A_Scheduler.py 33.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
#!/usr/bin/env python3
#
# To launch this agent from the root of Pyros:
#
# Linux console:
# cd /srv/develop/pyros/docker
# ./PYROS_DOCKER_START.sh
#
# Launch from Power Shell:
# To go from docker to Powershell: pyros_user@ORION:~/app$ exit (or Ctrl+d)
# Prompt is now PS ...>
# cd \srv\develop\pyros
# .\PYROS -t new-start -o tnc -fg -a A_Scheduler
#
# Launch from docker:
# To go from Powershell to docker: PS ...> .\PYROS_DOCKER_SHELL
# Prompt is now pyros_user@ORION:~/app$
# ./PYROS -t new-start -o tnc -fg -a A_Scheduler
#
# To use debug
# ./PYROS -d -t new-start -o tnc -fg -a A_Scheduler
#
# ./PYROS -d -t start -o tnc -fg A_Scheduler
# ---------------------------------------------------

import sys
import time
import argparse
import os
import pickle
import socket

pwd = os.environ['PROJECT_ROOT_PATH']
if pwd not in sys.path:
    sys.path.append(pwd)

short_paths = ['src', 'src/core/pyros_django']
for short_path in short_paths:
    path = os.path.abspath(os.path.join(pwd, short_path))
    if path not in sys.path:
        sys.path.insert(0, path)

#from src.core.pyros_django.majordome.agent.Agent import Agent, build_agent, log, parse_args
from majordome.agent.Agent import Agent, build_agent, log, parse_args
from seq_submit.models import Sequence
from user_mgmt.models import Period, ScientificProgram, SP_Period
from scheduling.models import PredictiveSchedule, EffectiveSchedule
# = Specials
import glob
import shutil
import guitastro
import datetime
from decimal import Decimal
import zoneinfo
import numpy as np

class A_Scheduler(Agent):

    DPRINT = True
    
    # - Sampling of the night arrays (bins/night)
    BINS_NIGHT = 86400
    
    # - status of the sequence after schedule computation
    SEQ_NOT_PROCESSED = 0
    SEQ_SCHEDULED = 1
    SEQ_SCHEDULED_OVER_QUOTA = 2
    SEQ_REJECTED_NO_QUOTA_ENOUGH = -1
    SEQ_REJECTED_NO_SLOT_AVAILABLE = -2
    
    # - enum of the matrix line
    SEQ_K = 0
    SEQ_SEQ_ID = 1
    SEQ_KOBS0 = 2
    SEQ_SP_ID = 3
    SEQ_PRIORITY = 4
    SEQ_DURATION = 5
    SEQ_STATUS = 6
    NB_SEQ = 7
    
    # - All possible running states
    RUNNING_NOTHING = 0
    RUNNING_SCHEDULE_PROCESSING = 1

    _AGENT_SPECIFIC_COMMANDS = {
        # Format : “cmd_name” : (timeout, exec_mode)
        "do_compute_schedule_1" : (60, Agent.EXEC_MODE.SEQUENTIAL, ''),
        "do_create_seq_1" : (60, Agent.EXEC_MODE.SEQUENTIAL, ''),
    }

    # Test scenario to be executed (option -t)
    # "self do_stop_current_processing"
    # AgentCmd.CMD_STATUS_CODE.CMD_EXECUTED
    _TEST_COMMANDS_LIST = [
        # Format : ("self cmd_name cmd_args", timeout, "expected_result", expected_status),
        (True, "self do_create_seq_1 6", 200, '', Agent.CMD_STATUS.CMD_EXECUTED),
        (True, "self do_stop asap", 500, "STOPPING", Agent.CMD_STATUS.CMD_EXECUTED),
    ]

    """
    =================================================================
        Methods running inside main thread
    =================================================================
    """
    def __init__(self, name:str=None,simulated_computer=None):
        if name is None:
            name = self.__class__.__name__
        super().__init__(simulated_computer=simulated_computer)
    
    def _init(self):
        super()._init()
        log.debug("end super init()")
        log.info(f"self.TEST_MODE = {self.TEST_MODE}")

