)
            * polar_deg_per_sec = ddec or delev (according astro_type)
        
        :param astro_type: Specification of the astronomical coordinate system.
        :type astro_type: str
        :param base: Hour angle or azimuth (unit defined in celme.Angle).
        :type base: celme.Angle
        :param polar: Declination or elevation (unit defined in celme.Angle).
        :type polar: celme.Angle
        :param base_deg_per_sec: Declination or elevation (unit defined in celme.Angle).
        :type base_deg_per_sec: celme.Angle
        :param base_deg_per_sec: Declination or elevation (unit defined in celme.Angle).
        :type base_deg_per_sec: celme.Angle
        :returns: tuple of celestial coordinates (basis, polar, rotation) (degrees) and their derivatives (deg/sec)
        :rtype: tuple of 6 elements        

        This conversion method is at level 3/4.
        """
        base  = celme.Angle(base).deg()
        polar = celme.Angle(polar).deg()
        # --- special case when the drifts are sideral
        if base_deg_per_sec=="sideral" or polar_deg_per_sec=="sideral":
            # --- compute ha,dec
            if astro_type.find("AZELEV")>=0:
                meca = celme.Mechanics()
                # --- here all angles are in radians
                latitude = celme.Angle(self.site.latitude).rad()
                az = base * self._d2r
                elev = polar * self._d2r
                ha, dec = meca._mc_ah2hd(az, elev, latitude)
                ha *= self._r2d
                dec *= self._r2d
            if astro_type.find("HADEC")>=0:
                ha = base
                dec = polar
            # ---
            if base_deg_per_sec=="sideral":
                dha = 360.0/self._sideral_sec_per_day
            else:
                dha = base_deg_per_sec
            if base_deg_per_sec=="sideral":
                ddec = 0
            else:
                ddec = polar_deg_per_sec
            astro_type = "HADEC"
            base = ha
            polar = dec
            base_deg_per_sec = dha
            polar_deg_per_sec = ddec
        # --- compute the derivative
        dt = 1.0 # sec
        base1  = base  - 0.5*dt*base_deg_per_sec
        polar1 = polar - 0.5*dt*polar_deg_per_sec
        base2  = base  + 0.5*dt*base_deg_per_sec
        polar2 = polar + 0.5*dt*polar_deg_per_sec
        if astro_type.find("HADEC")>=0:
            celb1, celp1, celr1 = self.hadec2cel(base1, polar1)
            celb2, celp2, celr2 = self.hadec2cel(base2, polar2)
            celb, celp, celr = self.hadec2cel(base, polar)
        if astro_type.find("AZELEV")>=0:
            celb1, celp1, celr1 = self.azelev2cel(base1, polar1)
            celb2, celp2, celr2 = self.azelev2cel(base2, polar2)
            celb, celp, celr = self.azelev2cel(base, polar)
        # ---
        dcelb = (celb2-celb1)/dt
        dcelp = (celp2-celp1)/dt
        dcelr = (celr2-celr1)/dt
        return celb, celp, celr, dcelb, dcelp, dcelr
    
    def cel2astro(self, celb:float, celp:float, unit_ha:str="", unit_dec:str="", unit_az:str="", unit_elev:str="")->tuple:
        """
        Convert celestial coordinates into (H.A., Dec) (azimuth, elevation, rotation) astronomical coordinates

        It is possible to choice the unit of the outputs for each astronomical coordinate.
        
        :param celb: Celestial base coordinate (degrees).
        :type celb: float
        :param celp: Celestial polar coordinate (degrees).
        :type celp: float
        :param unit_ha: Unit of the Hour angle (unit defined in celme.Angle).
        :type unit_ha: str
        :param unit_dec: Unit of the déclination (unit defined in celme.Angle).
        :type unit_dec: str
        :param unit_az: Unit of the azimuth (unit defined in celme.Angle).
        :type unit_az: str
        :param unit_elelv: Unit of the elevation (unit defined in celme.Angle).
        :type unit_elev: str
        :returns: tuple of celestial coordinates (ha, dec, az, elev, rotation) (degrees)
        :rtype: tuple of 5 elements        

        This conversion method is at level 3/4.
        """
        meca = celme.Mechanics()
        # --- here all angles are in radians
        latitude = celme.Angle(self.site.latitude).rad()
        if self._mount_type.find("HADEC")>=0:
            ha = celb * self._d2r
            dec = celp * self._d2r
            az, elev = meca._mc_hd2ah(ha, dec, latitude)
        if self._mount_type.find("AZELEV")>=0:
            az = celb * self._d2r
            elev = celp * self._d2r
            ha, dec = meca._mc_ah2hd(az, elev, latitude)
        # --- rotator computation
        rotator = meca._mc_hd2parallactic(ha, dec, latitude)
        # --- conversion into degrees
        ha *= self._r2d
        dec *= self._r2d
        az *= self._r2d
        elev *= self._r2d
        rotator *= self._r2d
        # --- default units
        if unit_ha=="":
            unit_ha="H0.2"
        if unit_dec=="":
            unit_ha="d+090.1"
        if unit_az=="":
            unit_az="D0.2"
        if unit_elev=="":
            unit_elev="d+090.1"
        # --- conversion into sexagesimal if needed
        if unit_ha!="deg":
            ha = celme.Angle(ha).sexagesimal(unit_ha)
        if unit_dec!="deg":
            dec = celme.Angle(dec).sexagesimal(unit_dec)
        if unit_az!="deg":
            az = celme.Angle(az).sexagesimal(unit_az)
        if unit_elev!="deg":
            elev = celme.Angle(elev).sexagesimal(unit_elev)
        return ha, dec, az, elev, rotator

    def cel2hadec(self, celb:float, celp:float, unit_ha:str="", unit_dec:str="")->tuple:
        """
        Convert celestial coordinates into (H.A., Dec) astronomical coordinates

        It is possible to choice the unit of the outputs for each astronomical coordinate.
        
        :param celb: Celestial base coordinate (degrees).
        :type celb: float
        :param celp: Celestial polar coordinate (degrees).
        :type celp: float
        :param unit_ha: Unit of the Hour angle (unit defined in celme.Angle).
        :type unit_ha: str
        :param unit_dec: Unit of the déclination (unit defined in celme.Angle).
        :type unit_dec: str
        :returns: tuple of celestial coordinates (ha, dec) (degrees)
        :rtype: tuple of 2 elements        

        This conversion method is at level 3/4.
        """
        # ---
        ha, dec, az, elev, rotator = self.cel2astro(celb, celp, unit_ha, unit_dec, "", "")
        return ha, dec

    def cel2azelev(self, celb:float, celp:float, unit_az:str="", unit_elev:str="")->tuple:
        """
        Convert celestial coordinates into (azimuth, elevation, rotation) astronomical coordinates

        It is possible to choice the unit of the outputs for each astronomical coordinate.
        
        :param celb: Celestial base coordinate (degrees).
        :type celb: float
        :param celp: Celestial polar coordinate (degrees).
        :type celp: float
        :param unit_az: Unit of the azimuth (unit defined in celme.Angle).
        :type unit_az: str
        :param unit_elelv: Unit of the elevation (unit defined in celme.Angle).
        :type unit_elev: str
        :returns: tuple of celestial coordinates (az, elev, rotation) (degrees)
        :rtype: tuple of 3 elements        

        This conversion method is at level 3/4.
        """
        # ---
        ha, dec, az, elev, rotator = self.cel2astro(celb, celp, "", "", unit_az, unit_elev)
        return az, elev, rotator

# =====================================================================
# =====================================================================
# Methods hadec for users
# =====================================================================
# =====================================================================
# Level 4
# =====================================================================

    def hadec_travel_compute(self, ha_target:celme.Angle, dec_target:celme.Angle, pierside_target:int=Mountaxis.PIERSIDE_AUTO)->tuple:
        """
        Compute the duration of a slewing from the current position to a target.

        :param ha_target: Hour angle (unit defined in celme.Angle).
        :type ha_target: celme.Angle
        :param dec_target: Declination (unit defined in celme.Angle).
        :type dec_target: celme.Angle
        :param pierside_target: Mountaxis().PIERSIDE_AUTO or Mountaxis().PIERSIDE_POS1 or Mountaxis().PIERSIDE_POS2.
        :type pierside_target: int
        :returns: tuple of celestial coordinates (elevmin, ts, elevs)
        :rtype: tuple of 3 elements        
        
        Returned values are:
            * elevmin: Minimum elevation (degrees).
            * ts: List of time from the start of slewing (sec).
            * elevs: List of computed elevations for each element of ts (degrees).

        This conversion method is at level 4/4.
        """
        # --- shortcuts
        axisb = self.axis[Mountaxis.BASE]
        axisp = self.axis[Mountaxis.POLAR]
        # === Read the current position
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]        
        increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimup, incsimup, rotsimup, celsimup, piersidesimu = self.enc2cel(incsimus,self.OUTPUT_LONG, self.SAVE_ALL)
        if axisb.real==True:
            incb_start = increalb
        else:
            incb_start = incsimub
        if axisp.real==True:
            incp_start = increalp
            pierside_start = piersidereal
        else:
            incp_start = incsimup
            pierside_start = piersidesimu
        # === Read the target position
        if pierside_target==Mountaxis.PIERSIDE_AUTO:
            pierside_target = pierside_start
        celb, celp, celr, dcelb, dcelp, dcelr = self.astro2cel("HADEC", ha_target, dec_target, self._hadec_speeddrift_ha_deg_per_sec, self._hadec_speeddrift_dec_deg_per_sec)
        increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimup, incsimup, rotsimup, celsimup, piersidesimu = self.cel2enc(celb, celp, pierside_target, self.OUTPUT_LONG, self.SAVE_NONE)
        if axisb.real==True:
            incb_target = increalb
        else:
            incb_target = incsimub
        if axisp.real==True:
            incp_target = increalp
        else:
            incp_target = incsimup
        # --- delta incs for the travel (signed incs)
        dincb = incb_target - incb_start
        dincp = incp_target - incp_start
        #print("dincb={} incb_target={} incb_start={} dincp={} incp_target={} incp_start={}".format(dincb, incb_target, incb_start, dincp, incp_target, incp_start))
        # --- slew velocity (positive inc/sec)
        inc_per_secb = axisb.slew_deg_per_sec * axisb.inc_per_deg
        if dincb<0:
            inc_per_secb *= -1
        inc_per_secp = axisp.slew_deg_per_sec * axisb.inc_per_deg
        if dincp<0:
            inc_per_secp *= -1
        #print("inc_per_secb={} inc_per_secp={}".format(inc_per_secb, inc_per_secp))
        # --- delays of slewing (sec)
        delayb = abs(dincb / inc_per_secb)
        delayp = abs(dincp / inc_per_secp)
        if delayb>delayp:
            delay = delayb
        else:
            delay = delayp
        return delayb, delayp
        #print("delayb={} delayp={} delay={}".format(delayb, delayp, delay))
        # --- fraction of a turn of 360 deg (no unit)
        fincb = abs(dincb / axisb._inc_per_sky_rev)
        fincp = abs(dincp / axisp._inc_per_sky_rev)
        if fincb>fincp:
            finc = fincb
        else:
            finc = fincp
        # --- Compute the number of positions during the travel
        ddeg = 1.0 ; # increment in degrees
        npos = math.ceil(finc*360.0/ddeg)
        if npos<3:
            npos = 3
        #print("fincb={} fincp={} finc={}".format(fincb, fincp, finc))
        # --- list of positions
        ts = np.linspace(0,delay,npos) ; # sec
        pincbs = ts * 0
        pincps = ts * 0
        for kpos in range(0,npos):
            t = ts[kpos] ; # sec
            pincbs[kpos] =  incb_start + inc_per_secb * t
            if dincb>=0 and pincbs[kpos]>incb_target:
                pincbs[kpos] = incb_target
            if dincb<0 and pincbs[kpos]<incb_target:
                pincbs[kpos] = incb_target
            pincps[kpos] =  incp_start + inc_per_secp * t
            if dincp>=0 and pincps[kpos]>incp_target:
                pincps[kpos] = incp_target
            if dincp<0 and pincps[kpos]<incp_target:
                pincps[kpos] = incp_target
        
