mechanics.py 108 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
from math import pi, sin, cos, fmod, tan, atan, fabs, atan2, asin, acos, sqrt, log10
import doctest
from .dates import Date
from .angles import Angle
from .coords import Coords

# ========================================================
# ========================================================
# === Mechanics
# ========================================================
# ========================================================

class Mechanics:
    """ Class to compute celestial mechanics
    """
# ========================================================
# === attributs
# ========================================================

    _DR = pi/180
    _PI = pi
    _PISUR2 = pi/2
    
    # analytical fit methods
    _AFM_VFP79 = 0
    _AFM_VSOP87 = 1
    _AFM_GMS86 = 2
    _AFM_ELP2000_82B = 3
    _AFM_MELP98 = 4
    
    # planet names
    _PLN_OTHERPLANET = -2
    _PLN_ALLPLANETS = -1
    _PLN_SOLEIL = 0
    _PLN_MERCURE = 1
    _PLN_VENUS = 2
    _PLN_TERRE = 3
    _PLN_MARS = 4
    _PLN_JUPITER = 5
    _PLN_SATURNE = 6
    _PLN_URANUS = 7
    _PLN_NEPTUNE = 8
    _PLN_PLUTON = 9
    _PLN_LUNE_ELP = 10
    _PLN_LUNE = 11
    _PLN_NB_PLANETES = 12
    
    # astronomical constants
    _CST_UA = 1.49597870691e11 ; # (m)
    _CST_CLIGHT = 2.99792458e8 ; # (m/s)
    _CST_EARTH_SEMI_MAJOR_RADIUS = 6378137 ; # (m) WGS 84
    _CST_EARTH_INVERSE_FLATTENING = 298.257223563 ; # WGS 84
    
# ========================================================
# === internal methods : Generals
# ========================================================

    def _init_mechanics(self):
        """ Object initialization where planet_name is the name of the planet
        
        :param planet_name: A string (cf. help(PLanet))
        :type planet_name: string
        """
        pass
    
# ========================================================
# === internal methods : Planet orbits
# ========================================================
 
    def _mc_name2planetnum(self, planet_name):
        name = str(planet_name[0:3]).upper()
        planet_num = self._PLN_OTHERPLANET
        if (name == "SUN"):
            planet_num = self._PLN_SOLEIL
        elif (name == "MER"):
            planet_num = self._PLN_MERCURE
        elif (name == "VEN"):
            planet_num = self._PLN_VENUS
        elif (name == "EAR"):
            planet_num = self._PLN_TERRE
        elif (name == "MAR"):
            planet_num = self._PLN_MARS
        elif (name == "JUP"):
            planet_num = self._PLN_JUPITER
        elif (name == "SAT"):
            planet_num = self._PLN_SATURNE
        elif (name == "URA"):
            planet_num = self._PLN_URANUS
        elif (name == "NEP"):
            planet_num = self._PLN_NEPTUNE
        elif (name == "PLU"):
            planet_num = self._PLN_PLUTON
        elif (name == "ELP"):
            planet_num = self._PLN_LUNE_ELP
        elif (name == "MOO"):
            planet_num = self._PLN_LUNE
        return planet_num
        
    def _mc_jd2lbr1a(self, jj):
        """
        /***************************************************************************/
        /* Retourne les valeurs des tableaux L, M, U necessaires pour tenir        */
        /* compte des principales perturbations planetaires a entrer dans          */
        /* la fonction mc_jd2lbr1b                                                 */
        /***************************************************************************/
        /* Les tableaux *l, *m et *u doivent etre dimensiones chacun avec          */
        /* 9 elements (0 a 8)                                                      */
        /***************************************************************************/
        """
        #  l, m, u
        t=(jj-2415020.0)/36525;
        l=[0]*self._PLN_NB_PLANETES
        m=[0]*self._PLN_NB_PLANETES
        u=[0]*self._PLN_NB_PLANETES
        l[0]=(279.6964027+36000.7695173*t)*self._DR;
        m[0]=(358.4758635+35999.0494965*t)*self._DR;
        u[0]=(270.435377+481267.880863*t)*self._DR;
        l[1]=(178.178814+149474.071386*t)*self._DR;
        m[1]=(102.279426+149472.515334*t)*self._DR;
        u[1]=(131.032888+149472.885872*t)*self._DR;
        l[2]=(342.766738+58519.212542*t)*self._DR;
        m[2]=(212.601892+58517.806388*t)*self._DR;
        u[2]=(266.987445+58518.311835*t)*self._DR;
        l[3]=(293.747201+19141.699879*t)*self._DR;
        m[3]=(319.529273+19139.858887*t)*self._DR;
        u[3]=(244.960887+19140.928953*t)*self._DR;
        l[4]=(237.352259+3034.906621*t)*self._DR;
        m[4]=(225.444539+3034.906621*t)*self._DR;
        u[4]=(138.419219+3034.906621*t)*self._DR;
        l[5]=(265.869357+1222.116843*t)*self._DR;
        m[5]=(175.758477+1222.116843*t)*self._DR;
        u[5]=(153.521637+1222.116843*t)*self._DR;
        l[6]=(243.362437+429.898403*t)*self._DR;
        m[6]=( 74.313637+429.898403*t)*self._DR;
        u[6]=(169.872293+429.388747*t)*self._DR;
        l[7]=( 85.024943+219.863377*t)*self._DR;
        m[7]=( 41.269103+219.863377*t)*self._DR;
        u[7]=(314.346275+218.761885*t)*self._DR;
        l[8]=( 92.312712+146.674728*t)*self._DR;
        m[8]=(229.488633+145.278567*t)*self._DR;
        u[8]=(343.369233+145.278567*t)*self._DR;
        res = (l, m, u)
        return res
    
    def _mc_jd2lbr1b(self, jj, planete, l, m, u, afm):
        """
        /***************************************************************************/
        /* Retourne les valeurs de longitude *ll, latitude *bb, rayon vecteur *rr  */
        /* pour l'equinoxe moyen de la date. ()                                    */
        /***************************************************************************/
        /* Les tableaux l, m et u doivent etre dimensiones chacun avec             */
        /* 9 elements (0 a 8) et sont initialises dans la fonction mc_jd2lbr1a     */
        /***************************************************************************/
        """
        coords = Coords((0,0,0))
        if afm == self._AFM_VFP79:
            t=(jj-2415020.0)/36525
            if ((planete==self._PLN_SOLEIL) or (planete==self._PLN_TERRE)):
                l0=(1.91944-.004722*t)*sin(m[0])+.02*sin(2*m[0])-.001944*cos(m[0]-m[4])
                +.001666*sin(u[0]-l[0])+.001388*sin(4*m[0]-8*m[3]+m[4])-.001388*cos(m[0]-m[2])
                l0+=(-.001111*sin(m[0]-m[2])+.001111*cos(4*m[0]-8*m[3]+m[4])+.000833
                *sin(2*m[0]-m[2])-.000833*sin(m[4])-.000833*sin(2*m[0]-m[4]))
                l0=l[0]+l0*self._DR
                b0=0
                e=.01675104-.418e-4*t-.126e-6*t*t;
                r0=1.0000002*(1+.5*e*e-(e-3./8*e*e*e)*cos(m[0])-.5*e*e*cos(2*m[0])-3.*e*e*e/8*cos(3*m[0]))
                if (planete==self._PLN_TERRE):
                    l0+=self._PI
                    b0=-b0
              
            elif (planete==self._PLN_MERCURE):
                l0=8*t*sin(m[1])+84378*sin(m[1])+10733*sin(2*m[1])+1892*sin(3*m[1])
                +381*sin(4*m[1])+83*sin(5*m[1])+19*sin(6*m[1])-646*sin(2*u[1])-306*sin(m[1]-2*u[1])
                -274*sin(m[1]-2*u[1])-92*sin(2*m[1]+2*u[1])-28*sin(3*m[1]+2*u[1])+25*sin(2*m[1]-2*u[1])
                l0+=(-9*sin(4*m[1]+2*u[1])+7*cos(2*m[1]-5*m[2]))
                l0=l[1]+l0/3600*self._DR
                b0=24134*sin(u[1])-10*sin(3*u[1])+5180*sin(m[1]-u[1])+4910*sin(m[1]+u[1])
                +1124*sin(2*m[1]+u[1])+271*sin(3*m[1]+u[1])+132*sin(2*m[1]-u[1])
                +67*sin(4*m[1]+u[1])+18*sin(3*m[1]-u[1])+17*sin(5*m[1]+u[1])-9*sin(m[1]-3*u[1])
                b0=b0/3600*self._DR
                r0=0.39528-.07834*cos(m[1])-.00795*cos(2*m[1])-.00121*cos(3*m[1])
                -.00022*cos(4*m[1])
            
            elif (planete==self._PLN_VENUS):
                l0=20*t*sin(m[2])+2814*sin(m[2])+12*sin(2*m[2])-181*sin(2*u[2])
                -10*cos(2*m[0]-2*m[2])+7*cos(3*m[0]-3*m[2]);
                l0=l[2]+l0/3600*self._DR;
                b0=12215*sin(u[2])+83*sin(m[2]+u[2])+83*sin(m[2]-u[2]);
                b0=b0/3600*self._DR;
                r0=.72335-0.00493*cos(m[2]);
            
            elif (planete==self._PLN_MARS):
                l0=37*t*sin(m[3])+4*t*sin(2*m[3])+38451*sin(m[3])+2238*sin(2*m[3])
                +181*sin(3*m[3])+17*sin(4*m[3])-52*sin(2*u[3])-22*cos(m[3]-2*m[4])-19*sin(m[3]-m[4])
                +17*cos(m[3]-m[4])-16*cos(2*m[3]-2*m[4])+13*cos(m[0]-2*m[3])-10*sin(m[3]-2*u[3]);
                l0+=(-10*sin(m[3]+2*u[3])+7*cos(m[0]-m[3])-7*cos(2*m[0]-3*m[3])-5*sin(m[2]-3*m[3])
                -5*sin(m[0]-m[3])-5*sin(m[0]-2*m[3])-4*cos(2*m[0]-4*m[3])+4*cos(m[4])+3*cos(m[2]-3*m[3])
                +3*sin(2*m[3]-2*m[4]));
                l0=l[3]+l0/3600*self._DR
                b0=6603*sin(u[3])+622*sin(m[3]-u[3])+615*sin(m[3]+u[3])+64*sin(2*m[3]+u[3])
                b0=b0/3600*self._DR
                r0=1.53031-.14170*cos(m[3])-.0066*cos(2*m[3])-.00047*cos(3*m[3])
                
            elif (planete==self._PLN_JUPITER):
                l0,b0,r0 = self._mc_jd2lbr1c(jj,l,m,u)
            
            elif (planete==self._PLN_SATURNE):
                l0,b0,r0 = self._mc_jd2lbr1e(jj,l,m,u)
            
            elif (planete==self._PLN_URANUS):
                l0,b0,r0 = self._mc_jd2lbr1f(jj,l,m,u)
            
            elif (planete==self._PLN_NEPTUNE):
                l0,b0,r0 = self._mc_jd2lbr1g(jj,l,m,u)
            
            elif (planete==self._PLN_PLUTON):
                l0,b0,r0 = self._mc_jd2lbr1h(jj,l,m,u)
                