        # === Get the config object
        self.config = self._oc['config']
        self.pconfig = self._oc['pyros_config']

        # === Get agent_alias
        hostname = socket.gethostname()
        log.info(f"{hostname=}")
        log.info(f"{self.name=}")
        agent_alias = self.config.get_agent_real_name(self.name, hostname)
        log.info(f"{agent_alias=}")

        # === Get all file contexts from pyros config
        self._fn = self.config.fn
        log.info(f"=== List of file name contexts available for the unit")
        self.check_contexts(True)
        log.info(f"{self._fn.longitude=}")

        # TBD duskelev a parametrer from obsconfig (yml)
        self._duskelev = -7
        
        # === Status of routine processing
        self._routine_running = self.RUNNING_NOTHING
        log.debug("end init()")
        ##### TBD suppress redondant paths in print(f"=>=>=> {sys.path=}")

    # Note : called by _routine_process() in Agent
    # @override
    def _routine_process_iter_start_body(self):
        log.debug("in routine_process_before_body()")

    # Note : called by _routine_process() in Agent
    # @override
    def _routine_process_iter_end_body(self):
        log.debug("in routine_process_after_body()")
        # TODO EP est-ce utile ?
        if self._routine_running == self.RUNNING_NOTHING:
            # Get files to process
            # - Thread TODO
            self._routine_running = self.RUNNING_SCHEDULE_PROCESSING
            self.do_compute_schedule_1()

    """
    =================================================================
        Methods of specific commands
    =================================================================
    """

    def do_create_seq_1(self, nb_seq:int):
        """Create sequences to debug
        :raises ExceptionType: Some multi-line
            exception description.
        """
        try:
            self._create_seq_1(nb_seq)
        except Exception as e:
            self.dprint(f"ERROR {e}")

    def do_compute_schedule_1(self):
        """Compute a schedule
        
        According the current time, select the night directory.
        List the *.p file list (.p for sequences)
        Read the *.p, *.f file contents (.f for ephemeris)
        Compute the schedule
        
        Output is a matrix to unpack in the database.
        Each line of the matrix is a sequence
        Columns are defined by the enum SEQ_* (see the python code itself).
        
        """
        try:
            self._compute_schedule_1()
        except Exception as e:
            self.dprint(f"ERROR {e}")

    """
    =================================================================
        Methods called by commands or routine. Overload these methods
    =================================================================
    # ---
    # osp = ScientificProgram.objects.get(id=scientific_program_id)
    # --- ospperiod is the SP object
    # ospperiod = SP_Period.objects.get(period = period_id, scientific_program = osp)
    # print(f"dir(ospperiod)={dir(ospperiod)}")
    # dir(spperiod)=['DoesNotExist', 
    # 'IS_VALID', 'IS_VALID_ACCEPTED', 'IS_VALID_REJECTED', 
    # 'MultipleObjectsReturned', 'SP_Period_Guests', 'SP_Period_Users', 
    # 'STATUSES', 'STATUSES_ACCEPTED', 'STATUSES_DRAFT', 
    # 'STATUSES_EVALUATED', 'STATUSES_REJECTED', 'STATUSES_SUBMITTED', 
    # 'VISIBILITY_CHOICES', 'VISIBILITY_NO', 'VISIBILITY_YES', 
    # 'VOTES', 'VOTES_NO', 'VOTES_TO_DISCUSS', 'VOTES_YES', 
    # 'can_submit_sequence', 'check', 'clean', 'clean_fields', 
    # 'date_error_message', 'delete', 'from_db', 'full_clean', 
    # 'get_constraints', 'get_deferred_fields', 'get_is_valid_display', 
    # 'get_public_visibility_display', 'get_status_display', 
    # 'get_vote_referee1_display', 'get_vote_referee2_display', 
    # 'id', 'is_currently_active', 'is_valid', 'objects', 
    # 'over_quota_duration', 'over_quota_duration_allocated', 
    # 'over_quota_duration_remaining', 'period', 'period_id', 
    # 'pk', 'prepare_database_save', 'priority', 'public_visibility', 
    # 'quota_allocated', 'quota_minimal', 'quota_nominal', 
    # 'quota_remaining', 'reason_referee1', 'reason_referee2', 
    # 'referee1', 'referee1_id', 'referee2', 'referee2_id', 
    # 'refresh_from_db', 'save', 'save_base', 'scientific_program', 
    # 'scientific_program_id', 'serializable_value', 'status', 'token', 
    # 'token_allocated', 'token_remaining', 'unique_error_message', 
    # 'validate_constraints', 'validate_unique', 'vote_referee1', 
    # 'vote_referee2'
    """
    