        print("pincbs={} pincps={}".format(pincbs, pincps))        
        # --- utc time
        #jdnow = celme.Date("now").jd()
        #jds = jdnow + ts/86400.
        # --- compute the az,elev
        azims = ts * 0
        elevs = ts * 0
        elevmin = 90
        incposs = ["" for kaxis in range(Mountaxis.AXIS_MAX)]
        for kpos in range(0,npos):
            incposs[Mountaxis.BASE] = pincbs[kpos] ; # inc
            incposs[Mountaxis.POLAR] = pincbs[kpos] ; # inc
            celb, celp, pierside = self.enc2cel(incposs,self.OUTPUT_SHORT, self.SAVE_NONE)
            ha, dec, az, elev, rotator = self.cel2astro(celb, celp, unit_ha="deg", unit_dec="deg", unit_az="deg", unit_elev="deg")
            azims[kpos] = az
            elevs[kpos] = dec
        elevmin = np.amin(elevs)
        # --- return
        return elevmin, ts, elevs

    def _my_hadec_synchronize(self, ha:celme.Angle, dec:celme.Angle, pierside:int="")->tuple:
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res
    
    def hadec_synchronize(self, ha:celme.Angle, dec:celme.Angle, pierside:int="")-> tuple:
        """
        Synchronize the encoders of the current position with the given astronomical coordinates.

        :param ha: Hour angle (unit defined in celme.Angle).
        :type ha: celme.Angle
        :param dec: Declination (unit defined in celme.Angle).
        :type dec: celme.Angle
        :param pierside: 
            * Mountaxis().PIERSIDE_AUTO
            * Mountaxis().PIERSIDE_POS1
            * Mountaxis().PIERSIDE_POS2.
        :type pierside: int
        :returns: tuple of astronomical coordinates (ha, dec, pierside)
        :rtype: tuple of 3 elements    

        :Example:

        ::
            
            >>> mymount = Mountastro("HADEC", name = "My telescope")
            >>> mymount.hadec_synchronize("12h28m47s", "+5d45m28s", Mountaxis().PIERSIDE_POS1)
        
        """
        # === Read the current position
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)] 
        increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu = self.enc2cel(incsimus, self.OUTPUT_LONG, self.SAVE_ALL)
        # === Assign the side at the current position if not notified
        if pierside=="":
            pierside = piersidereal
        # === Target celestial position
        celb, celp, celr = self.hadec2cel(ha, dec)
        # --- update inc0 on each axis
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue            
            if current_axis.real==True:
                if kaxis == Mountaxis.BASE:
                    inc = increalb
                    cel = celb
                elif kaxis == Mountaxis.POLAR:
                    inc = increalp
                    cel = celp
            else:
                if kaxis == Mountaxis.BASE:
                    inc = incsimub
                    cel = celb
                elif kaxis == Mountaxis.POLAR:
                    inc = incsimup
                    cel = celp
            print("kaxis={} inc={} cel={}".format(kaxis,inc,cel))
            current_axis.update_inc0(inc, cel, pierside)
        # --- Real inits
        err,res = self._my_hadec_synchronize(ha, dec, pierside)
        # --- return the current new position
        return self.hadec_coord()

    def hadec_coord(self, **kwargs:dict)->tuple:
        """
        Read the current astronomical coordinates.

        :param kwargs: Parameters for output units.
        :type kwargs: dict
        :returns: tuple of (ha, dec, pierside)
        :rtype: tuple
        
        Dictionnary of unit parameters are:

            * UNIT_HA: A string (uspzad format).
            * UNIT_DEC: A string (uspzad format).
        
        :Example:

        ::
            
            >>> mymount = Mountastro("HADEC", name = "My telescope")
            >>> mymount.hadec_coords("H0.2", "d+090.1")
        
        """
        # --- Dicos of optional and mandatory parameters
        params_optional = {} 
        params_optional["UNIT_HA"] = (str,'H0.2')
        params_optional["UNIT_DEC"] = (str,'d+090.1')
        params_mandatory = {} 
        # --- Decode parameters
        params = self.decode_kwargs(params_optional, params_mandatory, **kwargs)
        # --- Get the simu and real coordinates of all axis
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]        
        celb, celp, pierside = self.enc2cel(incsimus,self.OUTPUT_SHORT, self.SAVE_ALL)
        ha, dec = self.cel2hadec(celb, celp, params["UNIT_HA"], params["UNIT_DEC"])
        return ha, dec, pierside

    def _my_hadec_drift(self, hadec_speeddrift_ha_deg_per_sec:float, hadec_speeddrift_dec_deg_per_sec:float):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res

    def hadec_drift(self, hadec_speeddrift_ha_deg_per_sec:float, hadec_speeddrift_dec_deg_per_sec:float):
        """
        Drift the mount

        :param hadec_speeddrift_ha_deg_per_sec: Hour angle drift (deg/sec)
        :type hadec_speeddrift_ha_deg_per_sec: float
        :param hadec_speeddrift_dec_deg_per_sec: Declination drift (deg/sec)
        :type hadec_speeddrift_dec_deg_per_sec: float
                
        :Example:

        ::
            
            >>> mymount = Mountastro("HADEC", name = "My telescope")
            >>> mymount.hadec_drift(0.0,-0.05)
        
        """
        err = self.NO_ERROR
        res = 0
        ha_target = 0 # any value is correct
        dec_target = 0 # any value is correct
        # --- drifts after slewing
        param = hadec_speeddrift_ha_deg_per_sec
        if param == "sideral":
            param = 360.0/self._sideral_sec_per_day
        else:
            param = float(param)
        hadec_speeddrift_ha_deg_per_sec = param
        param = hadec_speeddrift_dec_deg_per_sec
        if param == "sideral":
            param = 0
        else:
            param = float(param)
        hadec_speeddrift_dec_deg_per_sec = param
        # --- Update the drift parmeters for next movings
        self._hadec_speeddrift_ha_deg_per_sec = hadec_speeddrift_ha_deg_per_sec
        self._hadec_speeddrift_dec_deg_per_sec = hadec_speeddrift_dec_deg_per_sec        
        # --- Compute incs of the target and the drifts (for any mount_type)
        celb, celp, celr, dcelb, dcelp, dcelr = self.astro2cel("HADEC", ha_target, dec_target, hadec_speeddrift_ha_deg_per_sec, hadec_speeddrift_dec_deg_per_sec)
        # ---
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            # === Target drift
            if kaxis == Mountaxis.BASE:
                dcel = dcelb
            elif kaxis == Mountaxis.POLAR:
                dcel = dcelp
            elif kaxis == Mountaxis.ROTATOR:
                dcel = dcelr
            # === Drift Velocity inc/sec
            inc_per_sec_drift = dcel * current_axis.senseinc * current_axis.inc_per_deg
            if self.site.latitude>=0:
                inc_per_sec_drift *= -1
            # === Simulation. It runs even if there is a real hardware)
            current_axis.simu_motion_start("DRIFT", frame='inc', drift=inc_per_sec_drift)
            # === Real hardware
            err, res = self._my_hadec_drift(  hadec_speeddrift_ha_deg_per_sec, hadec_speeddrift_dec_deg_per_sec )
        # --- Update ASCOM attributes
        self.slewing_state = False
        self.tracking_state = True
        # ---            
        return (err, res)

    def _my_hadec_goto(self, ha_target, dec_target, pierside_target):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res
        
    def hadec_goto(self, ha:celme.Angle, dec:celme.Angle, **kwargs):
        """
        Slew the mount to a target defined by astronomical coordinates.