            elif (planete==self._PLN_LUNE):
                l0,b0,r0 = self._mc_jd2lbr1d(jj)
            
            ll = Angle(l0/self._DR)
            bb = Angle(b0/self._DR)
            coords = Coords((r0, ll, bb))
        return coords

    def _mc_jd2lbr1c(self, jj, l, m, u):
        """
        /***************************************************************************/
        /* Retourne les valeurs de longitude *ll, latitude *bb, rayon vecteur *rr  */
        /* pour l'equinoxe moyen de la date. (longitudes vraies)                   */
        /* JUPITER                                                                 */
        /***************************************************************************/
        /* Les tableaux l, m et u doivent etre dimensiones chacun avec             */
        /* 9 elements (0 a 8) et sont initialises dans la fonction mc_jd2lbr1a     */
        /***************************************************************************/
        """
        u[0]*=1.;
        t=(jj-2415020.0)/36525;
        l0=2511+5023*t+19934*sin(m[4])+601*sin(2*m[4])+1093*cos(2*m[4]-5*m[5])
        -479*sin(2*m[4]-5*m[5])-185*sin(2*m[4]-2*m[5])+137*sin(3*m[4]-5*m[5])-131*sin(m[4]-2*m[5])
        +79*cos(m[4]-m[5])-76*cos(2*m[4]-2*m[5])-74*t*cos(m[4])+68*t*sin(m[4]);
        l0+=(+66*cos(2*m[4]-3*m[5])+63*cos(3*m[4]-5*m[5])+53*cos(m[4]-5*m[5])+49*sin(2*m[4]-3*m[5])
        -43*t*sin(2*m[4]-5*m[5])-37*cos(m[4])+25*sin(2*l[4])+25*sin(3*m[4])-23*sin(m[4]-5*m[5])
        -19*t*cos(2*m[4]-5*m[5])+17*cos(2*m[4]-4*m[5]));
        l0+=(+17*cos(3*m[4]-3*m[5])-14*sin(m[4]-m[5]));
        l0+=(-13*sin(3*m[4]-4*m[5])-9*cos(2*l[4])+9*cos(m[5])-9*sin(m[5])-9*sin(3*m[4]-2*m[5])
        +9*sin(4*m[4]-5*m[5])+9*sin(2*m[4]-6*m[5]+3*m[6])-8*cos(4*m[4]-10*m[5])+7*cos(3*m[4]-4*m[5])
        -7*cos(m[4]-3*m[5])-7*sin(4*m[4]-10*m[5]));
        l0+=(-7*sin(m[4]-3*m[5])+6*cos(4*m[4]-5*m[5]));
        l0+=(-6*sin(3*m[4]-3*m[5])+5*cos(2*m[5])-4*sin(4*m[4]-4*m[5])-4*cos(3*m[5])+4*cos(2*m[4]-m[5])
        -4*cos(3*m[4]-2*m[5])-4*t*cos(2*m[4])+3*t*sin(2*m[4])+3*cos(5*m[5])+3*cos(5*m[4]-10*m[5])
        +3*sin(2*m[5])-2*sin(2*l[4]-m[4])+2*sin(2*l[4]+m[4]));
        l0+=(-2*t*sin(3*m[4]-5*m[5])-2*t*sin(m[4]-5*m[5]));
        l0=l[4]+l0/3600*self._DR;
        b0=-4692*cos(m[4])+259*sin(m[4])+227-227*cos(2*m[4])+30*t*sin(m[4])+21*t*cos(m[4])
        +16*sin(3*m[4]-5*m[5])-13*sin(m[4]-5*m[5])-12*cos(3*m[4])+12*sin(2*m[4])+7*cos(3*m[4]-5*m[5])
        -5*cos(m[4]-5*m[5]);
        b0=b0/3600*self._DR;
        r0=5.20883-.25122*cos(m[4])-.00604*cos(2*m[4])+.0026*cos(2*m[4]-2*m[5])
        -.00170*cos(3*m[4]-5*m[5])-.0016*sin(2*m[4]-2*m[5])-.00091*t*sin(m[4])
        -.00084*t*cos(m[4])+.00069*sin(2*m[4]-3*m[5])-.00067*sin(m[4]-5*m[5]);
        r0+=(.00066*sin(3*m[4]-5*m[5])+.00063*sin(m[4]-m[5])-.00051*cos(2*m[4]-3*m[5])
        -.00046*sin(m[4])-.00029*cos(m[4]-5*m[5])+.00027*cos(m[4]-2*m[5])
        -.00022*cos(3*m[4])-.00021*sin(2*m[4]-5*m[5]));
        ll0=l0
        bb0=b0
        rr0=r0
        return ll0, bb0, rr0
        
    def _mc_jd2lbr1e(self, jj, l, m, u):
        """
        /***************************************************************************/
        /* Retourne les valeurs de longitude *ll, latitude *bb, rayon vecteur *rr  */
        /* pour l'equinoxe moyen de la date. (longitudes vraies)                   */
        /* SATURNE                                                                 */
        /***************************************************************************/
        /* Les tableaux l, m et u doivent etre dimensiones chacun avec             */
        /* 9 elements (0 a 8) et sont initialises dans la fonction mc_jd2lbr1a     */
        /***************************************************************************/
        """
        u[0]*=1.;
        t=(jj-2415020.0)/36525;
        l0=2507+5014*t+23043*sin(m[5])-2689*cos(2*m[4]-5*m[5])+1177*sin(2*m[4]-5*m[5])-826*cos(2*m[4]-4*m[5])+802*sin(2*m[5])+425*sin(m[4]-2*m[5])-229*t*cos(m[5])-142*t*sin(m[5])-153*cos(2*m[4]-6*m[5])-114*cos(m[5])+101*t*sin(2*m[4]-5*m[5]);
        l0+=-70*cos(2*l[5])+67*sin(2*l[5])+66*sin(2*m[4]-6*m[5])+60*t*cos(2*m[4]-5*m[5])+41*sin(m[4]-3*m[5])+39*sin(3*m[5])+31*sin(m[4]-m[5])+31*sin(2*m[4]-2*m[5])-29*cos(2*m[4]-3*m[5])-28*sin(2*m[4]-6*m[5]+3*m[6])+28*cos(m[4]-3*m[5]);
        l0+=+22*t*sin(2*m[4]-4*m[5])-22*sin(m[5]-3*m[6])+20*sin(2*m[4]-3*m[5])+20*cos(4*m[4]-10*m[5])+19*cos(2*m[5]-3*m[6])+19*sin(4*m[4]-10*m[5])-17*t*cos(2*m[5])-16*cos(m[5]-3*m[6])-12*sin(2*m[4]-4*m[5])+12*cos(m[4]);
        l0+=-12*sin(2*m[5]-2*m[6])-11*t*sin(2*m[5])-11*cos(2*m[4])-12*sin(2*m[5]-2*m[6])-11*t*sin(2*m[5])-11*cos(2*m[4]-7*m[5])+10*sin(2*m[5]-3*m[6])+10*cos(2*m[4]-2*m[5])+9*sin(4*m[4]-9*m[5])-8*sin(m[5]-2*m[6])-8*cos(2*l[5]+m[5]);
        l0+=+8*cos(2*l[5]-m[5])+8*cos(m[5]-m[6])-8*sin(2*l[5]-m[5])+7*sin(2*l[5]+m[5])-7*cos(m[4]-2*m[5])-7*cos(2*m[5])-6*t*sin(4*m[4]-10*m[5])+6*t*cos(4*m[4]-10*m[5])+6*t*(2*m[4]-6*m[5])-5*sin(3*m[4]-7*m[5])-5*cos(3*m[4]-3*m[5]);
        l0+=-5*cos(2*m[5]-2*m[6])+5*sin(3*m[4]-4*m[5])+5*sin(2*m[4]-7*m[5])+4*sin(3*m[4]-3*m[5])+4*sin(3*m[4]-5*m[5])+4*t*cos(m[4]-3*m[5])+3*t*cos(2*m[4]-4*m[5])+3*cos(2*m[4]-6*m[5]+3*m[6])-3*t*sin(2*l[5]);
        l0+=+3*t*cos(2*m[4]-6*m[5])-3*t*cos(2*l[5])+3*cos(3*m[4]-7*m[5])+3*cos(4*m[4]-9*m[5])+3*sin(3*m[4]-6*m[5])+3*sin(2*m[4]-m[5])+3*sin(m[4]-4*m[5])+2*cos(3*m[5]-3*m[6])+2*t*sin(m[4]-2*m[5])+2*sin(4*m[5])-2*cos(3*m[4]-4*m[5])-2*cos(2*m[4]-m[5]);
        l0+=-2*sin(2*m[4]-7*m[5]+3*m[6])+2*cos(m[4]-4*m[5])+2*cos(4*m[4]-11*m[5])-2*sin(m[5]-m[6]);
        l0=l[5]+l0/3600*self._DR;
        b0=185+8297*sin(m[5])-3346*cos(m[5])+462*sin(2*m[5])-189*cos(2*m[5])+79*t*cos(m[5])-71*cos(2*m[4]-4*m[5])+46*sin(2*m[4]-6*m[5])-45*cos(2*m[4]-6*m[5])+29*sin(3*m[5])-20*cos(2*m[4]-3*m[5])+18*t*sin(m[5]);
        b0+=-14*cos(2*m[4]-5*m[5])-11*cos(3*m[5])-10*t+9*sin(m[4]-3*m[5])+8*sin(m[4]-m[5])-6*sin(2*m[4]-3*m[5])+5*sin(2*m[4]-7*m[5])-5*cos(2*m[4]-7*m[5])+4*sin(2*m[4]-5*m[5])-4*t*sin(2*m[5])-4*cos(m[4]-m[5])+3*cos(m[4]-3*m[5])+3*t*sin(2*m[4]-4*m[5]);
        b0+=+3*sin(m[4]-2*m[5])+2*sin(4*m[5])-2*cos(2*m[4]-2*m[5]);
        b0=b0/3600*self._DR;
        r0=9.55774-.00028*t-.53252*cos(m[5])-.01878*sin(2*m[4]-4*m[5])-.01482*cos(2*m[5])+.00817*sin(m[4]-m[5])-.00539*cos(m[4]-2*m[5])-.00524*t*sin(m[5])+.00349*sin(2*m[4]-5*m[5])+.00347*sin(2*m[4]-6*m[5]);
        r0+=+.00328*t*cos(m[5])-.00225*sin(m[5])+.00149*cos(2*m[4]-6*m[5])-.00126*cos(2*m[4]-2*m[5])+.00104*cos(m[4]-m[5])+.00101*cos(2*m[4]-5*m[5])+.00098*cos(m[4]-3*m[5])-.00073*cos(2*m[4]-3*m[5])-.00062*cos(3*m[5]);
        r0+=+.00043*sin(2*m[5]-3*m[6])+.00041*sin(2*m[4]-2*m[5])-.00040*sin(m[4]-3*m[5])+.0004*cos(2*m[4]-4*m[5])-.00023*sin(m[4])+.0002*sin(2*m[4]-7*m[5]);
        ll0=l0
        bb0=b0
        rr0=r0
        return ll0, bb0, rr0
        