    def update_db_quota_sequence(sequence_id, quota_attributes):
        sequence = Sequence.objects.get(id=sequence_id)
        new_quota = Quota()
        new_quota.set_attributes_and_save(quota_attributes)
        sequence.quota = new_quota
        sequence.save()

    def _compute_schedule_1(self):
        """Simple scheduler based on selection-insertion one state algorithm.
        
        Quotas are available only fo the night.
        No token.
        """
        t0 = time.time()
        self.DPRINT = True

        # ===================
        # --- Initializations
        # ===================
        # --- Get the incoming directory of the night
        info = self.get_infos()
        rootdir = info['rootdir']
        subdir = info['subdir']
        # --- Get the night
        night = info['night']
        # --- Get ephemeris informations of the night and initialize quotas
        night_info = self.update_sun_moon_ephems()
        quota_total_period = night_info['total'][1]
        quota_total_night_start = night_info[night][0]
        quota_total_night_end = night_info[night][1]
        self.dprint(f"{quota_total_period=}")
        self.dprint(f"{quota_total_night_start=}")
        self.dprint(f"{quota_total_night_end=}")        
        # --- Build the wildcard to list the sequences
        wildcard = os.path.join(rootdir, subdir, "*.p")
        self.dprint(f"{wildcard=}")
        # --- List the sequences from the incoming directory
        seqfiles = glob.glob(wildcard)
        log.info(f"{len(seqfiles)} file sequences to process")
        # --- Initialize the predictive schedule from start of the night (=all the night)
        schedule_sequence_id = np.zeros(self.BINS_NIGHT, dtype=int) -1
        schedule_binary = np.ones(self.BINS_NIGHT, dtype=int)
        schedule_visibility = np.zeros(self.BINS_NIGHT, dtype=float)
        schedule_order = np.zeros(self.BINS_NIGHT, dtype=int) -1
        schedule_jd = np.zeros(self.BINS_NIGHT, dtype=float)
        schedule_scientific_programm_id = np.zeros(self.BINS_NIGHT, dtype=int) -1

        # ===========================================================================================================
        # --- Initialize the predictive schedule by the effective schedule from start of the current instant (=index)
        # ===========================================================================================================
        try:
            last_schedule = EffectiveSchedule.objects.last()
        except EffectiveSchedule.DoesNotExist:
            self.dprint(f"No effective schedule in the database (table is void)")
        # --- Get the numpy matrix of the effective schedule from the database (via Json)
        if last_schedule != None:
            input_matrix = last_schedule.conv_numpy()
            # --- Unpack the matrix to effective schedule arrays
            schedule_eff_jd, schedule_eff_binary, schedule_eff_sequence_id, schedule_eff_scientific_programm_id, schedule_eff_order, schedule_eff_visibility = input_matrix
            # --- Get the index of the current instant in the night
            nownight, index = self._fn.date2night("now", self.BINS_NIGHT)
            self.dprint(f"{nownight=} {index=}")
            # --- Add all ever observed sequences from 0 to index
            if nownight == night and (index >= 0 or index < self.BINS_NIGHT):
                schedule_sequence_id[0:index] = schedule_eff_sequence_id[0:index]
                schedule_binary[0:index] = schedule_eff_binary[0:index]
                schedule_visibility[0:index] = schedule_eff_visibility[0:index]
                schedule_order[0:index] = schedule_eff_order[0:index]
                schedule_jd[0:index] = schedule_eff_jd[0:index]
                schedule_scientific_programm_id[0:index] = schedule_eff_scientific_programm_id[0:index]  
            else:
                # --- Case when there is no effective schedule for this night
                print(f"No effective schedule for this night {night}")
        else:
            # --- Case of invalid entry in the database
            print(f"Invalid entry in the database")
        #print(f"{schedule_jd=}")