        :param ha: Hour angle target (unit defined in celme.Angle).
        :type ha: celme.Angle
        :param dec: Declination target (unit defined in celme.Angle).
        :type dec: celme.Angle
        :param kwargs: Parameters for pointing.
        :type kwargs: dict
        
        Dictionnary of pointing parameters are:

            * BLOCKING: A boolean to block the programm until the mount is arrived (False by default).
            * SIDE: Integer to indicate the back flip action:
            
                * PIERSIDE_AUTO (=0) back flip is performed if needed
                * PIERSIDE_POS1 (=1) pointing in normal position
                * PIERSIDE_POS2 (=-1) pointing in back flip position
        
        :Example:

        ::
            
            >>> mymount = Mountastro("HADEC", name = "My telescope")
            >>> mymount.hadec_goto("12h28m47s", "+5d45m28s", side = Mountaxis().PIERSIDE_AUTO)
        
        """
        err = self.NO_ERROR
        res = 0
        # --- Dicos of optional and mandatory parameters
        params_optional = {} 
        params_optional["BLOCKING"] = (bool,False)
        params_optional["SIDE"] = (int,Mountaxis.PIERSIDE_AUTO)
        params_optional["DRIFT_HA"] = (str,"0")
        params_optional["DRIFT_DEC"] = (str,"0")
        params_mandatory = {}
        # --- Decode parameters
        params = self.decode_kwargs(params_optional, params_mandatory, **kwargs)
        # === Read the current position
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]        
        celb, celp, pierside = self.enc2cel(incsimus,self.OUTPUT_SHORT, self.SAVE_ALL)
        ha_start, dec_start = self.cel2hadec(celb, celp, "deg", "deg")
        pierside_start = pierside
        # === Target celestial position for slewing
        # --- convert angles into deg [-180 ; 180]
        ha_target  = math.fmod(720+celme.Angle(ha).deg(), 360)
        if ha_target>180:
            ha_target -= 360
        dec_target = math.fmod(720+celme.Angle(dec).deg(), 360)
        if dec_target>180:
            dec_target -= 360
        # --- compute the target pierside
        if self.get_param("CAN_REVERSE")==True:
            lim_side_east = self.get_param("LIME_REVERSE") ; # Tube west = PIERSIDE_POS1 = [-180 : lim_side_east]
            lim_side_west = self.get_param("LIMW_REVERSE") ; # Tube east = PIERSIDE_POS2 = [lim_side_west : +180]
            if params["SIDE"]==Mountaxis.PIERSIDE_AUTO:
                if ha_target>lim_side_west and ha_target<lim_side_east:
                    # --- the target position is in the both possibilitiy range
                    pierside_target = pierside_start
                else:
                    if ha_target>lim_side_east:
                        # --- the target is after the limit of side=PIERSIDE_POS1
                        pierside_target = Mountaxis.PIERSIDE_POS2
                    else:
                        # --- the target is before the limit of side=PIERSIDE_POS2
                        pierside_target = Mountaxis.PIERSIDE_POS1
            else:
                pierside_target = params["SIDE"]
        else:
            pierside_target = Mountaxis.PIERSIDE_POS1
        #print("ha_start={:.4f} ha_target={:.4f} pierside_start={}  params[\"SIDE\"]={} pierside_target={}".format(ha_start, ha_target, pierside_start, params["SIDE"], pierside_target))
        # --- drifts after slewing
        param = params["DRIFT_HA"]
        if param == "sideral":
            param = 360.0/self._sideral_sec_per_day
        else:
            param = float(param)
        hadec_speeddrift_ha_deg_per_sec = param
        param = params["DRIFT_DEC"]
        if param == "sideral":
            param = 0
        else:
            param = float(param)
        hadec_speeddrift_dec_deg_per_sec = param
        #print("HADEC drifts : {} {}".format(hadec_speeddrift_ha_deg_per_sec,hadec_speeddrift_dec_deg_per_sec))
        # --- Update the drift parmeters for next movings
        self._hadec_speeddrift_ha_deg_per_sec = hadec_speeddrift_ha_deg_per_sec
        self._hadec_speeddrift_dec_deg_per_sec = hadec_speeddrift_dec_deg_per_sec        
        # --- Compute incs of the target and the drifts (for any mount_type)
        #print("GOTO ha={} dec={}".format(ha_target, dec_target))
        celb, celp, celr, dcelb, dcelp, dcelr = self.astro2cel("HADEC", ha_target, dec_target, hadec_speeddrift_ha_deg_per_sec, hadec_speeddrift_dec_deg_per_sec)
        incb, incp = self.cel2enc(celb, celp, pierside_target, self.OUTPUT_SHORT, self.SAVE_NONE)
        increalb, rotrealb, celrealb, increalp, rotrealp, celrealp, piersidereal, incsimub, rotsimub, celsimup, incsimup, rotsimup, celsimup, piersidesimu = self.cel2enc(celb, celp, pierside_target, self.OUTPUT_LONG, self.SAVE_NONE)
        #print("celrealb={:.4f} rotrealb={:.4f} pierside_target={} -> increalb={} incb={} incp={}".format(celrealb, rotrealb, piersidereal, increalb, incb, incp))
        incr = 0
        # ---
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            # === Target position and drift
            if kaxis == Mountaxis.BASE:
                inc = incb
                dcel = dcelb
            elif kaxis == Mountaxis.POLAR:
                inc = incp
                dcel = dcelp
            elif kaxis == Mountaxis.ROTATOR:
                inc = incr
                dcel = dcelr
            dslw = current_axis.slew_deg_per_sec
            # === Slew Velocity inc/sec
            inc_per_sec_slew  = dslw * current_axis.senseinc * current_axis.inc_per_deg
            # === Drift Velocity inc/sec
            inc_per_sec_drift = dcel * current_axis.senseinc * current_axis.inc_per_deg
            if self.site.latitude>=0:
                inc_per_sec_drift *= -1
            # === Simulation. It runs even if there is a real hardware)
            current_axis.simu_motion_start("SLEW", frame='inc', velocity=inc_per_sec_slew, position=inc, drift=inc_per_sec_drift)
        # === Real hardware
        err, res = self._my_hadec_goto(ha_target, dec_target, pierside_target)
        # === Wait the end of motion if needed
        if params["BLOCKING"]==True and dcelb==0 and dcelb==0 and dcelr==0:
            coord1 = self.hadec_coord(unit_ha="deg", unit_dec="deg")
            t0 = time.time()
            while True:
                time.sleep(0.1)
                dt = time.time()-t0
                if dt>60:
                    break
                coord2 = self.hadec_coord(unit_ha="deg", unit_dec="deg")
                if coord1 == coord2:
                    break
                coord1 = coord2
        # --- Update ASCOM attributes
        self.slewing_state = True
        self.tracking_state = False
        # ---            
        return (err, res)

    def _my_hadec_move(self, ha_move_deg_per_sec, dec_move_deg_per_sec):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res

    def hadec_move(self, ha_move_deg_per_sec, dec_move_deg_per_sec) -> tuple:        
        """
        Slew or modify the drift of the mount.

        :param ha_drift_deg_per_sec: Hour angle velocity (deg/s).
        :type ha_drift_deg_per_sec: float
        :param dec_drift_deg_per_sec: Declination velocity (deg/s).
        :type dec_drift_deg_per_sec: float
        :returns: tuple of (error code, result)
        :rtype: tuple
        
        :Example:

        ::
            
            >>> mymount = Mountastro("HADEC", name = "My telescope")
            >>> mymount.hadec_move(0.1,-0.2)
        
        """
        err = self.NO_ERROR
        res = 0
        ha_target = 0 # any value is correct
        dec_target = 0 # any value is correct
        # --- Compute incs of the target and the drifts (for any mount_type)
        celb, celp, celr, dcelb, dcelp, dcelr = self.astro2cel("HADEC", ha_target, dec_target, self._hadec_speeddrift_ha_deg_per_sec, self._hadec_speeddrift_dec_deg_per_sec)
        # ---
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            # === Target position and drift
            if kaxis == Mountaxis.BASE:
                dcel = dcelb
                vel  = ha_move_deg_per_sec
            elif kaxis == Mountaxis.POLAR:
                dcel = dcelp
                vel  = dec_move_deg_per_sec
            elif kaxis == Mountaxis.ROTATOR:
                dcel = dcelr
                vel  = 0
            # === Slew Velocity inc/sec
            inc_per_sec_slew  = vel * current_axis.senseinc * current_axis.inc_per_deg
            # === Drift Velocity inc/sec
            inc_per_sec_drift = dcel * current_axis.senseinc * current_axis.inc_per_deg
            if self.site.latitude>=0:
                inc_per_sec_drift *= -1
            # === Simulation. It runs even if there is a real hardware)
            current_axis.simu_motion_start("MOVE", frame='inc', velocity=inc_per_sec_slew, drift=inc_per_sec_drift)
        # === Real hardware
        err, res = self._my_hadec_move(ha_move_deg_per_sec, dec_move_deg_per_sec)
        # --- Update ASCOM attributes
        self.slewing_state = True
        self.tracking_state = False
        # ---
        return err, res

    def _my_hadec_move_stop(self):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res

    def hadec_move_stop(self):        
        """
        Stop the mount motion.
        
        :Example:

        ::
            
            >>> mymount = Mountastro("HADEC", name = "My telescope")
            >>> mymount.hadec_move_stop()
        
        """
        err = self.NO_ERROR
        res = 0
        # --- shortcuts
        axisb = self.axis[Mountaxis.BASE]
        axisp = self.axis[Mountaxis.POLAR]
        # === Simulation. It runs even if there is a real hardware)
        axisb.simu_motion_stop_move()
        axisp.simu_motion_stop_move()
        # === Real hardware
        err, res = self._my_hadec_move_stop()
        # --- Update ASCOM attributes
        self.slewing_state = False
        self.tracking_state = True
        # ---
        return err, res

    def _my_hadec_stop(self):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res

    def hadec_stop(self):
        """
        Stop any motion of the mount.

        :returns: tuple of (error code, result)
        :rtype: tuple
        
        :Example:

        ::
            
            >>> mymount = Mountastro("HADEC", name = "My telescope")
            >>> mymount.hadec_stop()
        
        """
        # === Real hardware
        err, res = self._my_hadec_stop()
        # === Read the current position
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]        
        celb, celp, pierside = self.enc2cel(incsimus,self.OUTPUT_SHORT, self.SAVE_ALL)
        # === Stop the simulation and update the simulated position by the real one if exists
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            current_axis.simu_motion_stop()
            if current_axis.real == True:
                current_axis.synchro_real2simu()
        # --- Update ASCOM attributes
        self.slewing_state = False
        self.tracking_state = False
        # ---
        return err, res

    def hadec_park(self, ha:celme.Angle, dec:celme.Angle, pierside:int):
        # === Target celestial position for slewing
        # --- convert angles into deg [-180 ; 180]
        ha_target  = math.fmod(720+celme.Angle(ha).deg(), 360)
        if ha_target>180:
            ha_target -= 360
        dec_target = math.fmod(720+celme.Angle(dec).deg(), 360)
        if dec_target>180:
            dec_target -= 360
        #err, res = self._my_goto_park(incb, incp, incr)
        params = {}
        params["DRIFT_HA"] = 0
        params["DRIFT_DEC"] = 0
        params["SIDE"] = pierside
        # --- cal the HADEC GOTO
        err, res = self.hadec_goto(ha_target, dec_target, **params)
        # --- Update ASCOM attributes
        #self.slewing_state = True
        #self.tracking_state = False
        # ---
        return err, res

# =====================================================================
# =====================================================================
# Methods radec for users
# =====================================================================
# =====================================================================
# Level 4
# =====================================================================

    def radec_app2cat(self, jd, ha, dec, params):
        longuai = self.site.longitude*self._d2r
        ha *= self._d2r
        dec *= self._d2r
        meca = celme.Mechanics()
        ra = meca._mc_hd2ad(jd, longuai, ha)
        equinox = celme.Date(params["EQUINOX"]).jd()
        # --- calcul de la precession ---*/
        #print("ha={} ra={} equinox={}".format(ha,ra,equinox))
        ra_equinox, dec_equinox = meca._mc_precad(jd,ra,dec,equinox)
        #ra_equinox, dec_equinox = (ra,dec)
        #print("ra_2000={} dec_2000={}".format(ra_equinox/self._d2r,dec_equinox/self._d2r))
        ra_equinox *= self._r2d
        dec_equinox *= self._r2d
        #print("ha={} dec={} ra={} ra_2000={} dec_2000={}".format(ha/self._d2r,dec/self._d2r,ra/self._d2r,ra_equinox,dec_equinox))
        return ra_equinox, dec_equinox
    
    def radec_coord(self, **kwargs):
        """
        Read the current astronomical coordinates.