    def _mc_jd2lbr1f(self, jj, l, m, u):
        """
        /***************************************************************************/
        /* Retourne les valeurs de longitude *ll, latitude *bb, rayon vecteur *rr  */
        /* pour l'equinoxe moyen de la date. (longitudes vraies)                   */
        /* URANUS                                                                  */
        /***************************************************************************/
        /* Les tableaux l, m et u doivent etre dimensiones chacun avec             */
        /* 9 elements (0 a 8) et sont initialises dans la fonction mc_jd2lbr1a     */
        /***************************************************************************/
        """
        u[0]*=1.;
        t=(jj-2415020.0)/36525;
        l0=32*t*t+19397*sin(m[6])+570*sin(2*m[6])-536*t*cos(m[6])+143*sin(m[5]-2*m[6])+110*t*sin(m[6])+102*sin(m[5]-3*m[6])+76*cos(m[5]-3*m[6])-49*sin(m[4]-m[6])-30*t*cos(2*m[6])+29*sin(2*m[4]-6*m[5]+3*m[6])+29*cos(2*m[6]-2*m[7]);
        l0+=-28*cos(m[6]-m[7])+23*sin(3*m[6])-21*cos(m[4]-m[6])+20*sin(m[6]-m[7])+20*cos(m[5]-m[6])-12*t*t*cos(m[6])-12*cos(m[6])+10*sin(2*m[6]-2*m[7])-9*sin(2*u[6])-9*t*t*sin(m[6])+9*cos(2*m[6]-3*m[7])+8*t*cos(m[5]-2*m[6]);
        l0+=+7*t*cos(m[5]-3*m[6])-7*t*sin(m[5]-3*m[6])+7*t*sin(2*m[6])+6*sin(2*m[4]-6*m[5]+2*m[6])+6*cos(2*m[4]-6*m[5]+2*m[6])+5*sin(m[5]-4*m[6])-4*sin(3*m[6]-4*m[7])+4*cos(3*m[6]-3*m[7])-3*cos(m[7])-2*sin(m[7]);
        l0=l[6]+l0/3600*self._DR;
        b0=2775*sin(u[6])+131*sin(m[6]-u[6])+130*sin(m[6]+u[6]);
        b0=b0/3600*self._DR;
        r0=19.21216-.90154*cos(m[6])-.02488*t*sin(m[6])-.02121*cos(2*m[6])-.00585*cos(m[5]-2*m[6])-.00508*t*cos(m[6])-.00451*cos(m[4]-m[6])+.00336*sin(m[5]-m[6])+.00198*sin(m[4]-m[6])+.00118*cos(m[5]-3*m[6])+.00107*sin(m[5]-2*m[6]);
        r0+=-.00103*t*sin(2*m[6])-.00081*cos(3*m[6]-3*m[7]);
        ll0=l0
        bb0=b0
        rr0=r0
        return ll0, bb0, rr0
        
    def _mc_jd2lbr1g(self, jj, l, m, u):
        """
        /***************************************************************************/
        /* Retourne les valeurs de longitude *ll, latitude *bb, rayon vecteur *rr  */
        /* pour l'equinoxe moyen de la date. (longitudes vraies)                   */
        /* NEPTUNE                                                                 */
        /***************************************************************************/
        /* Les tableaux l, m et u doivent etre dimensiones chacun avec             */
        /* 9 elements (0 a 8) et sont initialises dans la fonction mc_jd2lbr1a     */
        /***************************************************************************/
        """
        u[0]*=1.;
        t=(jj-2415020.0)/36525;
        l0=3523*sin(m[7])-50*sin(2*u[7])-43*t*cos(m[7])+29*sin(m[4]-m[7])+19*sin(2*m[7])-18*cos(m[4]-m[7])+13*cos(m[5]-m[7])+13*sin(m[5]-m[7])-9*sin(2*m[6]-3*m[7])+9*cos(2*m[6]-2*m[7])-5*cos(2*m[6]-3*m[7]);
        l0+=-4*t*sin(m[7])+4*cos(m[6]-2*m[7])+4*t*t*sin(m[7]);
        l0=l[7]+l0/3600*self._DR;
        b0=6404*sin(u[7])+55*sin(m[7]+u[7])+55*sin(m[7]-u[7])-33*t*sin(u[7]);
        b0=b0/3600*self._DR;
        r0=30.07175-.22701*cos(m[7])-.00787*cos(2*l[6]-m[6]-2*l[7])+.00409*cos(m[4]-m[7])-.00314*t*sin(m[7])+.0025*sin(m[4]-m[7])-.00194*sin(m[5]-m[7])+.00185*cos(m[5]-m[7]);
        ll0=l0
        bb0=b0
        rr0=r0
        return ll0, bb0, rr0

    def _mc_jd2lbr1h(self, jj, l, m, u):
        """
        /***************************************************************************/
        /* Retourne les valeurs de longitude *ll, latitude *bb, rayon vecteur *rr  */
        /* pour l'equinoxe J2000. ()                                               */
        /* PLUTON                                                                  */
        /***************************************************************************/
        /* Les tableaux l, m et u doivent etre dimensiones chacun avec             */
        /* 9 elements (0 a 8) et sont initialises dans la fonction mc_jd2lbr1a     */
        /* mais ne servent a rien car on se sert de l'algo de Meeus                */
        /* Astronomical Algorithms page 247                                        */
        /***************************************************************************/
        """
        meeus=[
        1,0,0,1,-19798886,19848454,-5453098,-14974876,66867334,68955876,
        2,0,0,2,897499,-4955707,3527363,1672673,-11826086,-333765,
        3,0,0,3,610820,1210521,-1050939,327763,1593657,-1439953,
        4,0,0,4,-341639,-189719,178691,-291925,-18948,482443,
        5,0,0,5,129027,-34863,18763,100448,-66634,-85576,
        6,0,0,6,-38215,31061,-30594,-25838,30841,-5765,
        7,0,1,-1,20349,-9886,4965,11263,-6140,22254,
        8,0,1,0,-4045,-4904,310,-132,4434,4443,
        9,0,1,1,-5885,-3238,2036,-947,-1518,641,
        10,0,1,2,-3812,3011,-2,-674,-5,792,
        11,0,1,3,-601,3468,-329,-563,518,518,
        12,0,2,-2,1237,463,-64,39,-13,-221,
        13,0,2,-1,1086,-911,-94,210,837,-494,
        14,0,2,0,595,-1229,-8,-160,-281,616,
        15,1,-1,0,2484,-485,-177,259,260,-395,
        16,1,-1,1,839,-1414,17,234,-191,-396,
        17,1,0,-3,-964,1059,582,-285,-3218,370,
        18,1,0,-2,-2303,-1038,-298,692,8019,-7869,
        19,1,0,-1,7049,747,157,201,105,45637,
        20,1,0,0,1179,-358,304,825,8623,8444,
        21,1,0,1,393,-63,-124,-29,-896,-801,
        22,1,0,2,111,-268,15,8,208,-122,
        23,1,0,3,-52,-154,7,15,-133,65,
        24,1,0,4,-78,-30,2,2,-16,1,
        25,1,1,-3,-34,-26,4,2,-22,7,
        26,1,1,-2,-43,1,3,0,-8,16,
        27,1,1,-1,-15,21,1,-1,2,9,
        28,1,1,0,-1,15,0,-2,12,5,
        29,1,1,1,4,7,1,0,1,-3,
        30,1,1,3,1,5,1,-1,1,0,
        31,2,0,-6,8,3,-2,-3,9,5,
        32,2,0,-5,-3,6,1,2,2,-1,
        33,2,0,-4,6,-13,-8,2,14,10,
        34,2,0,-3,10,22,10,-7,-65,12,
        35,2,0,-2,-57,-32,0,21,126,-233,
        36,2,0,-1,157,-46,8,5,270,1068,
        37,2,0,0,12,-18,13,16,254,155,
        38,2,0,1,-4,8,-2,-3,-26,-2,
        39,2,0,2,-5,0,0,0,7,0,
        40,2,0,3,3,4,0,1,-11,4,
        41,3,0,-2,-1,-1,0,0,4,-14,
        42,3,0,-1,6,-3,0,0,18,35,
        43,3,0,0,-1,-2,0,1,13,3];
        u[0]*=1.;
        t=(jj-2451545.0)/36525;
        j=34.35+3034.9057*t;
        s=50.08+1222.1138*t;
        p=238.96+144.9600*t;
        l0=0.;
        b0=0.;
        r0=0.;
        for k in range(0,43):
            ij=meeus[k*10+1];
            it=meeus[k*10+2];
            ip=meeus[k*10+3];
            a=(self._DR)*(j*ij+s*it+p*ip);
            sina=sin(a);
            cosa=cos(a);
            A=meeus[k*10+4];
            B=meeus[k*10+5];
            l0+=(A*sina+B*cosa);
            A=meeus[k*10+6];
            B=meeus[k*10+7];
            b0+=(A*sina+B*cosa);
            A=meeus[k*10+8];
            B=meeus[k*10+9];
            r0+=(A*sina+B*cosa);
        l0=(238.956785+144.96*t+l0*1e-6)*self._DR;
        b0=(-3.908202+b0*1e-6)*self._DR;
        r0=40.7247248+r0*1e-7;
        ll0=l0
        bb0=b0
        rr0=r0
        return ll0, bb0, rr0

    def _mc_jd2lbr1d(self, jj):
        """
        /***************************************************************************/
        /* Retourne les valeurs de longitude *ll, latitude *bb, rayon vecteur *rr  */
        /* pour l'equinoxe J2000.0.                                                */
        /* LUNE                                                                    */
        /***************************************************************************/
        /* J. Meeus, "Astronomical Algorithms", chapter 45, 307-317                */
        /***************************************************************************/
        """
        arg_lr=[
        0,0,1,0,
        2,0,-1,0,
        2,0,0,0,
        0,0,2,0,
        0,1,0,0,
        0,0,0,2,
        2,0,-2,0,
        2,-1,-1,0,
        2,0,1,0,
        2,-1,0,0,
        0,1,-1,0,
        1,0,0,0,
        0,1,1,0,
        2,0,0,-2,
        0,0,1,2,
        0,0,1,-2,
        4,0,-1,0,
        0,0,3,0,
        4,0,-2,0,
        2,1,-1,0,
        2,1,0,0,
        1,0,-1,0,
        1,1,0,0,
        2,-1,1,0,
        2,0,2,0,
        4,0,0,0,
        2,0,-3,0,
        0,1,-2,0,
        2,0,-1,2,
        2,-1,-2,0,
        1,0,1,0,
        2,-2,0,0,
        0,1,2,0,
        0,2,0,0,
        2,-2,-1,0,
        2,0,1,-2,
        2,0,0,2,
        4,-1,-1,0,
        0,0,2,2,
        3,0,-1,0,
        2,1,1,0,
        4,-1,-2,0,
        0,2,-1,0,
        2,2,-1,0,
        2,1,-2,0,
        2,-1,0,-2,
        4,0,1,0,
        0,0,4,0,
        4,-1,0,0,
        1,0,-2,0,
        2,1,0,-2,
        0,0,2,-2,
        1,1,1,0,
        3,0,-2,0,
        4,0,-3,0,
        2,-1,2,0,
        0,2,1,0,
        1,1,-1,0,
        2,0,3,0,
        2,0,-1,-2]
        