        # ===================================================================
        # --- Loop over the sequences of the night to extract useful infos
        # ===================================================================
        self.dprint("\n" + "="*70 + f"\n=== Read {len(seqfiles)} sequence files of the night {info['night']}\n" + "="*70 + "\n")
        sequence_infos = []
        # --- Initialize the list of scientific_program_ids
        scientific_program_ids = []
        kseq  = 0
        for seqfile in seqfiles:
            # --- seqfile = sequence file name
            kseq += 1
            sequence_info = {}
            sequence_info['id'] = -1 # TBD replace by idseq of the database
            sequence_info['seqfile'] = seqfile
            sequence_info['error'] = ""
            sequence_info['kobs0'] = -1
            # --- ephfile = ephemeris file name
            ephfile = os.path.splitext(seqfile)[0] + ".f"
            # --- If ephemeris file exists, read files
            if os.path.exists(ephfile):
                self.dprint(f"Read file {seqfile}")
                # --- seq_info = sequence dictionary
                seq_info = pickle.load(open(seqfile,"rb"))
                #print("="*20 + "\n" + f"{seq_info=}")
                # --- eph_info = ephemeris dictionary
                eph_info = pickle.load(open(ephfile,"rb"))
                #print("="*20 + "\n" + f"{eph_info=}")
                # ---
                param = self._fn.naming_get(seqfile)
                sequence_info['id'] = int(param['id_seq'])
                # --- scientific_program_id is an integer
                scientific_program_id = seq_info['sequence']['scientific_program']
                # --- Dictionary of informations about the sequence
                sequence_info['seq_dico'] = seq_info # useful for duration
                # --- Search the last time when the start of the sequence is observable (visibility > 0)
                visibility_duration = eph_info['visibility_duration']
                kobss = np.where(visibility_duration > 0)
                kobss = list(kobss[0])
                if len(kobss) == 0:
                    self.dprint("  Sequence has no visibility")
                    sequence_info['error'] = f"Sequence has no visibility_duration"
                    sequence_infos.append(sequence_info)
                    continue
                # --- TODO manage the case the sequence is before the current time (because of the effective schedule)
                kobs0 = kobss[0]
                sequence_info['kobs0'] = kobs0    
                sequence_info['visibility'] = eph_info['visibility'] # total slots
                sequence_info['visibility_duration'] = visibility_duration # total slots - duration
                sequence_info['duration'] = seq_info['sequence']['duration']
                sequence_info['scientific_program_id'] = scientific_program_id
                self.dprint(f"  {scientific_program_id=} range to start={len(kobss)}")
                if scientific_program_id not in scientific_program_ids:
                    scientific_program_ids.append(scientific_program_id)
                # --- TODO
                quota_attributes = {}
                quota_attributes["total"] = sequence_info["duration"]
                quota_attributes["schedule"] = sequence_info["duration"]
                update_db_quota_sequence(sequence_info["id"], quota_attributes)                
            else:
                sequence_info['error'] = f"File {ephfile} not exists"
            sequence_infos.append(sequence_info)
        try:
            schedule_jd = eph_info['jd']
        except:
            pass
            