        :param kwargs: Parameters for output units.
        :type kwargs: dict
        :returns: tuple of (ra, dec, pierside)
        :rtype: tuple
        
        Dictionnary of unit parameters are:

            * EQUINOX: Equinox of the ra,dec coordinates (J2000 by default).
            * UNIT_RA: A string (uspzad format).
            * UNIT_DEC: A string (uspzad format).
        
        :Example:

        ::
            
            >>> mymount = Mountastro("HADEC", name = "My telescope")
            >>> mymount.radec_coords("H0.2", "d+090.1")
        
        """
        # --- Dicos of optional and mandatory parameters
        params_optional = {} 
        params_optional["UNIT_RA"] = (str,'H0.2')
        params_optional["UNIT_DEC"] = (str,'d+090.1')
        params_optional["EQUINOX"] = (str,'J2000')
        params_mandatory = {}
        # --- Decode parameters
        params = self.decode_kwargs(params_optional, params_mandatory, **kwargs)
        # --- Get HA,Dec
        ha, dec, pierside = self.hadec_coord(UNIT_HA="deg",UNIT_DEC="deg")
        jd = celme.Date("now").jd()
        # --- app2cat
        ra_equinox, dec_equinox = self.radec_app2cat(jd, ha, dec, params)
        # --- Output unit conversion
        if params["UNIT_RA"]!="deg":
            ra_equinox = celme.Angle(ra_equinox).sexagesimal(params["UNIT_RA"])
        if params["UNIT_DEC"]!="deg":
            dec_equinox = celme.Angle(dec_equinox).sexagesimal(params["UNIT_DEC"])       
        return ra_equinox, dec_equinox, pierside

    def radec_cat2app(self, jd, ra_equinox, dec_equinox, params):
        equinox = celme.Date(params["EQUINOX"]).jd()
        meca = celme.Mechanics()
        ra_equinox *= self._d2r
        dec_equinox *= self._d2r
        # --- calcul de la precession ---*/
        ra, dec = meca._mc_precad(equinox,ra_equinox,dec_equinox,jd)
        #print("ra({})={} dec({})={}".format(params["EQUINOX"], ra_equinox*self._r2d, params["EQUINOX"], dec_equinox*self._r2d))
        #print("ra(date)={} dec(date)={}".format(ra*self._r2d, dec*self._r2d))
        #ra, dec = (ra_equinox,dec_equinox)
        longuai = celme.Angle(self.site.longitude).rad()
        ha = meca._mc_ad2hd(jd, longuai, ra)
        ha *= self._r2d
        dec *= self._r2d
        return ha, dec

    def radec_synchronize(self, ra_angle:celme.Angle, dec_angle:celme.Angle, **kwargs)->tuple:
        """
        Synchronize the encoders of the current position with the given astronomical coordinates.

        :param ra_angle: Right ascension (unit defined in celme.Angle).
        :type ra_angle: celme.Angle
        :param dec_angle: Declination (unit defined in celme.Angle).
        :type dec_angle: celme.Angle
        :param pierside: 
            * Mountaxis().PIERSIDE_AUTO
            * Mountaxis().PIERSIDE_POS1
            * Mountaxis().PIERSIDE_POS2.
        :type pierside: int
        :param kwargs: Pointing parameters
        :type kwargs: dict
        :returns: tuple of astronomical coordinates (ra, dec, pierside)
        :rtype: tuple of 3 elements    

        Dictionnary of pointing parameters are:

            * EQUINOX: Equinox of the ra,dec coordinates (J2000 by default).
            * SIDE: Integer to indicate the back flip action:
            
                * PIERSIDE_AUTO (=0) back flip is performed if needed
                * PIERSIDE_POS1 (=1) pointing in normal position
                * PIERSIDE_POS2 (=-1) pointing in back flip position

        :Example:

        ::
            
            >>> mymount = Mountastro("HADEC", name = "My telescope")
            >>> mymount.radec_synchronize("12h28m47s", "+5d45m28s", Mountaxis().PIERSIDE_POS1)
        
        """
        # --- Dicos of optional and mandatory parameters
        params_optional = {} 
        params_optional["EQUINOX"] = (str,'J2000')
        params_optional["SIDE"] = (int,Mountaxis.PIERSIDE_AUTO)
        params_mandatory = {} 
        # --- Decode parameters
        params = self.decode_kwargs(params_optional, params_mandatory, **kwargs)
        pierside_target = params["SIDE"]
        # --- Get HA,Dec
        ra_equinox = celme.Angle(ra_angle).deg()
        dec_equinox = celme.Angle(dec_angle).deg()
        jd = celme.Date("now").jd()
        # --- cat2app
        ha_target, dec_target = self.radec_cat2app(jd, ra_equinox, dec_equinox,params)
        self.hadec_synchronize(ha_target, dec_target, pierside_target)
        return self.radec_coord()
        
    def radec_goto(self, ra_angle:celme.Angle, dec_angle:celme.Angle, **kwargs):
        """
        Slew the mount to a target defined by astronomical coordinates.

        :param ha_angle: Right ascension target (unit defined in celme.Angle).
        :type ha_angle: celme.Angle
        :param dec_angle: Declination target (unit defined in celme.Angle).
        :type dec_angle: celme.Angle
        :param kwargs: Parameters for pointing.
        :type kwargs: dict
        :returns: tuple of (error code, result)
        :rtype: tuple
        
        Dictionnary of pointing parameters are:

            * EQUINOX: Equinox of the ra,dec coordinates (J2000 by default).
            * BLOCKING: A boolean to block the programm until the mount is arrived (False by default).
            * SIDE: Integer to indicate the back flip action:
            
                * PIERSIDE_AUTO (=0) back flip is performed if needed
                * PIERSIDE_POS1 (=1) pointing in normal position
                * PIERSIDE_POS2 (=-1) pointing in back flip position
        
        :Example:

        ::
            
            >>> mymount = Mountastro("HADEC", name = "My telescope")
            >>> mymount.radec_goto("12h28m47s", "+5d45m28s", side = Mountaxis().PIERSIDE_AUTO)
        
        """
        # --- Dicos of optional and mandatory parameters
        params_optional = {} 
        params_optional["EQUINOX"] = (str,'J2000')
        params_optional["BLOCKING"] = (bool,False)
        params_optional["SIDE"] = (int,Mountaxis.PIERSIDE_AUTO)
        params_optional["DRIFT_RA"] = (str,"sideral")
        params_optional["DRIFT_DEC"] = (str,"0")
        params_mandatory = {} 
        # --- Decode parameters
        params = self.decode_kwargs(params_optional, params_mandatory, **kwargs)
        pierside_target = params["SIDE"]
        # --- Get HA,Dec
        ra_equinox = celme.Angle(ra_angle).deg()
        dec_equinox = celme.Angle(dec_angle).deg()
        jd = celme.Date("now").jd()
        # --- cat2app
        ha_target, dec_target = self.radec_cat2app(jd, ra_equinox, dec_equinox, params)
        # --- compute the time of slewing
        delayb, delayp = self.hadec_travel_compute(ha_target, dec_target, pierside_target)
        # --- Temporal offset to anticipate the delay of slewing
        dt = 2.4 + delayb ; # (sec)
        #print("delayb={} dt={}".format(delayb,dt))
        jd += dt/86400
        # --- cat2app
        ha_target, dec_target = self.radec_cat2app(jd, ra_equinox, dec_equinox, params)
        # --- drifts after slewing
        param = params["DRIFT_RA"]
        if param == "sideral":
            param = 0
        else:
            param = float(param)
        param = 360./self._sideral_sec_per_day - param
        params["DRIFT_HA"] = param
        # -
        param = params["DRIFT_DEC"]
        if param == "sideral":
            param = 0
        else:
            param = float(param)
        params["DRIFT_DEC"] = param
        # --- Update the drift parmeters for next movings
        self._radec_speeddrift_ha_deg_per_sec = params["DRIFT_HA"]
        self._radec_speeddrift_dec_deg_per_sec = params["DRIFT_DEC"]
        # --- cal the HADEC GOTO
        #print("=== _drift_hadec_ha_deg_per_sec={}".format(self._drift_hadec_ha_deg_per_sec))
        err, res = self.hadec_goto(ha_target, dec_target, **params)
        # --- Update ASCOM attributes
        self.slewing_state = True
        self.tracking_state = False
        # ---
        return (err, res)

