models.py
25.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
from django.db import models
from pyrosapp.models import Schedule, Sequence, ScheduleHasSequences
from operator import attrgetter
from decimal import *
import time
DEFAULT_PLAN_START = Decimal(2457485.250000) # April 6th 2016, 18:00:00.0 UT
DEFAULT_PLAN_END = Decimal(2457485.916667) # April 7th 2016, 10:00:00.0 UT
PRECISION = Decimal(0.0000000001)
SIMULATION = False
TIMESTAMP_JD = 2440587.500000
MAX_OVERHEAD = 25
MAX_OVERHEAD_JD = Decimal(MAX_OVERHEAD / (24 * 60 * 60))
REJECTED_QUOTA = "Insufficient quota"
REJECTED_ROOM = "Insufficient room for this sequence"
'''
Note : the following functions are necessary due to a too-high precision of Decimal objects
'''
def is_nearby_equal(a: Decimal, b: Decimal, precision: Decimal=PRECISION):
'''
Compare the two decimal, according to the given precision
'''
return (True if abs(b - a) < PRECISION else False)
def is_nearby_sup_or_equal(a: Decimal, b: Decimal, precision: Decimal=PRECISION):
'''
Compare the two decimal, according to the given precision
'''
if (a > b):
return True
return (True if abs(b - a) < PRECISION else False)
def is_nearby_less_or_equal(a: Decimal, b: Decimal, precision: Decimal=PRECISION):
'''
Compare the two decimal, according to the given precision
'''
if (a < b):
return True
return (True if abs(b - a) < PRECISION else False)
class Interval:
"""
Simple class that represents an interval of time
Julian days should be used
"""
def __init__(self, start, end):
self._start = Decimal(start)
self._end = Decimal(end)
self.duration = Decimal(end - start)
def __str__(self):
print("[" + str(self.start) + " - " + str(self.end) + "]")
def _get_start(self):
return self._start
def _set_start(self, start):
if start > self._end:
raise ValueError(
"Cannot set start (%d): must be lower than end (%d)" % (start, self._end))
self._start = start
self.duration = self._end - self._start
def _get_end(self):
return self._end
def _set_end(self, end):
if end < self._start:
raise ValueError(
"Cannot set end (%d): must be bigger than start (%d)" % (end, self._start))
self._end = end
self.duration = self._end - self._start
start = property(fget=_get_start, fset=_set_start)
end = property(fget=_get_end, fset=_set_end)
class Scheduler():
"""
Role : create a planning for the following/current night
Read in DB : Sequence, PyrosUser and parents
Create in DB : Schedule
Update in DB : Schedule, Sequence
Delete in DB : None
Entry point(s) :
- make_schedule
- simulate_schedule
"""
"""
TODO:
- définition de plan_start et plan_end
- calcul de la priorité
- calcul des quotas
- définir l'attribut 'flag' de Schedule
- remplissage des espaces libres
"""
def __init__(self):
self.schedule = Schedule.objects.create()
# TODO: quel est le "flag" dans le schedule ??
self.intervals = []
self.max_overhead = MAX_OVERHEAD_JD
def get_night_limits(self):
'''
determines and set plan_start and plan_end (beginning & end of the observation night)
'''
# TODO: définir comment on calcule plan_start et plan_end (via quels
# moyens)
self.schedule.plan_start = DEFAULT_PLAN_START # default value
self.schedule.plan_end = DEFAULT_PLAN_END # default value
def set_night_limits(self, plan_start, plan_end):
'''
Sets given schedule start & end (in julian day)
'''
self.schedule.plan_start = Decimal(plan_start)
self.schedule.plan_end = Decimal(plan_end)
def make_schedule(self, first_schedule):
'''
ENTRY POINT
Check all 'OBSERVABLE' sequences to create the most optimized planning for the following/current night
It is assumed that all sequences that MUST and CAN be analyse have the OBSERVABLE status
shs means 'ScheduleHasSequences'
self.sequences is a list of tuples (sequence, shs)
:returns : The new schedule
:side-effect :
- modify sequences status and dates in DB
'''
global SIMULATION
SIMULATION = False
if first_schedule is False:
self.copy_from_previous_schedule()
else:
self.schedule.plan_night_start = self.schedule.plan_start
self.sequences = list(Sequence.objects.filter(status=Sequence.OBSERVABLE))
shs_list = []
for sequence in self.sequences:
shs_list.append(ScheduleHasSequences(sequence=sequence, schedule=self.schedule))
self.sequences = [(sequence, shs_list[index]) for index, sequence in enumerate(self.sequences)]