        # ===================================================================
        # --- Get informations of priority and quota from scientific programs
        # ===================================================================
        self.dprint("\n" + "="*70 + f"\n=== Get information from {len(scientific_program_ids)} scientific programs of the night\n" + "="*70 + "\n")
        scientific_program_infos = {}
        period_id = info['operiod'].id
        self.dprint(f"{scientific_program_ids=}")
        for scientific_program_id in scientific_program_ids:
            scientific_program_info = {}
            try:
                osp = ScientificProgram.objects.get(id=scientific_program_id)
                # --- ospperiod is the SP object
                ospperiod = SP_Period.objects.get(period = period_id, scientific_program = osp)
                scientific_program_info['priority'] = ospperiod.priority
                scientific_program_info['over_quota_duration'] = ospperiod.over_quota_duration
                scientific_program_info['over_quota_duration_allocated'] = ospperiod.over_quota_duration_allocated
                scientific_program_info['over_quota_duration_remaining'] = ospperiod.over_quota_duration_remaining             
                scientific_program_info['quota_allocated'] = ospperiod.quota_allocated
                scientific_program_info['quota_minimal'] = ospperiod.quota_minimal
                scientific_program_info['quota_nominal'] = ospperiod.quota_nominal
                scientific_program_info['quota_remaining'] = ospperiod.quota_remaining           
                scientific_program_info['token_allocated'] = ospperiod.token_allocated
                scientific_program_info['token_remaining'] = ospperiod.token_allocated
            except:
                # --- simulation
                scientific_program_info['priority'] = 0
            if scientific_program_info['priority'] == 0:
                # --- simulation
                priority = 50 + scientific_program_id*5
                scientific_program_info['priority'] = priority
                scientific_program_info['quota_allocated'] = 12000
                scientific_program_info['quota_remaining'] = 12000  
            scientific_program_infos[str(scientific_program_id)] = scientific_program_info
            self.dprint(f"{scientific_program_id=} priority={scientific_program_info['priority']} quota={scientific_program_info['quota_remaining']}")
            
        # ===================================================================
        # --- Build the numpy matrix seqs to make rapid computations
        # ===================================================================
        self.dprint("\n" + "="*70 + f"\n=== Build the matrix for scheduling {len(sequence_infos)} sequences\n" + "="*70 + "\n")
        self.dprint("Order ID_seq K_start ID_sp Priority Duration Status\n")
        nseq = len(sequence_infos)
        if nseq == 0:
            self._routine_running = self.RUNNING_NOTHING
            return
        seqs = np.zeros((nseq, self.NB_SEQ), dtype=int)
        k = 0
        for sequence_info in sequence_infos:
            if 'scientific_program_id' not in sequence_info.keys():
                self.dprint(f"No scientific program for ID sequence {sequence_info['id']}")
                continue
            scientific_program_id = sequence_info['scientific_program_id']
            scientific_program_info = scientific_program_infos[str(scientific_program_id)]
            priority = scientific_program_info['priority']
            # Order of the following list refers to the enum
            seq = [ k, sequence_info['id'], sequence_info['kobs0'], scientific_program_id, priority, int(np.ceil(sequence_info['duration'])), self.SEQ_NOT_PROCESSED] 
            self.dprint(f"{seq=}")
            seqs[k] = seq
            k += 1
        seqs = seqs[:k]
        # --- Save the matrix sequence
        #print(f"{seqs=}")
        fpathname = os.path.join(rootdir, subdir, "scheduler_seq_matrix1.txt")
        np.savetxt(fpathname, seqs)
        
        # ===================================================================
        # --- Compute the matrix seq_sorteds (priority and chronology)
        # ===================================================================        
        self.dprint("\n" + "="*70 + "\n=== Sort the matrix for scheduling by priority and chronology\n" + "="*70 + "\n")
        # --- Sort the matrix sequence: priority=SEQ_PRIORITY (decreasing -1) and then chronology=SEQ_KOBS0 (increasing +1)
        seq_sorteds = seqs[np.lexsort(([1,-1]*seqs[:,[self.SEQ_KOBS0, self.SEQ_PRIORITY]]).T)]
        # --- Save the matrix sequence
        self.dprint("Order ID_seq K_start ID_sp Priority Duration Status\n")
        self.dprint(f"{seq_sorteds=}")
        fpathname = os.path.join(rootdir, subdir, "scheduler_seq_matrix2.txt")
        np.savetxt(fpathname, seq_sorteds)

        # ===================================================================
        # --- Insert sequences in the schedule. Respecting priority and quota
        # ===================================================================
        self.dprint("\n" + "="*70 + "\n=== Insertion of the sequences in the schedule respecting priority and quota\n" + "="*70 + "\n")
        kseq_sorted = -1
        for seq_sorted in seq_sorteds:
            kseq_sorted += 1

            # --- Unpack the sequence
            k, sequence_id, kobs0, scientific_program_id, priority, duration, seq_status = seq_sorted
            