# =====================================================================
# =====================================================================
# Methods inc for users
# =====================================================================
# =====================================================================

    def _my_inc_goto(self, axis_id:int, inc:float, inc_per_sec_slew:float):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res
        
    def inc_goto(self, axis_id:int, inc:float, inc_per_sec_slew:float):
        # === Simulation. It runs even if there is a real hardware)
        err = self.NO_ERROR
        res = 0
        kaxis = axis_id
        current_axis = self.axis[kaxis]
        current_axis.simu_motion_start("ABSOLUTE", frame='inc', velocity=inc_per_sec_slew, position=inc, drift=0)
        # === Real
        err, res = self._my_inc_goto(axis_id, inc, inc_per_sec_slew)
        return err, res

    def _my_goto_park(self, incb:float, incp:float, incr:float):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        err = self.NO_ERROR
        res = 0
        return err, res

    def goto_park(self, incb="", incp="", incr=""):
        err, res = self._my_goto_park(incb, incp, incr)
        # --- Update ASCOM attributes
        #self.slewing_state = True
        #self.tracking_state = False
        # ---
        return err, res
        
    def plot_rot(self, lati, azim, elev, rotb, rotp, outfile=""):
        """
        Vizualize the rotation angles of the mount according the local coordinates
        # --- Site latitude
        lati (deg) : Site latitude
        # --- Observer view
        elev = 15 # turn around the X axis
        azim = 140 # turn around the Z axis (azim=0 means W foreground, azim=90 means N foreground) 
        # --- rob, rotp
        """
        if lati=="":
            lati = self.site.latitude
        if lati>=0:
            latitude = lati
            cards="SNEW"
        else:
            latitude = -lati
            cards="NSWE"
        toplots = []
        # --- cartesian frame
        options = {"linewisth":0.5}
        toplots.append(["text",[0, 0, 0],"o",'k',{}])
        toplots.append(["line",[0, 0, 0],[1, 0, 0],'k',options])
        toplots.append(["line",[0, 0, 0],[-1, 0, 0],'k',options])
        toplots.append(["text",[1, 0, 0],cards[0],'k',{}])
        toplots.append(["text",[-1, 0, 0],cards[1],'k',{}])
        toplots.append(["text",[0, 1, 0],cards[2],'k',{}])
        toplots.append(["text",[0, -1, 0],cards[3],'k',{}])
        toplots.append(["line",[0, 0, 0],[0, 1, 0],'k',options])
        toplots.append(["line",[0, 0, 0],[0, -1, 0],'k',options])
        toplots.append(["line",[0, 0, 0],[0, 0, 1],'k',options])
        toplots.append(["line",[0, 0, 0],[0, 0, -1],'k',options])
        toplots.append(["text",[0, 0, 1.1],"zenith",'k',options])
        # --- great circle tangeant to the projection plane
        toplots.append(["circle",1,[[90,0,0], [-elev,0,0], [0,0,-azim]],0,360,'k',options])
        #toplots.append(["circle",1,[[90,-elev,-azim]],0,360,'k',{"linewisth":1}])
        # --- local horizon
        toplots.append(["circle",1,[[0,0,0]],0,360,'k',{"linewisth":0.5}])
        # --- local meridian
        toplots.append(["circle",1,[[90,0,0]],0,360,'k',{"linewisth":0.5}])
        # --- local equator
        rotxyzs = [[0, latitude, 0]]
        options = {"linewisth":2}
        color = 'r'
        toplots.append(["circle",1,rotxyzs,0,360,color,options])
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        toplots.append(["linefrom0",-1,rotxyzs,color,options])
        toplots.append(["textfrom0",1.05,rotxyzs,"x",color,options])
        rotxyzs = [[0, 0, 90]]
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        toplots.append(["linefrom0",-1,rotxyzs,color,options])
        toplots.append(["textfrom0",1.15,rotxyzs,"y",color,options])
        rotxyzs = [[0, latitude+90, 0]]
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        toplots.append(["linefrom0",-1,rotxyzs,color,options])
        toplots.append(["textfrom0",1.05,rotxyzs,"z = visible pole ({})".format(cards[1]),color,options])
        # --- pointing Rotp
        rotxyzs = [[90,0,0], [0,0,rotb], [0, latitude, 0]]
        options = {"linewisth":0.5}
        color = 'r'
        toplots.append(["circle",1,rotxyzs,0,360,color,options])
        options = {"linewisth":2}
        color = 'g'
        toplots.append(["circle",1,rotxyzs,90,90-rotp,color,options])
        rotxyzs = [[0,90-rotp,0], [0,0,rotb], [0, latitude, 0]]
        options = {"linewisth":1}
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        toplots.append(["textfrom0",1.1,rotxyzs,"rotp",color,options])
        rotxyzs = [[0,90,0], [0,0,rotb], [0, latitude, 0]]
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        # --- pointing Rotb
        rotxyzs = [[0,0,rotb], [0, latitude, 0]]
        options = {"linewisth":2}
        color = 'b'
        toplots.append(["circle",1,rotxyzs,0,-rotb,color,options])
        options = {"linewisth":1}
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        toplots.append(["textfrom0",1.3,rotxyzs,"rotb",color,options])
        rotxyzs = [[0, latitude, 0]]
        options = {"linewisth":1}
        toplots.append(["linefrom0",1,rotxyzs,color,options])
        # ===
        fig = plt.figure()
        #ax = fig.add_subplot(1,1,1,projection='3d')
        #ax.view_init(elev=elev, azim=azim)
        ax = fig.add_subplot(1,1,1)
        for toplot in toplots:
            ptype = toplot[0]
            if ptype=="line":
                dummy, xyz1, xyz2, color, options = toplot
                xyz0s = []
                xyz0 = np.array(xyz1)
                xyz0s.append(xyz0)
                xyz0 = np.array(xyz2)
                xyz0s.append(xyz0)
                na = len(xyz0s)
            elif ptype=="text":
                dummy, xyz, text, color, options = toplot
                xyz0s = []
                xyz0 = np.array(xyz)
                xyz0s.append(xyz0)
                na = len(xyz0s)
            elif ptype=="linefrom0":
                dummy, length, rotxyzs, color, options = toplot
                xyz0s = []
                xyz0 = np.array([0, 0, 0])
                xyz0s.append(xyz0)
                xyz0 = np.array([length, 0 ,0])
                xyz0s.append(xyz0)
                na = len(xyz0s)
            elif ptype=="textfrom0":
                dummy, length, rotxyzs, text, color, options = toplot
                xyz0s = []
                xyz0 = np.array([length, 0 ,0])
                xyz0s.append(xyz0)
                na = len(xyz0s)
            elif ptype=="circle":
                dummy, radius, rotxyzs, ang1, ang2, color, options = toplot
                na = 50
                alphas =np.linspace(ang1,ang2,na)
                # --- cercle dans le plan (x,y)
                xyz0s = []
                for alpha in alphas:
                    alpha = math.radians(alpha)
                    x = radius*math.cos(alpha)
                    y = radius*math.sin(alpha)
                    z = 0
                    xyz0 = np.array([x, y, z])
                    xyz0s.append(xyz0)
                na = len(xyz0s)
            else:
                continue
            # --- rotations
            if ptype=="linefrom0" or ptype=="textfrom0" or ptype=="circle":
                for rotxyz in rotxyzs:
                    rotx, roty, rotz = rotxyz
                    cosrx = math.cos(math.radians(rotx))
                    sinrx = math.sin(math.radians(rotx))
                    cosry = math.cos(math.radians(roty))
                    sinry = math.sin(math.radians(roty))
                    cosrz = math.cos(math.radians(rotz))
                    sinrz = math.sin(math.radians(rotz))
                    rotrx = np.array([ [1, 0, 0], [0, cosrx, -sinrx], [0, sinrx, cosrx] ])
                    rotry = np.array([ [cosry, 0, -sinry], [0, 1, 0], [sinry, 0, cosry] ])
                    rotrz = np.array([ [cosrz, -sinrz, 0], [sinrz, cosrz, 0] , [0, 0, 1] ])
                    xyz1s = []
                    for xyz in xyz0s:
                        xyz = np.dot(rotrx, xyz)
                        xyz = np.dot(rotry, xyz)
                        xyz = np.dot(rotrz, xyz)
                        xyz1s.append(xyz)
                    xyz0s = xyz1s # ready for a second rotation
            else:
                xyz1s = xyz0s
            # --- projections
            cosaz = math.cos(math.radians(azim))
            sinaz = math.sin(math.radians(azim))
            cosel = math.cos(math.radians(elev))
            sinel = math.sin(math.radians(elev))
            rotaz = np.array([ [cosaz, -sinaz, 0], [sinaz, cosaz, 0] , [0, 0, 1] ])
            #rotel = np.array([ [cosel, 0, -sinel], [0, 1, 0], [sinel, 0, cosel] ])
            rotel = np.array([ [1, 0, 0], [0, cosel, -sinel], [0, sinel, cosel] ])
            xyz2s = []
            for xyz in xyz1s:
                xyz = np.dot(rotaz, xyz)
                xyz = np.dot(rotel, xyz)
                xyz2s.append(xyz)
            # --- plot
            if ptype=="textfrom0" or ptype=="text":
                x,y,z = xyz2s[0]
                h = ax.text(x,z,text)
                h.set_color(color)
            else:
                for ka in range(0,na-1):
                    xyz1 = xyz2s[ka]
                    xyz2 = xyz2s[ka+1]
                    x = [xyz1[0], xyz2[0]]
                    y = [xyz1[1], xyz2[1]]
                    z = [xyz1[2], xyz2[2]]
                    if y[0]>1e-3 or y[1]>1e-3:
                        symbol = color+':'
                    else:
                        symbol = color+'-'
                    h = ax.plot(x,z,symbol,'linewidth',1.0)
                    for option in options.items():
                        key = option[0]
                        val = option[1]
                        if key=="linewisth":
                            h[0].set_linewidth(val)
        # ---
        ax.axis('equal')
        #fig.patch.set_visible(False)
        ax.axis('off')        
        plt.title("Rotation angles for latitude {} deg".format(lati))
        plt.show()
        if outfile!="":
            plt.savefig(outfile, facecolor='w', edgecolor='w')
        
    #def pad(self, pad_type="dev"):
    #    self.pad = Mountpad(self,pad_type)
    #    self.pad.start()

    def remote_command_protocol(self, remote_command_protocol="LX200"):
        """
        Set the langage protocol when this code is used as server.

        :param remote_command_protocol: Command to execute
        :type remote_command_protocol: str
                
        :Example:

        ::
            
            >>> mymount = Mountastro("HADEC", name = "My telescope")
            >>> mymount.remote_command_protocol("LX200")
        
        """
        remote_command_protocol = remote_command_protocol.upper()
        self._remote_command_protocol=remote_command_protocol
        # === specific default states
        if remote_command_protocol=="LX200":
            self._remote_command_protocol="LX200"
            self._lx200_precision = self.LX200_HIGH_PRECISION
            self._lx200_setra_deg = 0.0
            self._lx200_setdec_deg = 0.0
            self._lx200_24_12_hour_time_format = 24
            self._lx200_slew_rate = 5            
        if remote_command_protocol=="ASCOM":
            self._remote_command_protocol="ASCOM"
            self._ascom_TargetRightAscension = 0.0
            self._ascom_TargetDeclination = 0.0
            self._ascom_RightAscensionRate = 0.0 # arcsec/sec
            self._ascom_DeclinationRate = 0.0 # arcsec/sec
            self._ascom_TrackingRate = 0 # 0=sideral 1=lunar 2=soler 3=King
            self._ascom_SideOfPier = -1 # -1=unknown 0=tube east seeing western 1=tube west seeing eastern
            
    def _langage_ascom_trackingrate2hadrift(self)->float:
        # 0=sideral 1=lunar 2=soler 3=King
        ha_drift_deg_per_sec = 360.0/self._sideral_sec_per_day # sideral
        if self._ascom_TrackingRate == 1:
            ha_drift_deg_per_sec = 14.685/3600. # lunar
        elif self._ascom_TrackingRate == 2:
            ha_drift_deg_per_sec = 360.0/86400. # solar
        elif self._ascom_TrackingRate == 3:
            ha_drift_deg_per_sec = 15.0369/3600. # King
        return ha_drift_deg_per_sec
            
    def _langage_mcs_req_decode(self, command:str)->tuple:
        """
        Format of the request messages:
        message = "{typemsg: {action: {cmd: val}}}"
        
        typemsg, action, cmd, val = self._langage_mcs_req_decode(command)

        """
        message = ""
        acolade = 0
        cmd = ""
        for car in command:
            if car=="{":
                acolade += 1
            if car=="}":
                acolade -= 1
            cmd += car
            if acolade == 0:
                # --- end of the command
                message = cmd
                break
        # ---
        typemsg = ""
        action = ""
        cmd = ""
        val = ""
        # --- cast the str into dict
        obj = ast.literal_eval(message)
        if isinstance(obj,dict):
            typemsg = list(obj.keys())[0]            
            obj = obj[typemsg]
            if isinstance(obj,dict):           
                action = list(obj.keys())[0]
                obj = obj[action]
                if isinstance(obj,dict):
                    cmd = list(obj.keys())[0]
                    val = obj[cmd]
                else:
                    cmd = str(obj)
            else:
                action = str(obj)
        else:
            typemsg = str(obj)
        #print("typemsg={} action={} cmd={} val={}".format(typemsg, action, cmd, val))
        return typemsg, action, cmd, val
        
    def _my_remote_command_processing(self, command):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        res = ""
        return res

    def remote_command_processing(self, command):
        """
        Execute a command when this code is used as server.