self.compute_schedule()
self.save_schedule()
return self.schedule
def copy_from_previous_schedule(self):
'''
Copy needed information from the previous schedule :
- gets the executed sequences from the previous schedule and copy them into the new schedule
- gets plan_start and plan_end
- computes new plan_restart
shs means 'ScheduleHasSequences'
'''
previous_sched = Schedule.objects.order_by('-created')[1]
previous_exc_seq = previous_sched.sequences.filter(status=Sequence.EXECUTED)
for seq in previous_exc_seq:
shs = seq.shs
shs.pk = None
shs.schedule = self.schedule
if SIMULATION == False:
shs.save()
self.schedule.plan_night_start = previous_sched.plan_night_start
self.schedule.plan_end = previous_sched.plan_end
''' Schedule starts in MAX_OVERHEAD seconds '''
self.schedule.plan_start = time.time() / 86400 + TIMESTAMP_JD + self.max_overhead
def simulate_schedule(self, sequences):
'''
ENTRY POINT - SIMULATION
Do the same as make_schedule but do not touch the DB
:type sequences : list of Sequence
:param sequences : sequences to plan
:returns : a tuple (Schedule, list of sequences)
'''
global SIMULATION
SIMULATION = True
self.schedule.plan_night_start = self.schedule.plan_start
self.sequences = sequences
shs_list = []
for sequence in self.sequences:
shs_list.append(ScheduleHasSequences(sequence=sequence, schedule=self.schedule))
self.sequences = [(sequence, shs_list[index]) for index, sequence in enumerate(self.sequences)]
self.compute_schedule()
return (self.schedule, self.sequences)
def compute_schedule(self):
self.intervals.append(
Interval(self.schedule.plan_start, self.schedule.plan_end))
self.check_sequences_validity()
self.determine_priorities()
self.remove_not_eligible_sequences()
self.sort_by_jd2_and_priorities()
self.organize_sequences()
def check_sequences_validity(self):
'''
Checks come sequence attributes to validate their integrity
:side-effect :
- remove invalid sequences from self.sequences
- set INVALID status for invalid sequences in DB
'''
''' Note(1) '''
for sequence, shs in list(self.sequences):
if sequence.jd1 < 0 or sequence.jd2 < 0 or is_nearby_less_or_equal(sequence.duration, 0) or sequence.jd2 - sequence.jd1 < sequence.duration:
self.sequences.remove((sequence, shs))
sequence.status = Sequence.INVALID
if SIMULATION == False:
sequence.save()
def determine_priorities(self):
'''
Computes sequences priority according to the user, the scientific program, ...
'''
# TODO: définir comment on calcule la priorité
pass
def remove_not_eligible_sequences(self):
'''
Computes overlap between [jd1; jd2] and [plan_start; plan_end]
Removes from self.sequences all the sequences that cannot be observed between plan_start and plan_end
Set UNPLANNABLE sequences if jd2 < plan_start
:side-effect :
- remove unwanted sequences from self.sequences
'''
''' Note (1) '''
for sequence, shs in list(self.sequences):
overlap = min(self.schedule.plan_end, sequence.jd2) - \
max(self.schedule.plan_start, sequence.jd1) - self.max_overhead
if overlap < sequence.duration:
if sequence.jd1 < self.schedule.plan_start:
""" Note (2) """
sequence.status = Sequence.UNPLANNABLE
if SIMULATION == False:
sequence.save()
self.sequences.remove((sequence, shs))
def sort_by_jd2_and_priorities(self):
'''
Sort by priority and jd2, priority being the main sorting parameter
'''
self.sequences.sort(key=lambda x: x[0].jd2)
self.sequences.sort(key=lambda x: x[0].priority)
def organize_sequences(self):
'''
Main function of the Scheduler
Arrange a maximum of observable sequences in the planning
Algorithm (for each sequence) :
- check quota (remove sequence from list if quota is too low)
- select matching intervals
- IF matching intervals => place sequence according to tPrefered
- IF NO matching intervals => try to move other sequences to place this one
:side-effect :
- remove unwanted sequences from self.sequences
- change status and dates of sequences in self.sequences (but not in DB yet)
'''
''' Note (1) '''
for sequence, shs in list(self.sequences):
quota = self.determine_quota(sequence)
if quota < sequence.duration:
shs.status = Sequence.REJECTED
shs.desc = REJECTED_QUOTA
continue
matching_intervals = self.get_matching_intervals(sequence)