            # --- Get the quota remaining of the scientific program
            quota_remaining = scientific_program_infos[str(scientific_program_id)]['quota_remaining']
            self.dprint('-'*70 + "\n" + f"Process {sequence_id=} {kobs0=} {duration=} sp_id={scientific_program_id} {quota_remaining=}")
            
            # --- Verify if duration < quota_remaining
            if duration > quota_remaining: 
                # --- No remaining quota to insert this sequence
                self.dprint(f"{sequence_id=} cannot be inserted because no quota enough")
                seqs[k][self.SEQ_STATUS] = self.SEQ_REJECTED_NO_QUOTA_ENOUGH
                continue
                
            # --- Compute the remaining visibility and list (k1s) of the best observation start
            # =0 if not possible to start observation
            # =value with the highest value for the best observation start
            
            # --- Visibility*schedule_binary are transformed into binary
            sequence_info = sequence_infos[k]
            vis_binarys = sequence_info['visibility'].copy() * schedule_binary
            vis_binarys[vis_binarys > 0] = 1
            
            # --- Cumulative sum + offset by -duration to prepare the start_binary computation
            obs_starts = np.cumsum(vis_binarys)
            obs_ends = obs_starts.copy()
            obs_ends[0:-duration] = obs_ends[duration:]
            obs_ends[-duration:] = 0

            # --- Difference and binarisation to get starts with duration
            start_binary = obs_ends - obs_starts
            start_binary[start_binary < duration] = 0
            start_binary[start_binary == duration] = 1
            
            # --- Compute the remaining visibility (float)
            remaining_visibility = sequence_info['visibility'] * start_binary
            
            # --- Check the remaining visibility
            if np.sum(remaining_visibility) == 0:
                # --- No remaining slot to insert this sequence
                self.dprint(f"{sequence_id=} cannot inserted because no more slots available")
                seqs[k][self.SEQ_STATUS] = self.SEQ_REJECTED_NO_SLOT_AVAILABLE
                continue
                
            # --- From the index of the highest value of remaining visibility to the index of the lowest value of remaining visibility
            k1s = np.flip(np.argsort(remaining_visibility))
            self.dprint(f"{k1s=} => Start elevation {sequence_info['visibility'][k1s[0]]:+.2f}")
            
            # --- Get k1 as the highest value of remaining visibility
            k1 = k1s[0]
            k2 = k1 + duration
            self.dprint(f"{k} : {sequence_id=} {scientific_program_id=} {priority=} inserted in the slot {k1=} {k2=} (remaining {quota_remaining - duration} s)")
            
            # --- Update the seqs matrix
            seqs[k][self.SEQ_STATUS] = self.SEQ_SCHEDULED
            
            # --- Update the schedule arrays
            schedule_sequence_id[k1:k2] = sequence_id
            schedule_binary[k1:k2] = 0
            schedule_visibility[k1:k2] = sequence_info['visibility'][k1:k2]
            schedule_order[k1:k2] = kseq_sorted
            schedule_scientific_programm_id[k1:k2] = scientific_program_id
            
            # --- Update the scientific program dict
            quota_remaining -= duration
            scientific_program_infos[str(scientific_program_id)]['quota_remaining'] = quota_remaining
                        

        # ===================================================================
        # --- Insert sequences in the schedule. Respecting priority but over quota
        # ===================================================================
        # self.dprint("\n" + "="*70 + "\n=== Insertion of the sequences in the schedule respecting priority but over quota\n" + "="*70 + "\n")
        # TBD
        # where are remaining free slots
        # scan sequences to insert in these free slots
            