        :param command: Command to execute
        :type command: str
        :returns: error code
        :rtype: int

        :Example:

        ::
            
            >>> mymount = Mountastro("HADEC", name = "My telescope")
            >>> mymount.remote_command_protocol("LX200")
            >>> mymount.remote_command_processing(":GD")
        
        """
        res = ""
        if self._remote_command_protocol=="LX200":
            #if command.startswith(":GD")!=True and command.startswith(":GR")!=True:
            #    print("RECU command={}".format(command))
            # --- 0x06 - Special command 
            if command.startswith(chr(6))==True:
                res = "P"
            # --- C - Sync Control 
            elif command.startswith(":CM")==True:
                self.radec_synchronize(self._lx200_setra_deg, self._lx200_setdec_deg)
            # --- G - Get Telescope Information   
            elif command.startswith(":Gc")==True:
                res = str(self._lx200_24_12_hour_time_format)
            elif command.startswith(":GC")==True:
                iso = celme.Date("now").iso()
                res = iso[5:7] + "/" + iso[8:10] + "/" + iso[2:4]                
            elif command.startswith(":GD")==True:
                ra, dec, side = self.radec_coord(UNIT_RA="H:0.0",UNIT_DEC="d:+090.0", equinox="now")
                dec = dec[0:3] + "*" + dec[4:6] + "'" + dec[7:9]
                if self._lx200_precision == self.LX200_LOW_PRECISION:
                    dec = dec[0:6]
                res = dec
            elif command.startswith(":Gg")==True:
                deg = self.site.longitude
                res = celme.Angle(deg).sexagesimal("d +0180")
                res = res[0:4] + "*"  + res[5:7]
            elif command.startswith(":GL")==True:
                iso = celme.Date("now").iso()
                res = iso[11:19]
            elif command.startswith(":Gm")==True:
                ha, dec, side = self.hadec_coord()
                if side==1:
                    res = "W"
                else:
                    res = "E"
            elif command.startswith(":GR")==True:
                ra, dec, side = self.radec_coord(UNIT_RA="H:0.0",UNIT_DEC="d:+090.0", equinox="now")
                if self._lx200_precision == self.LX200_LOW_PRECISION:
                    sec = int(ra[6:8])
                    sec = "{:.1f}".format(sec/60.0)
                    ra = ra[0:5]+sec[1:]
                res = ra
            elif command.startswith(":Gt")==True:
                deg = self.site.latitude
                res = celme.Angle(deg).sexagesimal("d +090")
                res = res[0:3] + "*" + res[4:6]
            # --- H - Time Format Command
            elif command.startswith(":H")==True:                
                if self._lx200_24_12_hour_time_format == 24:
                    self._lx200_24_12_hour_time_format = 12
                else:
                    self._lx200_24_12_hour_time_format = 24
            # --- M - Telescope Movement Commands
            elif command.startswith(":Me")==True:
                self.hadec_move(self._lx200_slew_rate,0)
            elif command.startswith(":Mn")==True:
                self.hadec_move(0,-self._lx200_slew_rate)
            elif command.startswith(":Ms")==True:
                self.hadec_move(0,self._lx200_slew_rate)
            elif command.startswith(":Mw")==True:
                #print("radec_move({},{})".format(-self._lx200_slew_rate,0))
                self.hadec_move(-self._lx200_slew_rate,0)
            elif command.startswith(":MS")==True:
                self.radec_goto(self._lx200_setra_deg, self._lx200_setdec_deg, equinox="J2000.0")
            # --- P - High Precision Toggle
            elif command.startswith(":P")==True:
                res = self._lx200_precision
            # --- Q - Movement Commands
            elif command.startswith(":Qe")==True:
                self.hadec_move_stop()
            elif command.startswith(":Qn")==True:
                self.hadec_move_stop()
            elif command.startswith(":Qs")==True:
                self.hadec_move_stop()
            elif command.startswith(":Qw")==True:
                self.hadec_move_stop()
            elif command.startswith(":Q")==True:
                self.hadec_stop()
            # --- R - Slew Rate Commands
            elif command.startswith(":RC")==True:
                self._lx200_slew_rate = 0.5 * 360.0/self._sideral_sec_per_day
            elif command.startswith(":RG")==True:
                self._lx200_slew_rate = 5 * 360.0/self._sideral_sec_per_day
            elif command.startswith(":RM")==True:
                self._lx200_slew_rate = 0.5
            elif command.startswith(":RS")==True:
                self._lx200_slew_rate = 5
            # --- S - Telescope Set Commands
            elif command.startswith(":Sr")==True:
                angle = command[3:]
                self._lx200_setra_deg = celme.Angle(angle).deg() * 15.0
                res = str(1)
            elif command.startswith(":Sd")==True:
                angle = command[3:]
                self._lx200_setdec_deg = celme.Angle(angle).deg()
                res = str(1)
            elif command.startswith(":Sg")==True:
                angle = command[3:]
                self.site.longitude = celme.Angle(angle).deg()
                res = str(1)
            elif command.startswith(":Sts")==True:
                angle = command[3:]
                self.site.latitude = celme.Angle(angle).deg()
                res = str(1)                
            # --- U - Precision Toggle
            elif command.startswith(":U")==True:
                if self._lx200_precision == self.LX200_HIGH_PRECISION:
                    self._lx200_precision = self.LX200_LOW_PRECISION
                else:
                    self._lx200_precision = self.LX200_HIGH_PRECISION
        if self._remote_command_protocol=="MCS":
            # --- Split the string to a list of dictionaries
            # String example : command  = {"req":{"cmd":{"PRESET":5}}}{"req":{"get": ""}}}
            # List of dictionaries : commands = ['{"req":{"cmd":{"PRESET":5}}}', '{"req":{"get": ""}}']
            #print("MCS {} commands={}".format(self._remote_command_protocol,commands))
            # --- Loop over commands
            #
            # --- process one command
            typemsg, action, cmd, val = self._langage_mcs_req_decode(command)
            typemsg_found = False
            action_found = False
            cmd_found = False
            err_msg_typemsg = "Type message not found amongst "
            err_msg_action = "Action not found amongst "
            err_msg_cmd = "Cmd not found amongst "
            if typemsg == "req":
                typemsg_found = True
                if action == "do":
                    action_found = True
                    if cmd == "exec":
                        cmd_found = True
                        print("val={}".format(val))
                        exec(f"""locals()['temp'] = {val}""")
                        response = {cmd : str(locals()['temp'])}
                    if cmd_found == False:
                        response = {"error" : err_msg_cmd + "exec."}
                if action == "get":
                    action_found = True
                    response = []
                    if cmd == "radec" or cmd == "":
                        # --- return only radec coords
                        cmd_found = True
                        ra, dec, side = self.radec_coord(UNIT_RA="deg",UNIT_DEC="deg")
                        res = {"ra":ra, "dec":dec, "side":side}
                        response.append(res)
                    if cmd == "hadec" or cmd == "":
                        # --- return only hadec coords
                        cmd_found = True
                        ha, dec, side = self.hadec_coord(UNIT_RA="deg",UNIT_DEC="deg")
                        res = {"ha":ha, "dec":dec, "side":side}
                        response.append(res)
                    if cmd_found == False:
                        response = {"error" : err_msg_cmd + "radec, hadec."}
                if action_found == False:
                    response = {"error" : err_msg_action + "do, get."}
            if typemsg_found == False:
                response = {"error" : err_msg_typemsg + "req."}
            res = {typemsg : {action : {cmd : response}}}
            print("{} res={}".format(self._remote_command_protocol,res))
            res = str(res)
        if self._remote_command_protocol=="ASCOM":
            command = command.replace(",",".")
            mots = command.split()
            print("="*20)
            print("mots recus ={}".format(mots))
            msg = ""
            # --- 
            if command.startswith("RightAscension")==True:
                ra, dec, side = self.radec_coord(UNIT_RA="deg")
                print("{} ra={}".format(mots[0],ra))
                msg = "{}".format(float(ra)/15.)
            # --- 
            if command.startswith("RightAscensionRate")==True:
                n = len(mots)
                if n>1:
                    # --- Set
                    print("mots[1]={}".format(mots[1]))
                    self._ascom_RightAscensionRate = float(mots[1])
                    msg = mots[1]
                else:
                    # --- Get
                    msg = str(self._ascom_RightAscensionRate)            
            # --- 
            if command.startswith("Declination")==True:
                ra, dec, side = self.radec_coord(UNIT_DEC="deg")
                print("{} dec={}".format(mots[0],dec))
                msg = str(dec)
            # --- 
            if command.startswith("SlewToCoordinates")==True or command.startswith("SlewToCoordinatesAsync")==True:
                ra = float(mots[1])*15.
                dec = float(mots[2])
                ra_drift_deg_per_sec = self._langage_ascom_trackingrate2hadrift() - 360.0/self._sideral_sec_per_day
                dec_drift_deg_per_sec = 0.0
                if self._ascom_RightAscensionRate != 0:
                    # self._ascom_RightAscensionRate arcsec/sec
                    ra_drift_deg_per_sec += self._ascom_RightAscensionRate / 3600.0
                if self._ascom_DeclinationRate != 0:
                    dec_drift_deg_per_sec += self._ascom_ascom_DeclinationRate / 3600.0
                print("{} ra={} dec={}".format(mots[0],ra,dec))
                self.radec_goto(ra, dec, EQUINOX="NOW", RA_DRIFT=ra_drift_deg_per_sec, DEC_DRIFT=dec_drift_deg_per_sec)
            # ---                 
            if command.startswith("SlewToTarget")==True or command.startswith("SlewToTargetAsync")==True:
                ra = self._ascom_TargetRightAscension * 15
                dec = self._ascom_TargetDeclination
                ra_drift_deg_per_sec = self._langage_ascom_trackingrate2hadrift() - 360.0/self._sideral_sec_per_day
                dec_drift_deg_per_sec = 0.0
                if self._ascom_RightAscensionRate != 0:
                    # self._ascom_RightAscensionRate arcsec/sec
                    ra_drift_deg_per_sec += self._ascom_RightAscensionRate / 3600.0
                if self._ascom_DeclinationRate != 0:
                    dec_drift_deg_per_sec += self._ascom_ascom_DeclinationRate / 3600.0
                print("{} ra={} dec={}".format(mots[0],ra,dec))
                self.radec_goto(ra, dec, EQUINOX="NOW", RA_DRIFT=ra_drift_deg_per_sec, DEC_DRIFT=dec_drift_deg_per_sec)
            # --- 
            if command.startswith("SyncToCoordinates")==True or command.startswith("SyncToCoordinatesAsync")==True:
                ra = float(mots[1])*15.
                dec = float(mots[2])
                sideofpier = self._ascom_SideOfPier
                side = 0
                if sideofpier == 0:
                    side = -1
                if sideofpier == 1:
                    side = 1
                print("{} ra={} dec={}".format(mots[0],ra,dec))
                self.radec_synchronize(ra, dec, EQUINOX="NOW", SIDE=side)
            # --- 
            if command.startswith("SyncToTarget")==True or command.startswith("SyncToTargetAsync")==True:
                ra = self._ascom_TargetRightAscension * 15
                dec = self._ascom_TargetDeclination
                sideofpier = self._ascom_SideOfPier
                side = 0
                if sideofpier == 0:
                    side = -1
                if sideofpier == 1:
                    side = 1
                print("{} ra={} dec={}".format(mots[0],ra,dec))
                self.radec_synchronize(ra, dec, EQUINOX="NOW", SIDE=side)
            # --- 
            if command.startswith("MoveAxis")==True:
                kaxis = int(mots[1])
                rate = float(mots[2])
                print("{} kaxis={} move={}".format(mots[0],kaxis,rate))
                dra = 0
                ddec = 0
                if kaxis==0:
                    dra = rate
                    ddec = 0
                if kaxis==1:
                    dra = 0
                    ddec = rate
                if rate==0:
                    self.hadec_move_stop()
                else:
                    self.hadec_move(dra, ddec)
            # --- 
            if command.startswith("Slewing")==True:
                self.update_motion_states()
                if self.slewing_state==False:
                    msg = "False"
                else:
                    msg = "True"
            # --- 
            if command.startswith("AbortSlew")==True:
                self.hadec_stop()