if len(matching_intervals) > 0:
self.place_sequence(sequence, shs, matching_intervals)
sequence_placed = True
else:
sequence_placed = self.try_shifting_sequences(sequence, shs)
if sequence_placed == True:
shs.status = Sequence.PENDING
self.update_quota(sequence)
else:
shs.status = Sequence.REJECTED
shs.desc = REJECTED_ROOM
def determine_quota(self, sequence: Sequence) -> float:
'''
Determines the quota (in minutes) according to the current planning duration and the quota of the user and scientific program associated
:returns : The quota (float)
'''
# TODO: définir comment on calcule le quota
return sequence.request.pyros_user.quota # default value
def get_matching_intervals(self, sequence: Sequence):
'''
Find the intervals where the sequence could be inserted
:returns : list of matching Intervals
'''
matching_intervals = []
for interval in self.intervals:
overlap = min(sequence.jd2, interval.end) - \
max(sequence.jd1, interval.start) - self.max_overhead
if overlap > sequence.duration or is_nearby_equal(overlap, sequence.duration):
matching_intervals.append(interval)
return matching_intervals
def place_sequence(self, sequence: Sequence, shs: ScheduleHasSequences, matching_intervals):
'''
Place the sequence in the better interval, according to the t_prefered
:type matching_intervals: list [Interval]
:param matching_intervals: Intervals in which the sequence can be placed
:side-effect :
- changes self.intervals
- change the sequence if it it placed
'''
if len(matching_intervals) == 0:
raise ValueError("matching_intervals shall not be empty")
prefered_interval = self.get_prefered_interval(
sequence, matching_intervals)
sequence_position_in_interval = self.get_sequence_position_in_interval(
sequence, prefered_interval)
self.insert_sequence_in_interval(
sequence, shs, prefered_interval, sequence_position_in_interval)
self.cut_interval(sequence, shs, prefered_interval)
self.update_other_deltas(sequence, shs, prefered_interval)
def get_prefered_interval(self, sequence: Sequence, matching_intervals) -> Interval:
'''
Find the better interval, according to the t_prefered (get the nearest)
:type matching_intervals: list [Interval]
:param matching_intervals: Intervals in which the sequence can be placed
:returns : An Interval that fits sequence.t_prefered at most
'''
if len(matching_intervals) == 0:
raise ValueError("matching_intervals shall not be empty")
if sequence.t_prefered == 0 or len(matching_intervals) == 1:
prefered_interval = matching_intervals[0]
else:
for index, interval in enumerate(matching_intervals):
if is_nearby_less_or_equal(interval.start, sequence.t_prefered) and is_nearby_less_or_equal(sequence.t_prefered, interval.end):
prefered_interval = interval
break
elif sequence.t_prefered < interval.start:
if index == 0:
prefered_interval = interval
elif interval.start + self.max_overhead - sequence.t_prefered < sequence.t_prefered - matching_intervals[index - 1].end:
prefered_interval = interval
else:
prefered_interval = matching_intervals[index - 1]
break
return prefered_interval
def get_sequence_position_in_interval(self, sequence: Sequence, interval: Interval) -> str:
'''
Determines where the sequence will be inserted in the interval, regarding sequence.t_prefered
:returns : A string in ["START", "END", "PREFERED"] describing where the sequence will be inserted in the interval
'''
if is_nearby_less_or_equal(interval.start, sequence.t_prefered) and is_nearby_less_or_equal(sequence.t_prefered, interval.end):
if is_nearby_less_or_equal(sequence.t_prefered - Decimal(0.5) * sequence.duration, interval.start):
position_in_interval = "START"
elif is_nearby_sup_or_equal(sequence.t_prefered + Decimal(0.5) * sequence.duration, interval.end):
position_in_interval = "END"
else:
position_in_interval = "PREFERED"
else:
if sequence.t_prefered < interval.start:
position_in_interval = "START"
else:
position_in_interval = "END"
return position_in_interval
def insert_sequence_in_interval(self, sequence: Sequence, shs: ScheduleHasSequences, interval: Interval, position: str):
'''
Inserts the sequence in the interval:
- sets sequence.tsp and sequence.tep
- sets sequence.deltaTL and sequence.deltaTR
:param interval: Interval in which the sequence will be inserted