        sinl=[
        6288774,
        1274027,
        658314,
        213618,
        -185116,
        -114332,
        58793,
        57066,
        53322,
        45758,
        -40923,
        -34720,
        -30383,
        15327,
        -12528,
        10980,
        10675,
        10034,
        8548,
        -7888,
        -6766,
        -5163,
        4987,
        4036,
        3994,
        3861,
        3665,
        -2689,
        -2602,
        2390,
        -2348,
        2236,
        -2120,
        -2069,
        2048,
        -1773,
        -1595,
        1215,
        -1110,
        -892,
        -810,
        759,
        -713,
        -700,
        691,
        596,
        549,
        537,
        520,
        -487,
        -399,
        -381,
        351,
        -340,
        330,
        327,
        -323,
        299,
        294,
        0]
        
        cosr=[
        -20905355,
        -3699111,
        -2955968,
        -569925,
        48888,
        -3149,
        246158,
        -152138,
        -170733,
        -204586,
        -129620,
        108743,
        104755,
        10321,
        0,
        79661,
        -34782,
        -23210,
        -21636,
        24208,
        30824,
        -8379,
        -16675,
        -12831,
        -10445,
        -11650,
        14403,
        -7003,
        0,
        10056,
        6322,
        -9884,
        5751,
        0,
        -4950,
        4130,
        0,
        -3958,
        0,
        3258,
        2616,
        -1897,
        -2117,
        2354,
        0,
        0,
        -1423,
        -1117,
        -1571,
        -1739,
        0,
        -4421,
        0,
        0,
        0,
        0,
        1165,
        0,
        0,
        8752]
        
        arg_b=[
        0,0,0,1,
        0,0,1,1,
        0,0,1,-1,
        2,0,0,-1,
        2,0,-1,1,
        2,0,-1,-1,
        2,0,0,1,
        0,0,2,1,
        2,0,1,	-1,
        0,0,2,	-1,
        2,-1,0,-1,
        2,0,-2,-1,
        2,0,1,1,
        2,1,0,-1,
        2,-1,-1,1,
        2,-1,0,1,
        2,-1,-1,-1,
        0,1,-1,-1,
        4,0,-1,-1,
        0,1,0,1,
        0,0,0,3,
        0,1,-1,1,
        1,0,0,1,
        0,1,1,1,
        0,1,1,-1,
        0,1,0,-1,
        1,0,0,-1,
        0,0,3,1,
        4,0,0,-1,
        4,0,-1,1,
        0,0,1,-3,
        4,0,-2,1,
        2,0,0,-3,
        2,0,2,-1,
        2,-1,1,-1,
        2,0,-2,1,
        0,0,3,-1,
        2,0,2,1,
        2,0,-3,-1,
        2,1,-1,1,
        2,1,0,1,
        4,0,0,1,
        2,-1,1,1,
        2,-2,0,-1,
        0,0,1,3,
        2,1,1,-1,
        1,1,0,-1,
        1,1,0,1,
        0,1,-2,-1,
        2,1,-1,-1,
        1,0,1,1,
        2,-1,-2,-1,
        0,1,2,1,
        4,0,-2,-1,
        4,-1,-1,-1,
        1,0,1,-1,
        4,0,1,-1,
        1,0,-1,-1,
        4,-1,0,-1,
        2,-2,0,1]
        
        sinb=[
        5128122,
        280602,
        277693,
        173237,
        55413,
        46271,
        32573,
        17198,
        9266,
        8822,
        8216,
        4324,
        4200,
        -3359,
        2463,
        2211,
        2065,
        -1870,
        1828,
        -1794,
        -1749,
        -1565,
        -1491,
        -1475,
        -1410,
        -1344,
        -1335,
        1107,
        1021,
        833,
        777,
        671,
        607,
        596,
        491,
        -451,
        439,
        422,
        421,
        -366,
        -351,
        331,
        315,
        302,
        -283,
        -229,
        223,
        223,
        -220,
        -220,
        -185,
        181,
        -177,
        176,
        166,
        -164,
        132,
        -119,
        115,
        107]
        
        T=(jj-2451545.)/36525.;
        lp=(218.3164591+481267.88134236*T-.0013268*T*T+T*T*T/538841.-T*T*T*T/65194000)*(self._DR);
        d=(297.8502042+445267.1115168*T-.00016300*T*T+T*T*T/545868-T*T*T*T/113065000)*(self._DR);
        m=(357.5291092+35999.0502909*T-.0001536*T*T+T*T*T*T/24490000)*(self._DR);
        mp=(134.9634114+477198.8676313*T+.0089970*T*T+T*T*T/69699.-T*T*T*T/14712000)*(self._DR);
        f=(93.2720993+483202.0175273*T-.0034029*T*T+T*T*T/3526000+T*T*T*T/863310000)*(self._DR);
        a1=(119.75+131.849*T)*(self._DR);
        a2=(53.09+479264.290*T)*(self._DR);
        a3=(313.45+481266.484*T)*(self._DR);
        e=1-.002516*T-.0000074*T*T;
        e2=e*e;
        
        # --- longitude & radius ---
        l=0.;
        r=0.;
        for k in range(0,60):
            xe=1.;
            if (fabs(arg_lr[k*4+1])==1):
                xe=e;
            elif (fabs(arg_lr[k*4+1])==2):
                xe=e2
            angle=1.*arg_lr[k*4+0]*d+arg_lr[k*4+1]*m+arg_lr[k*4+2]*mp+arg_lr[k*4+3]*f
            sina=sin(angle)
            cosa=cos(angle)
            l+=sinl[k]*sina*xe
            r+=cosr[k]*cosa*xe
        l+=3958.*sin(a1)+1962.*sin(lp-f)+318.*sin(a2)
        
        # --- latitude ---
        b=0.
        for k in range(0,60):
            xe=1.;
            if (fabs(arg_b[k*4+1])==1):
                xe=e
            elif (fabs(arg_b[k*4+1])==2):
                xe=e2
            angle=1.*arg_b[k*4+0]*d+arg_b[k*4+1]*m+arg_b[k*4+2]*mp+arg_b[k*4+3]*f
            sina=sin(angle)
            b+=sinb[k]*sina*xe
        b+=-2235.*sin(lp)+382.*sin(a3)+175.*sin(a1-f)+175.*sin(a1+f)+127.*sin(lp-mp)-115.*sin(lp+mp)
        
        l=lp+(l*1.0e-6)*(self._DR)
        b=(b*1.0e-6)*(self._DR)
        r=(385000.56e3+r)/(self._CST_UA)
        
        ll0=l;
        bb0=b;
        rr0=r;
        return ll0, bb0, rr0


# ========================================================
# === internal methods : Coordinate transformations
# ========================================================
        
    def _mc_obliqmoy(self, jj):
        """
        /***************************************************************************/
        /* Retourne la valeur de l'obliquite terrestre moyenne pour jj             */
        /***************************************************************************/
        /* formule de Laskar (JM)                                                  */
        /***************************************************************************/
        """
        t=(jj-2451545.0)/36525
        u=t/100
        eps0=u*(-4680.93-u*(1.55+u*(1999.25-u*(51.38-u*(249.67-u*(39.05+u*(7.12+u*(27.87+u*(5.79+u*(2.45))))))))))
        eps0=(23.4392911111+eps0/3600)*self._DR
        return eps0

    def _mc_xyzec2eq(self, xec, yec, zec, eps):
        """
        /***************************************************************************/
        /* Transforme les coord. cart. ecliptiques vers equatoriales               */
        /***************************************************************************/
        /***************************************************************************/
        """
        xeq0=xec
        yeq0=yec*cos(eps)-zec*sin(eps)
        zeq0=yec*sin(eps)+zec*cos(eps)
        return xeq0, yeq0, zeq0

    def _mc_xyzeq2ec(self, xeq, yeq, zeq, eps):
        """
        /***************************************************************************/
        /* Transforme les coord. cart. equatoriales vers ecliptiques               */
        /***************************************************************************/
        /***************************************************************************/
        """
        eps=-eps
        xec0=xeq
        yec0=yeq*cos(eps)-zeq*sin(eps)
        zec0=yeq*sin(eps)+zeq*cos(eps)
        return xec0, yec0, zec0

    def _mc_paraldxyzeq(self, jj, longuai, rhocosphip, rhosinphip):
        """
        /***************************************************************************/
        /* Calcul des corrections cartesiennes equatoriales de la parallaxe        */
        /* Xtopo = Xgeo - *dxeq etc...                                             */
        /***************************************************************************/
        /* ref : Danby J.M.A. "Fundamentals of Celestial Mechanics" 2nd ed. 1992   */
        /*       Willmann Bell                                                     */
        /* Formules (6.17.1) pp 208                                                */
        /***************************************************************************/
        """
        cst=(self._CST_EARTH_SEMI_MAJOR_RADIUS)/(self._CST_UA); # equatorial radius of the Earth in U.A.
        tsl = self._mc_tsl(jj,-longuai)
        dxeq=(cst*rhocosphip*cos(tsl))
        dyeq=(cst*rhocosphip*sin(tsl))
        dzeq=(cst*rhosinphip)
        return dxeq, dyeq, dzeq

    def _mc_latalt2rhophi(self, latitude, altitude):
        """
        /***************************************************************************/
        /* Retourne les valeurs de rhocosphi' et rhosinphi' (en rayons equatorial  */
        /* terrestres) a partir de la latitude et de l'altitude.                   */
        /***************************************************************************/
        /* Latitude en degres decimaux.                                            */
        /* Altitude en metres.                                                     */
        /* Algo : Meeus "Astronomical Algorithms" p78                              */
        /***************************************************************************/
        """
        lat=latitude*(self._DR);
        alt=altitude;
        aa=self._CST_EARTH_SEMI_MAJOR_RADIUS;
        ff=1./self._CST_EARTH_INVERSE_FLATTENING;
        bb=aa*(1-ff);
        u=atan(bb/aa*tan(lat));
        a=bb/aa*sin(u)+alt/aa*sin(lat);
        b=      cos(u)+alt/aa*cos(lat);
        rhocosphip=b;
        rhosinphip=a;
        return rhocosphip, rhosinphip

    def _mc_rhophi2latalt(self, rhosinphip,rhocosphip):
        """
        /***************************************************************************/
        /* Retourne les valeurs de la latitude et de l'altitude a partir de        */
        /* rhocosphi' et rhosinphi' (en rayons equatorial terrestres)              */
        /***************************************************************************/
        /* Latitude en degres decimaux.                                            */
        /* Altitude en metres.                                                     */
        /* Algo : Meeus "Astronomical Algorithms" p78                              */
        /***************************************************************************/
        """
        aa=self._CST_EARTH_SEMI_MAJOR_RADIUS;
        ff=1./self._CST_EARTH_INVERSE_FLATTENING;
        bb=aa*(1-ff);
        rho=sqrt(rhosinphip*rhosinphip+rhocosphip*rhocosphip);
        if (rho==0.):
            latitude=0.;
            altitude=-aa;
            return latitude, altitude
        phip=atan2(rhosinphip,rhocosphip)
        phi0=atan(aa*aa/bb/bb*tan(phip));  # alt=0
        u0=atan(bb/aa*tan(phi0));
        sinu0=sin(u0);
        cosu0=cos(u0);
        sinphi0=sin(phi0);
        cosphi0=cos(phi0);
        alt=-1000
        while (alt<20000.):
            rhosinphip0 = bb/aa*sinu0 + alt/aa*sinphi0 ;
            rhocosphip0 =       cosu0 + alt/aa*cosphi0 ;
            rho0=sqrt(rhosinphip0*rhosinphip0+rhocosphip0*rhocosphip0);
            if ((rho-rho0)<0):
                break;
            alt += 0.1
        lat=phi0;
        alt-=0.1;
        latitude=lat/(self._DR);
        altitude=alt;
        return latitude, altitude