            # ---
            if command.startswith("SideOfPier")==True:
                # -1=unknown 0=tube east seeing western 1=tube west seeing eastern
                n = len(mots)
                if n>1:
                    # --- Set
                    print("mots[1]={}".format(mots[1]))
                    self._ascom_SideOfPier = int(mots[1])
                    msg = mots[1]
                else:
                    # --- Get
                    ra, dec, side = self.radec_coord(UNIT_RA="deg")
                    sideofpier = -1
                    if side==-1:
                        sideofpier = 0
                    if side==1:
                        sideofpier = 1
                    self._ascom_SideOfPier = sideofpier
                    msg = str(self._ascom_SideOfPier)            
            # --- 
            if command.startswith("Tracking")==True:
                n = len(mots)
                if n>1:
                    # --- Set
                    print("mots[1]={}".format(mots[1]))
                    if mots[1]=="True":
                        ha_drift_deg_per_sec = self._langage_ascom_trackingrate2hadrift()
                        dec_drift_deg_per_sec = 0
                        if self._ascom_RightAscensionRate != 0:
                            # self._ascom_RightAscensionRate arcsec/sec
                            ha_drift_deg_per_sec -= self._ascom_RightAscensionRate / 3600.0
                        if self._ascom_DeclinationRate != 0:
                            dec_drift_deg_per_sec += self._ascom_ascom_DeclinationRate / 3600.0
                        self.hadec_drift(ha_drift_deg_per_sec, dec_drift_deg_per_sec)
                    elif mots[1]=="False":
                        self.hadec_stop()
                    msg = mots[1]
                else:
                    # --- Get
                    self.update_motion_states()
                    if self.tracking_state==False:
                        msg = "False"
                    else:
                        msg = "True"
            # ---
            if command.startswith("TargetRightAscension")==True:
                n = len(mots)
                if n>1:
                    # --- Set
                    print("mots[1]={}".format(mots[1]))
                    self._ascom_TargetRightAscension = float(mots[1])
                    msg = mots[1]
                else:
                    # --- Get
                    msg = str(self._ascom_TargetRightAscension)            
            # ---
            if command.startswith("TargetDeclination")==True:
                n = len(mots)
                if n>1:
                    # --- Set
                    print("mots[1]={}".format(mots[1]))
                    self._ascom_TargetDeclination = float(mots[1])
                    msg = mots[1]
                else:
                    # --- Get
                    msg = str(self._ascom_TargetDeclination)            
            # --- 
            if command.startswith("TrackingRate")==True:
                n = len(mots)
                if n>1:
                    # --- Set
                    print("mots[1]={}".format(mots[1]))
                    trackingRate = int(mots[1])
                    if trackingRate<0:
                        trackingRate = 0
                    if trackingRate>3:
                        trackingRate = 3
                    self._ascom_TrackingRate = trackingRate
                    msg = mots[1]
                else:
                    # --- Get
                    msg = str(self._ascom_TrackingRate)
            # --- 
            if command.startswith("Park")==True:
                ha = 270.0
                dec = 90.0
                side = 1
                print("{} ha={} dec={} side={}".format(mots[0],ha,dec,side))
                self.hadec_goto(ha, dec, side=side)
            # --- send the EQMOD answer to ASCOM
            msg = msg.replace(".",",")
            print("msg renvoyé ={}".format(msg))
            res = msg
        else:
            pass
        #print("{} res={}".format(self._remote_command_protocol,res))
        if res=="":
            res = self._my_remote_command_processing(command)
        return res

# =====================================================================
# =====================================================================
# ASCOM methods
# =====================================================================
# =====================================================================

    def _update_motion_states(self):
        # --- abstract method. 
        # --- Please overload it according your language protocol
        axes_motion_state_reals = []
        for kaxis in range(Mountaxis.AXIS_MAX):
            axes_motion_state_reals.append(Mountaxis.MOTION_STATE_UNKNOWN)
        return axes_motion_state_reals

    def update_motion_states(self):
        """ Get the current motions states of the axes
        
        :returns: slewing_state, tracking_state, list of axes_motion_states
        :rtype: tuple

        slewing_state and tracking_state are booleans. These states are computer according the combination of all active axes (real and simulated ones).
        axes_motion_states is a list of states for each axis combining real and simulated.
        """
        # === Real hardware
        axes_motion_state_reals = self._update_motion_states()
        # --- Get the current simulated motions
        incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]  
        increals, incsimus = self.read_encs(incsimus)
        # --- Combine real and simulation motions
        axes_motion_states = []
        motion_states = []
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                axes_motion_states.append(Mountaxis.MOTION_STATE_UNKNOWN)
                continue
            if current_axis.real == True:
                motion_state = axes_motion_state_reals[kaxis]
            else:
                motion_state = current_axis.motion_state_simu
            motion_states.append(motion_state)
            axes_motion_states.append(motion_state)
        # - Count the motion axis states
        ks = 0
        kd = 0
        km = 0
        for motion_state in motion_states:
            if motion_state == Mountaxis.MOTION_STATE_SLEWING:
                ks += 1
            if motion_state == Mountaxis.MOTION_STATE_DRIFTING:
                kd += 1
            if motion_state == Mountaxis.MOTION_STATE_MOVING:
                km += 1
        # - Set the global motion state
        self.slewing_state = False
        self.tracking_state = False
        if km > 0 or ks > 0:
            self.slewing_state = True
            self.tracking_state = False
        if kd > 0 and km == 0 and km == 0:
            self.slewing_state = False
            self.tracking_state = True
        # --- return slewing, tracking states and all axis states
        return self.slewing_state, self.tracking_state, axes_motion_states
        
    def _get_slewing_state(self) -> bool:
        """
        True if telescope is currently moving in response to one of the Slew methods or the MoveAxis(TelescopeAxes, Double) method, False at all other times.
        
        Reading the property will raise an error if the value is unavailable. If the telescope is not capable of asynchronous slewing, this property will always be False. The definition of "slewing" excludes motion caused by sidereal tracking, PulseGuide, RightAscensionRate, and DeclinationRate. It reflects only motion caused by one of the Slew commands, flipping caused by changing the SideOfPier property, or MoveAxis(TelescopeAxes, Double).
        """
        return self._slewing_state
    
    def _set_slewing_state(self, state:bool):
        """
        True if telescope is moving in response to one of the Slew methods or the MoveAxis(TelescopeAxes, Double) method, False at all other times.

        Internal for the Python code
        """
        self._slewing_state = state
        
    def _get_tracking_state(self) -> bool:
        """
        The state of the telescope's sidereal tracking drive.
        
        Tracking Read must be implemented and must not throw a PropertyNotImplementedException.        
        Tracking Write can throw a PropertyNotImplementedException.        
        Changing the value of this property will turn the sidereal drive on and off. However, some telescopes may not support changing the value of this property and thus may not support turning tracking on and off. See the CanSetTracking property.
        """
        return self._tracking_state

    def _set_tracking_state(self, state:bool):
        """
        The state of the telescope's sidereal tracking drive.
        