        # ===================================================================
        # --- Save the schedule
        # ===================================================================
        self.dprint("\n" + "="*70 + "\n=== Save the schedule\n" + "="*70 + "\n")
        self.dprint("Order ID_seq K_start ID_sp Priority Duration Status\n")
        self.dprint(f"{seqs=}")
        # --- Prepare the output matrix
        ouput_matrix = np.array([schedule_jd, schedule_binary, schedule_sequence_id, schedule_scientific_programm_id, schedule_order, schedule_visibility])
        # --- Save the numpy matrix in ASCII
        fpathname = os.path.join(rootdir, subdir, "scheduler_schedule.txt")
        np.savetxt(fpathname, ouput_matrix.T)
        # --- Save the numpy matrix in database (via Json)
        v = PredictiveSchedule.objects.last()
        if v == None:
            v = PredictiveSchedule()
        #log.info(f"{v=}")
        v.scheduler_matrix = ouput_matrix
        v.save()
        # --- Save the numpy matrix in database (via Json)
        v = EffectiveSchedule.objects.last()
        if v==None:
            v = EffectiveSchedule()
        v.scheduler_matrix = ouput_matrix
        v.save()
        # --- Update the running state
        self._routine_running = self.RUNNING_NOTHING
        log.info(f"_compute_schedule_1 finished in {time.time() - t0:.2f} seconds")

    def _create_seq_1(self, nb_seq: int):
        t0 = time.time()
        self.dprint("Debut _create_seq_1")
        seq_template = {'sequence': {'id': 4, 'start_expo_pref': 'IMMEDIATE', 'pyros_user': 2, 'scientific_program': 1, 'name': 'seq_20230628T102140', 'desc': None, 'last_modified_by': 2, 'is_alert': False, 'status': 'TBP', 'with_drift': False, 'priority': None, 'analysis_method': None, 'moon_min': None, 'alt_min': None, 'type': None, 'img_current': None, 'img_total': None, 'not_obs': False, 'obsolete': False, 'processing': False, 'flag': None, 'period': 1, 'start_date': datetime.datetime(2023, 6, 28, 10, 21, 40, tzinfo=zoneinfo.ZoneInfo(key='UTC')), 'end_date': datetime.datetime(2023, 6, 28, 10, 21, 40, 999640, tzinfo=datetime.timezone.utc), 'jd1': Decimal('0E-8'), 'jd2': Decimal('0E-8'), 'tolerance_before': '1s', 'tolerance_after': '1min', 'duration': -1.0, 'overhead': Decimal('0E-8'), 'submitted': False, 'config_attributes': {'tolerance_before': '1s', 'tolerance_after': '1min', 'target': 'RADEC 0H10M -15D', 'conformation': 'WIDE', 'layout': 'Altogether'}, 'ra': None, 'dec': None, 'complete': True, 'night_id': '20230627'}, 'albums': {'Altogether': {'plans': [{'id': 4, 'album': 4, 'duration': 0.0, 'nb_fnges': 1, 'config_attributes': {'binnings': {'binxy': [1, 1], 'readouttime': 6}, 'exposuretime': 1.0}, 'complete': True}]}}}
        # decode general variables info a dict info 
        info = self.get_infos()
        rootdir = info['rootdir']
        subdir = info['subdir']
        
        # --- Read or create the sun ephemeris
        ephem_sun = self.ephem_target2night("sun")

        # --- Read or create the moon ephemeris
        ephem_moon = self.ephem_target2night("moon")

        # --- Prepare ephemeris object
        eph = guitastro.Ephemeris()
        eph.set_home(self.config.getHome())

        # --- Horizon (TBD get from config)
        self.dprint("Debut _create_seq_1 Horizon")
        hor = guitastro.Horizon(eph.home)
        hor.horizon_altaz = self.config.getHorizonLine(self.config.unit_name)
        
        # --- Delete all existing *.p and *.f files in the night directory
        fn_param = {
            "period" : f"{info['period_id']}",
            "version": "1",
            "unit": self.config.unit_name,
            "date": info['night'],
            "id_seq": 0
        }
        fname = self._fn.naming_set(fn_param)
        self.dprint(f":: {fname=}")
        seq_file = self._fn.join(fname)
        path_night = os.path.dirname(seq_file)
        cards = ['*.p', '*.f']
        for card in cards:
            wildcard = os.path.join(path_night, card)
            seq_dfiles = glob.glob(wildcard)
            #print(f"::: {seq_dfiles=}")
            for seq_dfile in seq_dfiles:
                #print(f":::.1 : os.remove {seq_dfile=}")
                os.remove(seq_dfile)
                