    def _mc_nutation(self, jj, precision):
        """    
        /***************************************************************************/
        /* Retourne la valeur de la nutation pour jj donne                         */
        /***************************************************************************/
        /* precision=0 pour une incertitude de 0"5 sur dpsi 0"1 sur deps           */
        /* precision=1 pour de la tres haute precision (environ 0.01")             */
        /***************************************************************************/
        """
        t=(jj-2451545.0)/36525;
        o=125.04452-1934.136261*t+.0020708*t*t+t*t*t/450000;
        o=fmod(o*self._DR,2*self._PI);
        if (precision==0):
            l=280.4665+36000.7698*t;
            lp=218.3165+481267.8813*t;
            l=fmod(l*self._DR,2*self._PI);
            lp=fmod(lp*self._DR,2*self._PI);
            dpsi0=-17.20*sin(o)-1.32*sin(2*l)-.23*sin(2*lp)+.21*sin(2*o);
            dpsi0=dpsi0/3600*self._DR;
            deps0=9.20*cos(o)+.57*cos(2*l)+.10*cos(2*lp)-.09*cos(2*o);
            deps0=deps0/3600*self._DR;
        else: 
            # if (precision==1)
            d=297.85036+445267.111480*t-.0019142*t*t+t*t*t/189474
            m=357.52772+35999.050340*t-.0001603*t*t-t*t*t/300000
            mp=134.96298+477198.867398*t+.0086972*t*t+t*t*t/56250
            f=93.27191+483202.017538*t-.0036825*t*t+t*t*t/327270
            d=fmod(d*self._DR,2*self._PI)
            m=fmod(m*self._DR,2*self._PI)
            mp=fmod(mp*self._DR,2*self._PI)
            f=fmod(f*self._DR,2*self._PI)
            dpsi0=(-171996-174.2*t)*sin(o)+(-13187-1.6*t)*sin(-2*d+2*f+2*o)
            +(-2274-.02*t)*sin(2*f+2*o)+(2062+.2*t)*sin(2*o)
            +(1426-3.4*t)*sin(m)+(712+.1*t)*sin(mp)
            dpsi0+=((-517+1.2*t)*sin(-2*d+m+2*f+2*o)-(386-.4*t)*sin(2*f+o)
            -301*sin(mp+2*f+2*o)+(217-.5*t)*sin(-2*d-m+2*f+2*o)
            -158*sin(-2*d+mp)+(129+.1*t)*sin(-2*d+2*f+o))
            dpsi0+=(123*sin(-mp+2*f+2*o)+63*sin(2*d)+(63+.1*t)*sin(mp+o)
            -59*sin(2*d-mp+2*f+2*o)+(-58-.1*t)*sin(-mp+o)-51*sin(mp+2*f+o)
            +48*sin(-2*d+2*mp)+46*sin(-2*mp+2*f+o)-38*sin(2*d+2*f+2*o))
            dpsi0=dpsi0*1e-4/3600*self._DR
            deps0=(92025+8.9*t)*cos(o)+(5736-3.1*t)*cos(-2*d+2*f+2*o)
            +(977-.5*t)*cos(2*f+2*o)+(-895+.5*t)*cos(2*o)+(54-.1*t)*cos(m)
            -7*cos(mp)+(224-.6*t)*cos(-2*d+m+2*f+2*o)+200*cos(2*f+o);
            deps0+=((129-.1*t)*cos(mp+2*f+2*o)+(-95+.3*t)*cos(-2*d-m+2*f+2*o)
            -70*cos(-2*d+2*f+o)-53*cos(-mp+2*f+2*o)-33*cos(mp+o)
            +26*cos(2*d-mp+2*f+2*o)+32*cos(-mp+o)+27*cos(mp+2*f+o))
            deps0=deps0*1e-4/3600*self._DR
        dpsi=dpsi0;
        deps=deps0;
        return dpsi, deps          

    def _mc_nutradec(self, jj, asd1, dec1, signe):
        """
        /***************************************************************************/
        /* Corrige asd1,dec1 de la nutation et retourne asd2 et dec2               */
        /***************************************************************************/
        /* Trueblood & Genet : Telescop Control ed. Willmann Bell (1997) p71       */
        /***************************************************************************/
        """
        methode=1;
        
        # --- obliquite moyenne --- */
        eps = self._mc_obliqmoy(jj)

        # --- nutation ---*/
        dpsi, deps = self._mc_nutation(jj,1)

        if (fabs(dec1) >= (self._PI)/2.):
            asd2=asd1
            dec2=dec1
        else:
            if (methode==0):
                tand=tan(dec1);
                dasd=(cos(eps)+sin(eps)*sin(asd1)*tand)*dpsi-cos(asd1)*tand*deps;
                ddec=sin(eps)*cos(asd1)*dpsi+sin(asd1)*deps;
                dasd*=signe;
                ddec*=signe;
                asd1+=dasd;
                dec1+=ddec;
            else:
                # eq->ecl
                l=asd1 ; b=dec1 ; r=1;                
                bb = Angle(b/self._DR)
                ll = Angle(l/self._DR)
                coords = Coords((r,ll,bb))
                xeq,yeq,zeq = coords.cart()
                xec,yec,zec = self._mc_xyzeq2ec(xeq,yeq,zeq,eps)
                coords = Coords((xec,yec,zec))
                r,l,b = coords.sphe("rad","rad")
                l=l+dpsi*signe;
                eps=eps+deps*signe;
                bb = Angle(b/self._DR)
                ll = Angle(l/self._DR)
                coords = Coords((r,ll,bb))
                xeq,yeq,zeq = coords.cart()
                # ecl->eq
                xeq,yeq,zeq = self._mc_xyzec2eq(xec,yec,zec,eps)
                coords = Coords((xeq,yeq,zeq))
                r,asd1,dec1 = coords.sphe("rad","rad")
            asd1=fmod(4*self._PI+asd1,2*self._PI);
            asd2=asd1;
            dec2=dec1;
        return asd2, dec2


    def _mc_he2ge(self, xh,yh,zh,xs,ys,zs):
        """
        /***************************************************************************/
        /* Translation du repere heliocentrique en geocentrique (cartesien)        */
        /***************************************************************************/
        /* ENTREES :                                                               */
        /* xh,yh,zh : coordonnees heliocentriques de l'astre                       */
        /* xs,ys,zs : coordonnees geocentriques du Soleil                          */
        /* SORTIES :                                                               */
        /* *xg,*yg,*zg : coordonnees geocentriques de l'astre                      */
        /***************************************************************************/
        """
        xg=xh+xs
        yg=yh+ys
        zg=zh+zs
        return xg, yg, zg

    def _mc_aberpla(self, jj1, delta):
        """
        /***************************************************************************/
        /* Corrige jj1 de l'aberration de la lumiere et retourne jj2               */
        /***************************************************************************/
        /***************************************************************************/
        """
        jj2=jj1-0.0057755*delta
        return jj2
    
    def _mc_parallaxe_stellaire(self, jj, asd1, dec1, plx_mas):
        """
        /***************************************************************************/
        /* Corrige asd1,dec1 de la parallaxe stellaire et retourne asd2 et dec2    */
        /***************************************************************************/
        /* A. Danjon : Astronomie Generale ed. A. Blanchard (1980) p130            */
        /***************************************************************************/
        """
        afm = self._AFM_VFP79
        # --- obliquite moyenne --- */
        eps = self._mc_obliqmoy(jj)        
        # --- longitude vraie du soleil ---*/
        llp, mmp, uup = self._mc_jd2lbr1a(jj);
        coords = self._mc_jd2lbr1b(jj, self._PLN_SOLEIL, llp, mmp, uup, afm)
        rs,ls,bs = coords.sphe("rad","rad")        
        dpsi, deps = self._mc_nutation(jj,1)
        ls += dpsi
        plxrad=plx_mas*1e-3/3600.*(self._DR);
        secd=cos(dec1);
        if (secd==0):
            asd2=asd1;
            dec2=dec1;
        else:
            secd=1./secd;
            dasd=(cos(eps)*cos(asd1)*sin(ls)-sin(asd1)*cos(ls))*secd;
            ddec=(sin(eps)*cos(dec1)*sin(ls)-sin(dec1)*cos(asd1)*cos(ls)-cos(eps)*sin(dec1)*sin(asd1)*sin(ls));
            asd1+=plxrad*dasd;
            dec1+=plxrad*ddec;
            asd1=fmod(4*self._PI+asd1,2*self._PI);
            asd2=asd1;
            dec2=dec1;
        return asd2, dec2

    def _mc_aberration_annuelle(self, jj, asd1, dec1, signe):
        """
        /***************************************************************************/
        /* Corrige asd1,dec1 de l'aberration annuelle et retourne asd2 et dec2     */
        /***************************************************************************/
        /* Trueblood & Genet : Telescop Control ed. Willmann Bell (1997) p81-82    */
        /* Formule sans les E-terms                                                */
        /***************************************************************************/
        """
        k=20.49552; # constant of annual aberration        
        # --- computation method
        afm = self._AFM_VFP79
        # --- obliquite moyenne ---
        eps = self._mc_obliqmoy(jj)    
        # --- longitude vraie du soleil ---
        llp, mmp, uup = self._mc_jd2lbr1a(jj);
        coords = self._mc_jd2lbr1b(jj, self._PLN_SOLEIL, llp, mmp, uup, afm)
        rs,ls,bs = coords.sphe("rad","rad")
        dpsi, deps = self._mc_nutation(jj,1)
        ls += dpsi;
        # ---
        secd=cos(dec1)
        if (secd==0):
            asd2=asd1
            dec2=dec1
            return asd2, dec2
        secd=1./secd
        if (fabs(secd) < 100):
            c = cos(asd1)*secd;
            d = sin(asd1)*secd;
            cp = tan(eps)*cos(dec1)-sin(asd1)*sin(dec1);
            dp = cos(asd1)*sin(dec1);
            cc = -k*cos(eps)*cos(ls);
            dd = -k*sin(ls);
            dasd = (cc*c+dd*d)/3600.*(self._DR);
            ddec = (cc*cp+dd*dp)/3600.*(self._DR);
            dasd *= float(signe);
            ddec *= float(signe);
            asd1 += dasd;
            dec1 += ddec;
        asd1 = fmod(4*self._PI+asd1, 2*self._PI);
        asd2 = asd1;
        dec2 = dec1;
        return asd2, dec2