:param position: String describing where the sequence will be inserted in the interval
:side-effect :
- modify sequence attributes (tsp, tep, deltaTL, deltaTR)
'''
if position not in ["START", "END", "PREFERED"]:
raise ValueError(
"position must be either 'START', 'END' or 'PREFERED'")
if position == "START":
shs.tsp = max(
interval.start + self.max_overhead, sequence.jd1)
shs.tep = shs.tsp + sequence.duration
shs.deltaTL = 0
shs.deltaTR = min(
interval.end, sequence.jd2) - shs.tep
elif position == "END":
shs.tep = min(interval.end, sequence.jd2)
shs.tsp = shs.tep - sequence.duration
shs.deltaTL = shs.tsp - \
max(interval.start + self.max_overhead, sequence.jd1)
shs.deltaTR = 0
else:
shs.tsp = max(
sequence.jd1, sequence.t_prefered - Decimal(0.5) * sequence.duration)
if shs.tsp - interval.start < self.max_overhead:
shs.tsp = interval.start + self.max_overhead
shs.tep = shs.tsp + sequence.duration
shs.deltaTL = shs.tsp - \
max(interval.start + self.max_overhead, sequence.jd1)
shs.deltaTR = min(
interval.end, sequence.jd2) - shs.tep
def cut_interval(self, sequence: Sequence, shs: ScheduleHasSequences, interval: Interval):
'''
Separates the interval in two parts regarding to the sequence position
Sorts the interval list in time order
:param interval : the interval in which the sequence was added
:side-effect :
- removes interval from self.intervals
- add created intervals to self.intervals
- sorts self.intervals
'''
interval_before_sequence = Interval(
interval.start, shs.tsp - self.max_overhead)
interval_after_sequence = Interval(shs.tep, interval.end)
self.intervals.remove(interval)
if interval_before_sequence.duration > 0:
self.intervals.append(interval_before_sequence)
if interval_after_sequence.duration > 0:
self.intervals.append(interval_after_sequence)
self.intervals.sort(key=lambda interval: interval.start, reverse=False)
def update_other_deltas(self, sequence: Sequence, shs: ScheduleHasSequences, interval: Interval):
'''
Update deltaTL and deltaTR of sequences planned near this sequence
:param interval: Interval in which the sequence was added
:side-effect :
- modify deltaTL and deltaTR of sequences before and after the interval
'''
for sequence_, shs_ in self.sequences:
if shs_.status == Sequence.PENDING:
if is_nearby_equal(shs_.tep, interval.start):
sequence_before_interval, shs_b_i = sequence_, shs_
elif is_nearby_equal(shs_.tsp - self.max_overhead, interval.end):
sequence_after_interval, shs_a_i = sequence_, shs_
if 'sequence_before_interval' in locals():
shs_b_i.deltaTR = min(
shs.tsp - self.max_overhead, sequence_before_interval.jd2) - shs_b_i.tep
if 'sequence_after_interval' in locals():
shs_a_i.deltaTL = shs_a_i.tsp - self.max_overhead - \
max(shs.tep, sequence_after_interval.jd1)
def try_shifting_sequences(self, sequence: Sequence, shs: ScheduleHasSequences) -> bool:
'''
Tries to find a place in the planning for the sequence, moving the other sequences
:returns : A boolean -> True if the sequence was placed, False otherwise
:side-effect:
- might change some sequences' deltaTL and/or deltaTR
'''
potential_intervals = self.get_potential_intervals(sequence)
potential_intervals.sort(key=attrgetter("duration"), reverse=True)
for interval in potential_intervals:
''' we get the adjacent sequences '''
for sequence_, shs_ in self.sequences:
if shs_.status == Sequence.PENDING:
if is_nearby_equal(shs_.tep, interval.start):
sequence_before_interval, shs_b_i = sequence_, shs_
elif is_nearby_equal(shs_.tsp - self.max_overhead, interval.end):
sequence_after_interval, shs_a_i = sequence_, shs_
available_duration = min(
interval.end, sequence.jd2) - max(interval.start, sequence.jd1)
missing_duration = sequence.duration - \
available_duration + self.max_overhead
if 'sequence_before_interval' in locals():
possible_move_to_left = min(
shs_b_i.deltaTL, interval.start - sequence.jd1)
else:
possible_move_to_left = 0
if 'sequence_after_interval' in locals():
possible_move_to_right = min(
shs_a_i.deltaTR, sequence.jd2 - interval.end)
else:
possible_move_to_right = 0
if is_nearby_sup_or_equal(possible_move_to_left, missing_duration):
self.move_sequence(
sequence_before_interval, shs_b_i, missing_duration, "LEFT")