        # --- Create new sequences
        for k in range(nb_seq):
            #print("B"*20 + f" {info['operiod'].id} {info['night']} {k}")
            time.sleep(1)
            seq = seq_template.copy()
            seq['sequence']['period'] = info['operiod'].id # int
            seq['sequence']['night_id'] = info['night'] # str
            seq['sequence']['config_attributes']['target'] = k # int
            # ---
            start_expo_pref = "BESTELEV" #"IMMEDIATE"
            scientific_program = int(k/2)
            start_date = datetime.datetime(2023, 6, 28, 10, 21, 40)
            end_date = datetime.datetime(2023, 6, 28, 10, 21, 40, 999640, tzinfo=datetime.timezone.utc)
            jd1 = Decimal('0E-8')
            jd2 = Decimal('0E-8')
            tolerance_before = '1s'
            tolerance_after = '1min'
            duration =  3000.0
            target = f"RADEC {k}h {10+2*k}d"
            # ---
            seq['sequence']['start_expo_pref'] = start_expo_pref
            seq['sequence']['scientific_program'] = scientific_program
            seq['sequence']['start_date'] = start_date
            seq['sequence']['end_date'] = end_date
            seq['sequence']['jd1'] = jd1
            seq['sequence']['jd2'] = jd2
            seq['sequence']['tolerance_before'] = tolerance_before
            seq['sequence']['tolerance_after'] = tolerance_after
            seq['sequence']['duration'] = duration
            seq['sequence']['config_attributes']['target'] = target
            # --- Build the path and file name of the sequence file
            fn_param["id_seq"] = int("999" + f"{k:07d}")
            self.dprint(f"{k} : {self._fn.fcontext=}")
            self._fn.fname = self._fn.naming_set(fn_param)
            self.dprint(f"{k} : {self._fn.fname=}")
            seq_file = self._fn.join(self._fn.fname)
            self.dprint(f"{k} : {seq_file=}")
            # --- Build the path and file name of the ephemeris file
            eph_file = f"{seq_file[:-2]}.f"
            # --- Create directory if it doesn't exist
            self.dprint(f"{k} : {seq_file=}")
            os.makedirs(os.path.dirname(seq_file), exist_ok=True)
            # --- Compute the ephemeris of the sequence and manage errors
            #print(f"{k} : TRY")
            errors = []
            try:
                ephem = eph.target2night(seq["sequence"]["config_attributes"]["target"], info['night'], ephem_sun, ephem_moon, preference=seq['sequence']['start_expo_pref'], duskelev=self._duskelev, horizon=hor, duration=duration)
            except ValueError:
                errors.append("Target value is not valid")
            except guitastro.ephemeris.EphemerisException as ephemException:
                errors.append(str(ephemException))
            if len(errors) == 0 and np.sum(ephem["visibility"]) == 0 :
                errors.append("Target is not visible.")
            if len(errors) == 0:
                pickle.dump(ephem, open(eph_file,"wb"))
                pickle.dump(seq, open(seq_file,"wb"))
            #dprint(f"{errors=}")
            #dprint("C"*20)
        log.info(f"_create_seq_1 finished in {time.time() - t0:.2f} seconds")
        
    def load_sequence(self):
        sequence = ""
        return sequence
        
    def get_infos(self):
        self._fn.fcontext = "pyros_seq"
        rootdir = self._fn.rootdir
        operiod = Period.objects.exploitation_period()
        if operiod == None:
            log.info("No period valid in the database")
            self._routine_running = self.RUNNING_NOTHING
            return
        # retourne un str -> id de la période sous le format Pxxx
        period_id = operiod.get_id_as_str() 
 
        night_id = self._fn.date2night("now")
        subdir = os.path.join(period_id, night_id)
        dico = {}
        dico['rootdir'] = rootdir
        dico['subdir'] = subdir
        dico['operiod'] = operiod # object
        dico['period_id'] = period_id # str formated (P000)
        dico['night'] = night_id # str (YYYYMMDD)
        return dico
        
    def dprint(self, *args, **kwargs):
        if self.DPRINT:
            log.info(*args, **kwargs)
        
if __name__ == "__main__":

    agent = build_agent(A_Scheduler)
    print(agent)
    agent.run()