    def _mc_aberration_diurne(self, jj, asd1, dec1, longuai, rhocosphip, rhosinphip, signe):
        """
        /***************************************************************************/
        /* Corrige asd1,dec1 de l'aberration diurne et retourne asd2 et dec2       */
        /***************************************************************************/
        /* Trueblood & Genet : Telescop Control ed. Willmann Bell (1997) p83-84    */
        /***************************************************************************/
        """
        a=(self._CST_EARTH_SEMI_MAJOR_RADIUS)*1e-3;
        tsl = self._mc_tsl(jj,-longuai)
        h=tsl-asd1;
        latitude, altitude = self._mc_rhophi2latalt(rhosinphip, rhocosphip)
        if (rhocosphip==0.):
            if (rhosinphip>0):
                phip=(self._PI)/2.
            else:
                phip=-(self._PI)/2.
        else:
            phip=atan2(rhosinphip,rhocosphip)         
        sinphi=sin(latitude)
        r=(21*sinphi*sinphi+a)/a;
        secd=cos(dec1);
        if (secd==0):
            asd2=asd1
            dec2=dec1
        else:
            secd=1./secd;
            if (fabs(secd)<100):
                dasd=(0.320*r*cos(phip)*cos(h)*secd)/3600.*(self._DR);
                ddec=(0.320*r*cos(phip)*sin(h)*sin(dec1))/3600.*(self._DR);
            else:
                dasd=0
                ddec=0
            dasd*=signe;
            ddec*=signe;
            asd1+=dasd;
            dec1+=ddec;
            asd1=fmod(4*self._PI+asd1,2*self._PI);
        asd2=asd1;
        dec2=dec1;
        return asd2, dec2

    def _mc_precad(self, jd1, asd1, dec1, jd2):
        """
        /***************************************************************************/
        /* Passage des coordonnees spheri. equatoriales d'un equinoxe a un autre   */
        /***************************************************************************/
        /***************************************************************************/
        """
        t=(jd2-jd1)/36525.
        tt=(jd1-2451545.0)/36525.
        dz=(2306.2181+1.39656*tt-.000139*tt*tt)*t+(0.30188-.000344*tt)*t*t+.017998*t*t*t
        dz=dz/3600*self._DR
        zz=(2306.2181+1.39656*tt-.000139*tt*tt)*t+(1.09468+.000066*tt)*t*t+.018203*t*t*t
        zz=zz/3600*self._DR
        th=(2004.3109-0.85330*tt-.000217*tt*tt)*t-(0.42665+.000217*tt)*t*t-.041833*t*t*t
        th=th/3600*self._DR
        cosasddz=cos(asd1+dz)
        sinasddz=sin(asd1+dz)
        costh=cos(th)
        sinth=sin(th)
        cosdec=cos(dec1)
        sindec=sin(dec1)
        a=cosdec*sinasddz
        b=costh*cosdec*cosasddz-sinth*sindec
        c=sinth*cosdec*cosasddz+costh*sindec
        a=atan2(a,b)+zz
        asd2=fmod(4*self._PI+a,2*self._PI)
        dec2=asin(c)
        return asd2, dec2    
    
    def _mc_elonphas(self, r, rsol, delta):
        """
        /***************************************************************************/
        /* Calcul des angles d'elongation et de phase.                             */
        /***************************************************************************/
        /***************************************************************************/
        """
        elong=0.
        phase=0.
        if (delta!=0.):
            if (rsol!=0.):
                elong=acos((rsol*rsol+delta*delta-r*r)/(2*rsol*delta))
            if (r!=0.):
                phase=acos((r*r+delta*delta-rsol*rsol)/(2*r*delta))
        return elong, phase    

    def _mc_elonphaslimb(self, asd, dec, asds, decs, r, delta):
        """    
        /***************************************************************************/
        /* Calcul des angles d'elongation de phase et de position du limbe.        */
        /***************************************************************************/
        /* Meeus page 316 (46.2) (46.3) (46.5)                                     */
        /* asd,dec : planete.                                                      */
        /* asds,decs : soleil                                                      */
        /* r : distance Terre-Soleil (corrigee de l'abberation).                   */
        /* delta : distance Terre-Planete (corrigee de l'abberation).              */
        /***************************************************************************/
        """
        elong=0.
        phase=0.
        elong=acos(sin(decs)*sin(dec)+cos(decs)*cos(dec)*cos(asds-asd))
        i=atan2(r*sin(elong),delta-r*cos(elong))
        if (i<0):
            i=i+self._PI
        phase=i;
        i=atan2(cos(decs)*sin(asds-asd),sin(decs)*cos(dec)-cos(decs)*sin(dec)*cos(asds-asd));
        if (i<0):
            i=2*self._PI+i
        posang_brightlimb=fmod(4*self._PI+i,2*self._PI)
        return elong, phase, posang_brightlimb

    def _mc_hd2ah(self, ha, dec, latitude):
        """
        /***************************************************************************/
        /* Transforme les coord. sph. equatoriales vers sph. azinuth hauteur       */
        /***************************************************************************/
        /* ha est l'angle horaire local.                                           */
        /* Tout en radian                                                          */
        /***************************************************************************/
        """
        if (dec>=self._PISUR2):
            aa=(self._PI)
            hh=latitude
        elif (dec<=-self._PISUR2):
            aa=0.
            hh=-latitude
        else:
            aa=atan2(sin(ha),cos(ha)*sin(latitude)-tan(dec)*cos(latitude))
            hh=asin(sin(latitude)*sin(dec)+cos(latitude)*cos(dec)*cos(ha))
        az=fmod(4*self._PI+aa,2*self._PI);
        h=hh;
        return az, h

    def _mc_ad2hd(self, jd, longuai, asd):
        """
        /***************************************************************************/
        /* Transforme l'ascension droite en angle horaire                          */
        /***************************************************************************/
        /***************************************************************************/
        """
        # --- calcul du TSL en radians ---*/
        tsl = self._mc_tsl(jd,-longuai)
        h=tsl-asd;
        ha=fmod(4*self._PI+h,2*self._PI);
        return ha

    def _mc_ah2hd(self, az, h, latitude):
        """
        /***************************************************************************/
        /* Transforme les coord. sph. azinuth hauteur vers sph. equatoriales       */
        /***************************************************************************/
        /* ha est l'angle horaire local.                                           */
        /***************************************************************************/
        """
        if (h>=self._PISUR2):
            ahh=0.
            decc=latitude
        elif (h<=-self._PISUR2):
            ahh=0.
            decc=-latitude
        else:
            ahh=atan2(sin(az),cos(az)*sin(latitude)+tan(h)*cos(latitude))
            decc=asin(sin(latitude)*sin(h)-cos(latitude)*cos(h)*cos(az))
        ha=fmod(4*self._PI+ahh,2*self._PI)
        dec=decc
        return ha, dec

    def _mc_hd2ad(self, jd, longuai, ha):
        """
        /***************************************************************************/
        /* Transforme l'angle horaire en ascension droite                          */
        /***************************************************************************/
        /***************************************************************************/
        """
        #--- calcul du TSL en radians ---*/
        tsl = self._mc_tsl(jd,-longuai)
        ra=tsl-ha
        asd=fmod(4*self._PI+ra,2*self._PI)
        return asd
    
    def _mc_hd2parallactic(self, ha, dec, latitude):
        """
        /***************************************************************************/
        /* Transforme les coord. sph. equatoriales vers angle parallactic          */
        /***************************************************************************/
        /* ha est l'angle horaire local.                                           */
        /***************************************************************************/
        """
        if (fabs(latitude)>=self._PISUR2):
            aa=0
        elif ((ha==0.) and (dec==latitude)):
            aa=0.
        else:
            aa=atan2(sin(ha),cos(dec)*tan(latitude)-sin(dec)*cos(ha))
        parallactic=aa;
        return parallactic

# ========================================================
# === internal methods : Refraction
# ========================================================

# ========================================================
# === internal methods : Time
# ========================================================
        
    def _mc_tsl(self, jj, longitude):
        """
        /***************************************************************************/
        /* Calcul du temps sideral local apparent (en radian)                      */
        /* La longitude est comptee en radian positive vers l'ouest                */
        /* jj = UT1  (on a toujours |UTC-UT1|<1 sec)                               */
        /***************************************************************************/
        /* Formules (11.1) et (11.4) de Meeus                                      */
        /***************************************************************************/
        """
        j=(jj-2451545.0)
        t=j/36525
        theta0=280.460618375+360.98564736629*j+.000387933*t*t-t*t*t/38710000        
        eps = self._mc_obliqmoy(jj)
        dpsi, deps = self._mc_nutation(jj,1)
        theta0+=(dpsi*cos(eps+deps)/(self._DR))
        theta0-=longitude/(self._DR)
        theta0=fmod(theta0,360.)
        theta0=fmod(theta0+720.,360.)*self._DR
        tsl=theta0
        return tsl

    def _mc_td2tu(self, jjtd):
        """
        /***************************************************************************/
        /* Retourne la valeur de jj en TU a partir de jj en temps dynamique        */
        /***************************************************************************/
        /* Algo : Meeus "Astronomical Algorithms" p73 (9.1)                        */
        /***************************************************************************/
        """
        dt=0.
        dt = self._mc_tdminusut(jjtd)
        jjtu=jjtd-dt/86400.
        return jjtu


    def _mc_tu2td(self, jjtu):
        """
        /***************************************************************************/
        /* Retourne la valeur de jj en temps dynamique a partir de jj en TU        */
        /* UTC -> TT                                                               */
        /***************************************************************************/
        /* Algo : Meeus "Astronomical Algorithms" p73 (9.1)                        */
        /***************************************************************************/
        """
        dt=0.;
        dt = self._mc_tdminusut(jjtu)
        jjtd=jjtu+dt/86400.
        return jjtd