elif is_nearby_sup_or_equal(possible_move_to_right, missing_duration):
self.move_sequence(
sequence_after_interval, shs_a_i, missing_duration, "RIGHT")
elif is_nearby_sup_or_equal(possible_move_to_left + possible_move_to_right, missing_duration):
self.move_sequence(
sequence_before_interval, shs_b_i, possible_move_to_left, "LEFT")
self.move_sequence(
sequence_after_interval, shs_a_i, missing_duration - possible_move_to_left, "RIGHT")
else:
continue
matching_intervals = self.get_matching_intervals(sequence)
if len(matching_intervals) != 1:
raise ValueError(
"There should be one and only one matching interval after shifting")
self.place_sequence(sequence, shs, matching_intervals)
return True
return False
def get_potential_intervals(self, sequence: Sequence):
'''
Find the intervals where a part of the sequence could be inserted
:returns : list of partially-matching Intervals
'''
potential_intervals = []
for interval in self.intervals:
overlap = min(sequence.jd2, interval.end) - \
max(sequence.jd1, interval.start) - self.max_overhead
if overlap > 0:
potential_intervals.append(interval)
return potential_intervals
def move_sequence(self, sequence: Sequence, shs: ScheduleHasSequences, time_shift: Decimal, direction: str):
'''
Moves the sequence in the wanted direction, decreasing its deltaTL or deltaTR.
:param sequence: sequence to be moved
:param time_shift: amplitude of the shift
:param direction: "LEFT" or "RIGHT"
:side-effect :
- modify the sequence in self.sequences
- changes the interval before and the interval after the sequence
'''
if direction not in ["LEFT", "RIGHT"]:
raise ValueError("direction must be 'LEFT' or 'RIGHT'")
if time_shift > (shs.deltaTL if direction == "LEFT" else shs.deltaTR):
raise ValueError("Shift value is bigger than deltaT(R/L)")
for interval in self.intervals:
if is_nearby_equal(interval.end, shs.tsp - self.max_overhead):
interval_before = interval
elif is_nearby_equal(interval.start, shs.tep):
interval_after = interval
if direction == "LEFT":
interval_before.end -= time_shift
if "interval_after" in locals():
interval_after.start -= time_shift
shs.tsp -= time_shift
shs.tep -= time_shift
shs.deltaTL -= time_shift
shs.deltaTR += time_shift
else:
if "interval_before" in locals():
interval_before.end += time_shift
interval_after.start += time_shift
shs.tsp += time_shift
shs.tep += time_shift
shs.deltaTL += time_shift
shs.deltaTR -= time_shift
if "interval_before" in locals() and is_nearby_equal(interval_before.duration, 0):
self.intervals.remove(interval_before)
if "interval_after" in locals() and is_nearby_equal(interval_after.duration, 0):
self.intervals.remove(interval_after)
def update_quota(self, sequence: Sequence):
'''
Update the quota of the user / scientific program / whatever by substracting the sequence duration to the quotas
:side-effect:
- Modify User quota in DB
'''
# TODO: faire les vrais calculs de quota
user = sequence.request.pyros_user
# action par défaut qui correspond au code de self.determine_quota
user.quota -= float(sequence.duration)
if SIMULATION == False:
user.save()
def save_schedule(self):
'''
Final function : save in the db all modifications done to sequences, and the schedule
:side-effect :
- change sequences status and dates in DB
- add a schedule in the DB
'''
self.schedule.save()
for sequence, shs in self.sequences:
shs.schedule = self.schedule
shs.save()
def print_schedule(self):
'''
ONLY FOR DEBUG
Prints the planned sequences
'''
sequences = Sequence.objects.filter(
shs__status=Sequence.PENDING).order_by('shs__tsp')
print("---- There are %d sequence(s) planned ----" % len(sequences))
for sequence in sequences:
print("name: %r\t, start: %d\t, end: %d\t, duration: %d\t, deltaTL: %d\t, deltaTR: %d\t"
% (sequence.name, sequence.shs.tsp, sequence.shs.tep, sequence.duration, sequence.shs.deltaTL, sequence.shs.deltaTR))
print("---- There are %d free interval(s) ----" % len(self.intervals))
for interval in self.intervals:
print("start: %d\t, end: %d\t" % (interval.start, interval.end))
''' Notes
(1) list(self.sequences) creates a copy in order to modify self.sequences and still iterate on it without unexpected behavior
(2) UNPLANNABLE is a definitive status meaning that the sequence will never be able to be scheduled
'''