        See details in the documentation of _get_tracking_state()
        """
        self._tracking_state = state
        
    tracking_state = property(_get_tracking_state, _set_tracking_state)
    slewing_state = property(_get_slewing_state, _set_slewing_state)
    
# =====================================================================
# =====================================================================
# Special methods
# =====================================================================
# =====================================================================
        
    def __init__(self, *args, **kwargs): 
        """
        Conversion from Uniform Python object into protocol language
        Usage : Mountastro("HADEC", name="SCX11")
        """
        # --- Dico of optional parameters for all axis_types
        param_optionals = {}
        param_optionals["MODEL"] = (str, "")
        param_optionals["MANUFACTURER"] = (str, "")
        param_optionals["SERIAL_NUMBER"] = (str, "")
        param_optionals["REAL"] = (bool, False)
        param_optionals["DESCRIPTION"] = (str, "No description.")
        param_optionals["SITE"] = (celme.Site,"GPS 0 E 45 100")
        param_optionals["LABEL_REGULAR"] = (str,"Regular")
        param_optionals["LABEL_FLIPED"] = (str,"Fliped")
        param_optionals["CONFIGURATION"] = (str,"German")
        param_optionals["CAN_REVERSE"] = (bool,True)
        param_optionals["LIME_REVERSE"] = (float,30)
        param_optionals["LIMW_REVERSE"] = (float,-30)
        
        # --- Dico of axis_types and their parameters
        mount_types = {}
        mount_types["HADEC"]= {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Equatorial"]} }
        mount_types["HADECROT"]= {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Equatorial"]} }
        mount_types["AZELEV"]= {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Altazimutal"]} }
        mount_types["AZELEVROT"]= {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Altazimutal"]} }
        # --- Decode args and kwargs parameters
        self._mount_params = self.decode_args_kwargs(0, mount_types, param_optionals, *args, **kwargs)
        # ===
        self._mount_type = self._mount_params["SELECTED_ARG"]
        self._name = self._mount_params["NAME"]
        self._description = self._mount_params["DESCRIPTION"]
        self._model = self._mount_params["MODEL"]
        self._manufacturer = self._mount_params["MANUFACTURER"]
        self._serial_number= self._mount_params["SERIAL_NUMBER"]
        # === local
        if type(self._mount_params["SITE"])==celme.site.Site:
            self.site = self._mount_params["SITE"]
        else:
            self.site = celme.Home(self._mount_params["SITE"])
        # === Initial state real or simulation
        real = self._mount_params["REAL"]
        # === Initialisation of axis list according the mount_type
        self.axis = [None for kaxis in range(Mountaxis.AXIS_MAX)] # or  Mountaxis.AXIS_NOT_DEFINED            
        if self._mount_type.find("HA")>=0:
            current_axis = Mountaxis("HA", name = "Hour angle")
            current_axis.update_inc0(0,0,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.BASE] = current_axis
        if self._mount_type.find("DEC")>=0: 
            current_axis = Mountaxis("DEC", name = "Declination")
            current_axis.update_inc0(0,90,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.POLAR] = current_axis
        if self._mount_type.find("AZ")>=0:
            current_axis = Mountaxis("AZ", name = "Azimuth")
            current_axis.update_inc0(0,0,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.BASE] = current_axis
        if self._mount_type.find("ELEV")>=0: 
            current_axis = Mountaxis("ELEV", name = "Elevation")
            current_axis.update_inc0(0,90,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.POLAR] = current_axis
        if self._mount_type.find("ROT")>=0: 
            current_axis = Mountaxis("ROT", name = "Rotator")
            current_axis.update_inc0(0,0,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.ROT] = current_axis
        if self._mount_type.find("ROLL")>=0:
            current_axis = Mountaxis("ROLL", name = "Roll")
            current_axis.update_inc0(0,0,current_axis.PIERSIDE_POS1)
        if self._mount_type.find("PITCH")>=0: 
            current_axis = Mountaxis("PITCH", name = "Pitch")
            current_axis.update_inc0(0,90,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.POLAR] = current_axis
        if self._mount_type.find("YAW")>=0: 
            current_axis = Mountaxis("YAW", name = "Yaw")
            current_axis.update_inc0(0,0,current_axis.PIERSIDE_POS1)
            self.axis[Mountaxis.YAW] = current_axis
        # === Default Setup
        ratio_wheel_puley = 1 ; # 5.25
        ratio_puley_motor = 100.0 ; # harmonic reducer
        inc_per_motor_rev = 1000.0 ; # IMC parameter. System Confg -> System Parameters - Distance/Revolution
        for kaxis in range(Mountaxis.AXIS_MAX):
            current_axis = self.axis[kaxis]
            if current_axis == None:
                continue
            current_axis.slewmax_deg_per_sec = 30    
            current_axis.slew_deg_per_sec = 30    
            current_axis.real = real
            current_axis.latitude = self.site.latitude
            current_axis.ratio_wheel_puley = ratio_wheel_puley    
            current_axis.ratio_puley_motor = ratio_puley_motor    
            current_axis.inc_per_motor_rev = inc_per_motor_rev
        # === Pads
        self._pads = []
        # === Remote commands        
        self._remote_command_protocol=""
        self.remote_command_protocol("LX200")
        if sys.platform == 'win32':
            # - not used now but interresting
            with winreg.OpenKey(winreg.HKEY_CURRENT_USER,r"Control Panel\International") as access_key:
            	value, vtype = winreg.QueryValueEx(access_key,'sDecimal')
        # === Log positions
        self._record_positions = False   
        # ===
        self._hadec_speeddrift_ha_deg_per_sec = 0.0
        self._hadec_speeddrift_dec_deg_per_sec = 0.0
        self._radec_speeddrift_ha_deg_per_sec = -360.0/self._sideral_sec_per_day
        self._radec_speeddrift_dec_deg_per_sec = 0.0
        # ===
        self.slewing_state = False
        self.tracking_state = False
        # === Log
        path_data = os.getcwd()
        self.log = Mountlog(self._name,self.site.gps,path_data)
        self.log.print("Launch log")

# #####################################################################
# #####################################################################
# #####################################################################
# Main
# #####################################################################
# #####################################################################
# #####################################################################

if __name__ == "__main__":
    cwd = os.getcwd()

    example = 4
    print("Example       = {}".format(example))
            
    if example == 1:
        # === SCX11
        home = celme.Home("GPS 2.25 E 43.567 148")
        site = celme.Site(home)
        mount = Mountastro("HADEC", name="Test Mount",site=site)

    if example == 2:
        home = celme.Home("GPS 2.25 E 43.567 148")
        #horizon = [(0,0), (360,0)]
        site = celme.Site(home)
        mount_scx11 = Mountastro("HADEC", name="Guitalens Mount", manufacturer="Astro MECCA", model="TM350", site=site)
        mount_eqmod = Mountastro("HADEC", name="Guitalens Mount", manufacturer="Astro MECCA", model="EQ 6",  site=site)
        # --- shortcuts
        mount_scx11_axisb = mount_scx11.axis[Mountaxis.BASE]
        mount_scx11_axisp = mount_scx11.axis[Mountaxis.POLAR]
        mount_eqmod_axisb = mount_eqmod.axis[Mountaxis.BASE]
        mount_eqmod_axisp = mount_eqmod.axis[Mountaxis.POLAR]
        # --- simulation or not
        mount_scx11_axisb.real = False
        mount_scx11_axisp.real = False
        mount_eqmod_axisb.real = False
        mount_eqmod_axisp.real = False
        # ======= SCX11
        incsimus = [0 for kaxis in range(Mountaxis.AXIS_MAX)]
        increals, incsimus = mount_scx11.read_encs(incsimus)
        # ---
        incb, rotb, celb, incp, rotp, celp, pierside, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu = mount_scx11.enc2cel(incsimus, mount_scx11.OUTPUT_LONG, mount_scx11.SAVE_ALL)        
        print("SCX11 incb={:.0f} rotb={:.3f} celb={:.3f} incp={:.0f} rotp={:.3f} celp={:.3f} pierside={:.0f}".format(incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu))
        incb, rotb, celb, incp, rotp, celp, pierside, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu = mount_scx11.enc2cel(incsimus, mount_scx11.OUTPUT_LONG, mount_scx11.SAVE_ALL)        
        print("SCX11 incb={:.0f} rotb={:.3f} celb={:.3f} incp={:.0f} rotp={:.3f} celp={:.3f} pierside={:.0f}".format(incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu))
        # --- update EQMOD parameters
        incb, rotb, celb, incp, rotp, celp, pierside, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu = mount_eqmod.enc2cel(incsimus, mount_scx11.OUTPUT_LONG, mount_scx11.SAVE_ALL)        
        print("EQMOD incb={:.0f} rotb={:.3f} celb={:.3f} incp={:.0f} rotp={:.3f} celp={:.3f} pierside={:.0f}".format(incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu))
        incb, rotb, celb, incp, rotp, celp, pierside, incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu = mount_eqmod.enc2cel(incsimus, mount_scx11.OUTPUT_LONG, mount_scx11.SAVE_ALL)        
        print("EQMOD incb={:.0f} rotb={:.3f} celb={:.3f} incp={:.0f} rotp={:.3f} celp={:.3f} pierside={:.0f}".format(incsimub, rotsimub, celsimub, incsimup, rotsimup, celsimup, piersidesimu))
               
    if example == 3:
        if False:
            # --- Site latitude
            latitude = 30
            # --- observer view
            elev = 15 # tourne autour de l'axe x
            azim = 140 # tourne autour de de l'axe z (azim=0 on regarde W devant, azim=90 N devant) 
            outfile = cwd+"/rotbp_n.png"
        else:
            # --- Site latitude
            latitude = -30
            # --- observer view
            elev = 15 # tourne autour de l'axe x
            azim = 140 # tourne autour de de l'axe z (azim=0 on regarde W devant, azim=90 N devant) 
            outfile = cwd+"/rotbp_s.png"
        # --- rob, rotp
        rotb = 60
        rotp = 30
        home = celme.Home("GPS 2.25 E 43.567 148")
        site = celme.Site(home)
        mount = Mountastro("HADEC", name="Example Mount", site=site)
        mount.plot_rot(latitude, azim, elev, rotb, rotp, outfile)

    if example==4:
        home = celme.Home("GPS 2.25 E 43.567 148")
        #horizon = [(0,0), (360,0)]
        site = celme.Site(home)
        mount_scx11 = Mountastro("HADEC", name="Guitalens Mount", manufacturer="Astro MECCA", model="TM350", site=site)
        # --- shortcuts
        mount_scx11_axisb = mount_scx11.axis[Mountaxis.BASE]
        mount_scx11_axisp = mount_scx11.axis[Mountaxis.POLAR]
        # --- simulation or not
        mount_scx11_axisb.real = False
        mount_scx11_axisp.real = False
        # ======= SCX11
        mount_scx11.speedslew(10,10)
        ha_start = 70
        dec_start = 60
        ha_target = 10
        dec_target = -25
        pierside_target = 1
        res = mount_scx11.hadec_travel_compute(ha_target, dec_target, pierside_target)