    def _mc_tdminusut(self, jj):
        """
        /***************************************************************************/
        /* Retourne la valeur dt(sec)=TT-UT partir de jj en TU                     */
        /***************************************************************************/
        /* Algo : Meeus "Astronomical Algorithms" p72                              */
        /* and ftp://maia.usno.navy.mil/ser7/tai-utc.dat                           */
        /*                                                ET 1960-1983             */
        /*                                                TDT 1984-2000            */
        /* UTC 1972-  GPS 1980-    TAI 1958-               TT 2001-                */
        /*----+---------+-------------+-------------------------+-----             */
        /*    |         |             |                         |                  */
        /*    |<------ TAI-UTC ------>|<-----   TT-TAI    ----->|                  */
        /*    |         |             |      32.184s fixed      |                  */
        /*    |<GPS-UTC>|<- TAI-GPS ->|                         |                  */
        /*    |         |  19s fixed  |                         |                  */
        /*    |                                                 |                  */
        /*    <> delta-UT = UT1-UTC                             |                  */
        /*     | (max 0.9 sec)                                  |                  */
        /*-----+------------------------------------------------+-----             */
        /*     |<-------------- delta-T = TT-UT1 -------------->|                  */
        /*    UT1 (UT)                                       TT/TDT/ET             */
        /*                                                                         */
        /* http://stjarnhimlen.se/comp/time.html                                   */
        /***************************************************************************/
        """
        ds=0.
        t=0.
        indexmax=201
        table = []
        table.append(2312752.5) ; table.append(  +124.) ; # 1620 
        table.append(2313483.5) ; table.append(   +115.)
        table.append(2314213.5) ; table.append(   +106.)
        table.append(2314944.5) ; table.append(   +98.)
        table.append(2315674.5) ; table.append(   +91.)
        table.append(2316405.5) ; table.append(   +85.)
        table.append(2317135.5) ; table.append(   +79.)
        table.append(2317866.5) ; table.append(   +74.)
        table.append(2318596.5) ; table.append(   +70.)
        table.append(2319327.5) ; table.append(   +65.)
        table.append(2320057.5) ; table.append(   +62.)
        table.append(2320788.5) ; table.append(   +58.)
        table.append(2321518.5) ; table.append(   +55.)
        table.append(2322249.5) ; table.append(   +53.)
        table.append(2322979.5) ; table.append(   +50.)
        table.append(2323710.5) ; table.append(   +48.)
        table.append(2324440.5) ; table.append(   +46.)
        table.append(2325171.5) ; table.append(   +44.)
        table.append(2325901.5) ; table.append(   +42.)
        table.append(2326632.5) ; table.append(   +40.)
        table.append(2327362.5) ; table.append(   +37.)
        table.append(2328093.5) ; table.append(   +35.)
        table.append(2328823.5) ; table.append(   +33.)
        table.append(2329554.5) ; table.append(   +31.)
        table.append(2330284.5) ; table.append(   +28.)
        table.append(2331015.5) ; table.append(   +26.)
        table.append(2331745.5) ; table.append(   +24.)
        table.append(2332476.5) ; table.append(   +22.)
        table.append(2333206.5) ; table.append(   +20.)
        table.append(2333937.5) ; table.append(   +18.)
        table.append(2334667.5) ; table.append(   +16.)
        table.append(2335398.5) ; table.append(   +14.)
        table.append(2336128.5) ; table.append(   +13.)
        table.append(2336859.5) ; table.append(   +12.)
        table.append(2337589.5) ; table.append(   +11.)
        table.append(2338320.5) ; table.append(   +10.)
        table.append(2339050.5) ; table.append(    +9.)
        table.append(2339781.5) ; table.append(    +9.)
        table.append(2340511.5) ; table.append(    +9.)
        table.append(2341242.5) ; table.append(    +9.)
        table.append(2341972.5) ; table.append(     9.)   ; # 1700 
        table.append(2342702.5) ; table.append(     9.)   ; # 1702 
        table.append(2343432.5) ; table.append(     9.)   ; # 1704 
        table.append(2344163.5) ; table.append(     9.)   ; # 1706 
        table.append(2344893.5) ; table.append(    10.)   ; # 1708 
        table.append(2345624.5) ; table.append(    10.)   ; # 1710 
        table.append(2346354.5) ; table.append(    10.)   ; # 1712 
        table.append(2347085.5) ; table.append(    10.)   ; # 1714 
        table.append(2347815.5) ; table.append(    10.)   ; # 1716 
        table.append(2348546.5) ; table.append(    11.)   ; # 1718 
        table.append(2349276.5) ; table.append(    11.)   ; # 1720 
        table.append(2350007.5) ; table.append(    11.)   ; # 1722 
        table.append(2350737.5) ; table.append(    11.)   ; # 1724 
        table.append(2351468.5) ; table.append(    11.)   ; # 1726 
        table.append(2352198.5) ; table.append(    11.)   ; # 1728 
        table.append(2352929.5) ; table.append(    11.)   ; # 1730 
        table.append(2353659.5) ; table.append(    11.)   ; # 1732 
        table.append(2354390.5) ; table.append(    12.)   ; # 1734 
        table.append(2355120.5) ; table.append(    12.)   ; # 1736 
        table.append(2355851.5) ; table.append(    12.)   ; # 1738 
        table.append(2356581.5) ; table.append(    12.)   ; # 1740 
        table.append(2357312.5) ; table.append(    12.)   ; # 1742 
        table.append(2358042.5) ; table.append(    13.)   ; # 1744 
        table.append(2358773.5) ; table.append(    13.)   ; # 1746 
        table.append(2359503.5) ; table.append(    13.)   ; # 1748 
        table.append(2360234.5) ; table.append(    13.)   ; # 1750 
        table.append(2360964.5) ; table.append(    14.)   ; # 1752 
        table.append(2361695.5) ; table.append(    14.)   ; # 1754 
        table.append(2362425.5) ; table.append(    14.)   ; # 1756 
        table.append(2363156.5) ; table.append(    15.)   ; # 1758 
        table.append(2363886.5) ; table.append(    15.)   ; # 1760 
        table.append(2364617.5) ; table.append(    15.)   ; # 1762 
        table.append(2365347.5) ; table.append(    15.)   ; # 1764 
        table.append(2366078.5) ; table.append(    16.)   ; # 1766 
        table.append(2366808.5) ; table.append(    16.)   ; # 1768 
        table.append(2367539.5) ; table.append(    16.)   ; # 1770 
        table.append(2368269.5) ; table.append(    16.)   ; # 1772 
        table.append(2369000.5) ; table.append(    16.)   ; # 1774 
        table.append(2369730.5) ; table.append(    17.)   ; # 1776 
        table.append(2370461.5) ; table.append(    17.)   ; # 1778 
        table.append(2371191.5) ; table.append(    17.)   ; # 1780 
        table.append(2371922.5) ; table.append(    17.)   ; # 1782 
        table.append(2372652.5) ; table.append(    17.)   ; # 1784 
        table.append(2373383.5) ; table.append(    17.)   ; # 1786 
        table.append(2374113.5) ; table.append(    17.)   ; # 1788 
        table.append(2374844.5) ; table.append(    17.)   ; # 1790 
        table.append(2375574.5) ; table.append(    16.)   ; # 1792 
        table.append(2376305.5) ; table.append(    16.)   ; # 1794 
        table.append(2377035.5) ; table.append(    15.)   ; # 1796 
        table.append(2377766.5) ; table.append(    14.)   ; # 1798 
        table.append(2378496.5) ; table.append(    13.7)  ; # 1800 
        table.append(2379226.5) ; table.append(    13.1)  ; # 1802 
        table.append(2379956.5) ; table.append(    12.7)  ; # 1804 
        table.append(2380687.5) ; table.append(    12.5)  ; # 1806 
        table.append(2381417.5) ; table.append(    12.5)  ; # 1808 
        table.append(2382148.5) ; table.append(    12.5)  ; # 1810 
        table.append(2382878.5) ; table.append(    12.5)  ; # 1812 
        table.append(2383609.5) ; table.append(    12.5)  ; # 1814 
        table.append(2384339.5) ; table.append(    12.5)  ; # 1816 
        table.append(2385070.5) ; table.append(    12.3)  ; # 1818 
        table.append(2385800.5) ; table.append(    12.0)  ; # 1820 
        table.append(2386531.5) ; table.append(    11.4)  ; # 1822 
        table.append(2387261.5) ; table.append(    10.6)  ; # 1824 
        table.append(2387992.5) ; table.append(     9.6)  ; # 1826 
        table.append(2388722.5) ; table.append(     8.6)  ; # 1828 
        table.append(2389453.5) ; table.append(     7.5)  ; # 1830 
        table.append(2390183.5) ; table.append(     6.6)  ; # 1832 
        table.append(2390914.5) ; table.append(     6.0)  ; # 1834 
        table.append(2391644.5) ; table.append(     5.7)  ; # 1836 
        table.append(2392375.5) ; table.append(     5.6)  ; # 1838 
        table.append(2393105.5) ; table.append(     5.7)  ; # 1840 
        table.append(2393836.5) ; table.append(     5.9)  ; # 1842 
        table.append(2394566.5) ; table.append(     6.2)  ; # 1844 
        table.append(2395297.5) ; table.append(     6.5)  ; # 1846 
        table.append(2396027.5) ; table.append(     6.8)  ; # 1848 
        table.append(2396758.5) ; table.append(     7.1)  ; # 1850 
        table.append(2397488.5) ; table.append(     7.3)  ; # 1852 
        table.append(2398219.5) ; table.append(     7.5)  ; # 1854 
        table.append(2398949.5) ; table.append(     7.7)  ; # 1856 
        table.append(2399680.5) ; table.append(     7.8)  ; # 1858 
        table.append(2400410.5) ; table.append(     7.9)  ; # 1860 
        table.append(2401141.5) ; table.append(     7.5)  ; # 1862 
        table.append(2401871.5) ; table.append(     6.4)  ; # 1864 
        table.append(2402602.5) ; table.append(     5.4)  ; # 1866 
        table.append(2403332.5) ; table.append(     2.9)  ; # 1868 
        table.append(2404063.5) ; table.append(     1.6)  ; # 1870 
        table.append(2404793.5) ; table.append(    -1.0)  ; # 1872 
        table.append(2405524.5) ; table.append(    -2.7)  ; # 1874 
        table.append(2406254.5) ; table.append(    -3.6)  ; # 1876 
        table.append(2406985.5) ; table.append(    -4.7)  ; # 1878 
        table.append(2407715.5) ; table.append(    -5.4)  ; # 1880 
        table.append(2408446.5) ; table.append(    -5.2)  ; # 1882 
        table.append(2409176.5) ; table.append(    -5.5)  ; # 1884 
        table.append(2409907.5) ; table.append(    -5.6)  ; # 1886 
        table.append(2410637.5) ; table.append(    -5.8)  ; # 1888 
        table.append(2411368.5) ; table.append(    -5.9)  ; # 1890 
        table.append(2412098.5) ; table.append(    -6.2)  ; # 1892 
        table.append(2412829.5) ; table.append(    -6.4)  ; # 1894 
        table.append(2413559.5) ; table.append(    -6.1)  ; # 1896 
        table.append(2414290.5) ; table.append(    -4.7)  ; # 1898 
        table.append(2415020.5) ; table.append(    -2.7)  ; # 1900 
        table.append(2415750.5) ; table.append(    -0.0)  ; # 1902 
        table.append(2416480.5) ; table.append(    +2.6)  ; # 1904 
        table.append(2417211.5) ; table.append(     5.4)  ; # 1906 
        table.append(2417941.5) ; table.append(     7.7)  ; # 1908 
        table.append(2418672.5) ; table.append(    10.5)  ; # 1910 
        table.append(2419402.5) ; table.append(    13.4)  ; # 1912 
        table.append(2420133.5) ; table.append(    16.0)  ; # 1914 
        table.append(2420863.5) ; table.append(    18.2)  ; # 1916 
        table.append(2421594.5) ; table.append(    20.2)  ; # 1918 
        table.append(2422324.5) ; table.append(    21.2)  ; # 1920 
        table.append(2423055.5) ; table.append(    22.4)  ; # 1922 
        table.append(2423785.5) ; table.append(    23.5)  ; # 1924 
        table.append(2424516.5) ; table.append(    23.9)  ; # 1926 
        table.append(2425246.5) ; table.append(    24.3)  ; # 1928 
        table.append(2425977.5) ; table.append(    24.0)  ; # 1930 
        table.append(2426707.5) ; table.append(    23.9)  ; # 1932 
        table.append(2427438.5) ; table.append(    23.9)  ; # 1934 
        table.append(2428168.5) ; table.append(    23.7)  ; # 1936 
        table.append(2428899.5) ; table.append(    24.0)  ; # 1938 
        table.append(2429629.5) ; table.append(    24.3)  ; # 1940 
        table.append(2430360.5) ; table.append(    25.3)  ; # 1942 
        table.append(2431090.5) ; table.append(    26.2)  ; # 1944 
        table.append(2431821.5) ; table.append(    27.3)  ; # 1946 
        table.append(2432551.5) ; table.append(    28.2)  ; # 1948 
        table.append(2433282.5) ; table.append(    29.1)  ; # 1950 
        table.append(2434012.5) ; table.append(    30.0)  ; # 1952 
        table.append(2434743.5) ; table.append(    30.7)  ; # 1954 
        table.append(2435473.5) ; table.append(    31.4)  ; # 1956 
        table.append(2436204.5) ; table.append(    32.2)  ; # 1958 
        table.append(2436934.5) ; table.append(    33.1)  ; # 1960 
        table.append(2437665.5) ; table.append(    34.0)  ; # 1962 
        table.append(2438395.5) ; table.append(    35.0)  ; # 1964 
        table.append(2439126.5) ; table.append(    36.5)  ; # 1966 
        table.append(2439856.5) ; table.append(    38.3)  ; # 1968 
        table.append(2440587.5) ; table.append(    40.2)  ; # 1970 
        table.append(2441317.5) ; table.append(  42.184)  ; # 1972 JAN  1 
        table.append(2441499.5) ; table.append(  43.184)  ; # 1972 JUL  1 
        table.append(2441683.5) ; table.append(  44.184)  ; # 1973 JAN  1 
        table.append(2442048.5) ; table.append(  45.184)  ; # 1974 JAN  1 
        table.append(2442413.5) ; table.append(  46.184)  ; # 1975 JAN  1 
        table.append(2442778.5) ; table.append(  47.184)  ; # 1976 JAN  1 
        table.append(2443144.5) ; table.append(  48.184)  ; # 1977 JAN  1 
        table.append(2443509.5) ; table.append(  49.184)  ; # 1978 JAN  1 
        table.append(2443874.5) ; table.append(  50.184)  ; # 1979 JAN  1 
        table.append(2444239.5) ; table.append(  51.184)  ; # 1980 JAN  1 
        table.append(2444786.5) ; table.append(  52.184)  ; # 1981 JUL  1 
        table.append(2445151.5) ; table.append(  53.184)  ; # 1982 JUL  1 
        table.append(2445516.5) ; table.append(  54.184)  ; # 1983 JUL  1 
        table.append(2446247.5) ; table.append(  55.184)  ; # 1985 JUL  1 
        table.append(2447161.5) ; table.append(  56.184)  ; # 1988 JAN  1 
        table.append(2447892.5) ; table.append(  57.184)  ; # 1990 JAN  1 
        table.append(2448257.5) ; table.append(  58.184)  ; # 1991 JAN  1 
        table.append(2448804.5) ; table.append(  59.184)  ; # 1992 JUL  1 
        table.append(2449169.5) ; table.append(  60.184)  ; # 1993 JUL  1 
        table.append(2449534.5) ; table.append(  61.184)  ; # 1994 JUL  1 
        table.append(2450083.5) ; table.append(  62.184)  ; # 1996 JAN  1 
        table.append(2450630.5) ; table.append(  63.184)  ; # 1997 JUL  1 
        table.append(2451179.5) ; table.append(  64.184)  ; # 1999 JAN  1 
        table.append(2453736.5) ; table.append(  65.184)  ; # 2006 JAN  1 
        table.append(2454832.5) ; table.append(  66.184)  ; # 2009 JAN  1 
        table.append(2456109.5) ; table.append(  67.184)  ; # 2012 JUL  1 UTC-TAI = - 35s 
        table.append(2457204.5) ; table.append(  68.184)  ; # 2015 JUL  1 UTC-TAI = - 36s
        table.append(2457754.5) ; table.append(  69.184)  ; # 2017 JAN  1 UTC-TAI = - 37s
        jjmax=table[(indexmax-1)*2]
        if (jj<=2067314.5):
            # --- date <= anne948 ---
            t=(jj- 2451545.0)/36525.
            ds=2715.6+573.36*t+46.5*t*t
            dt=ds;
            return dt
        if (jj<=2312752.5):
            #--- date <= anne1620 ---
            t=(jj- 2451545.0)/36525.
            ds=50.6+67.5*t+22.5*t*t
            dt=ds
            return dt
        if (jj<=jjmax):
            # --- date <= indexmax ---
            k2=indexmax
            for k in range(1,indexmax):
                k2=k
                jj2=table[k2*2]
                if (jj<=jj2):
                    break
            jj2=table[k2*2]
            ds2=table[k2*2+1]
            jj1=table[(k2-1)*2]
            ds1=table[(k2-1)*2+1]
            ds=ds1+(jj-jj1)/(jj2-jj1)*(ds2-ds1)
            dt=ds
            return dt
        # --- extrapolation ---
        ds=table[2*indexmax+1]
        dt=ds
        return dt

# ========================================================
# === internal methods : Physical data for planets
# ========================================================

    def _mc_magplanet(self, r, delta, planete_num, phase, l, b):
        """
        /***************************************************************************/
        /* Calcule la magnitude d'une planete                                      */
        /***************************************************************************/
        /* Meuus page 269 et 302-303 pour Saturne                                  */
        /***************************************************************************/
        """
        i=phase/(self._DR)
        mag=0.
        diamapp=0.
        if (r==0.):
            r=1e-10
        if (delta==0.):
            delta=1e-10
        if (r*delta>0):
            mag=5*log10(r*delta)
            if (planete_num == self._PLN_SOLEIL):
                mag=2.5*log10(delta)
        if (planete_num == self._PLN_MERCURE):
                mag+=(-0.42+.0380*i-.000273*i*i+.000002*i*i*i)
                diamapp=2.*atan(1.6303e-5/delta)
        elif (planete_num == self._PLN_VENUS):
            mag+=(-4.40+.0009*i+.000239*i*i-.00000065*i*i*i)
            diamapp=2.*atan(4.0455e-5/delta)
        elif (planete_num == self._PLN_MARS):
            mag+=(-1.52+.016*i)
            diamapp=2.*atan(2.2694e-5/delta);
        elif (planete_num == self._PLN_JUPITER):
            mag+=(-9.40+.005)
            diamapp=2.*atan(4.7741e-4/delta)
        elif (planete_num == self._PLN_URANUS):
            mag+=(-7.19)
            diamapp=2.*atan(1.6979e-4/delta)
        elif (planete_num == self._PLN_NEPTUNE):
            mag+=(-6.87)
            diamapp=2.*atan(1.6243e-4/delta)
        elif (planete_num == self._PLN_PLUTON):
            mag+=(-1.00)
            diamapp=2.*atan(1.5608e-5/delta)
        elif (planete_num == self._PLN_SOLEIL):
            mag+=(-26.86)
            diamapp=2.*atan(4.6541e-3/delta)
        elif ((planete_num == self._PLN_LUNE) or (planete_num == self._PLN_LUNE_ELP)):
            mag+=(0.38+2.97*(i/100.)-0.78*(i/100.)*(i/100.)+.90*(i/100.)*(i/100.)*(i/100.))
            diamapp=2.*atan(1.1617e-5/delta)
        elif (planete_num == self._PLN_SATURNE):
            i=28.08*(self._DR)
            o=169.51*(self._DR)
            n=113.67*(self._DR)
            bb=asin(sin(i)*cos(b)*sin(l-o)-cos(i)*sin(b))
            lp=l-(.01759/r)*(self._DR)
            bp=b-(.000764*cos(l-n)/r)*(self._DR)
            u1=atan2(sin(i)*sin(bp)+cos(i)*cos(bp)*sin(lp-o),cos(bp)*cos(lp-o))
            u2=atan2(sin(i)*sin(b)+cos(i)*cos(b)*sin(l-o),cos(b)*cos(l-o))
            bb=sin(fabs(bb))
            mag+=(-8.68+.044*fabs(u1-u2)/(self._DR)-2.60*bb+1.25*bb*bb)
            diamapp=2.*atan(4.0395e-4/delta)
        return mag, diamapp

    def _mc_libration(self, jj, planete, longmpc, rhocosphip, rhosinphip, equinoxe, astrometric, asd, dec, delta, r, ls, bs):
        """
        /***************************************************************************/
        /* Calcul de la libration apparentes de la Lune a jj donne.                */
        /***************************************************************************/
        /* D'apres Meeus "Astronomical Algorithms" p341-347                        */
        /* lonc : longitude selenographique du centre topocentrique                */
        /* latc : latitude selenographique du centre topocentrique                 */
        /* p    : position de l'angle de l'axe de rotation (axe des poles)         */
        /* lons : longitude selenographique du centre heliocentrique               */
        /* lats : latitude selenographique du centre heliocentrique                */
        /***************************************************************************/
        inputs asd, dec a l'equinoxe de la date
        """
        
        # --- nutation ---*/
        eps = self._mc_obliqmoy(jj)
        dpsi, deps = self._mc_nutation(jj,1)
        eps += deps

        # --- Moon arguments ---*/
        T=(jj-2451545.)/36525.;
        d=(297.8502042+445267.1115168*T-.00016300*T*T+T*T*T/545868-T*T*T*T/113065000)*(self._DR);
        m=(357.5291092+35999.0502909*T-.0001536*T*T+T*T*T*T/24490000)*(self._DR);
        mp=(134.9634114+477198.8676313*T+.0089970*T*T+T*T*T/69699.-T*T*T*T/14712000)*(self._DR);
        f=(93.2720993+483202.0175273*T-.0034029*T*T+T*T*T/3526000+T*T*T*T/863310000)*(self._DR);
        e=1-.002516*T-.0000074*T*T;
        f=(93.2720993+483202.0175273*T-.0034029*T*T+T*T*T/3526000+T*T*T*T/863310000)*(self._DR);
        o=(125.0445550-1934.1361849*T+0.0020762*T*T+T*T*T/467410.-T*T*T*T/60616000.)*(self._DR);
        i=1.54242*(self._DR);
        f=fmod(4*self._PI+f,2*self._PI);
        # --- parameters of physical libration ---*/
        k1=(119.75+131.849*T)*(self._DR);
        k2=(72.56+20.186*T)*(self._DR);
        rho=-0.02752*cos(mp)-0.02245*sin(f)+0.00684*cos(mp-2*f)-0.00293*cos(2*f)-0.00085*cos(2*f-2*d);
        rho=rho-0.00054*cos(mp-2*d)-0.00020*cos(mp+f)-0.00020*cos(mp+2*f)-0.00020*cos(mp-f);
        rho=rho+0.00014*cos(mp+2*f-2*d);
        sigma=-0.02816*sin(mp)+0.02244*cos(f)-0.00682*sin(mp-2*f)-0.00279*sin(2*f)-0.00083*sin(2*f-2*d);
        sigma=sigma+0.00069*sin(mp-2*d)+0.00040*cos(mp+f)-0.00025*sin(2*mp);
        sigma=sigma-0.00023*sin(mp+2*f)+0.00020*cos(mp-f)+0.00019*sin(mp-f)+0.00013*sin(mp+2*f-2*d);
        sigma=sigma-0.00010*cos(mp-3*f);
        tau=0.02520*e*sin(m)+0.00473*sin(2*mp-2*f)-0.00467*sin(mp)+0.00396*sin(k1)+0.00276*sin(2*mp-2*d);
        tau=tau+0.00196*sin(o)-0.00183*cos(mp-f)+0.00115*sin(mp-2*d)-0.00096*sin(mp-d);
        tau=tau+0.00046*sin(2*f-2*d)-0.00039*sin(mp-f)-0.00032*sin(mp-m-d)+0.00027*sin(2*mp-m-2*d);
        tau=tau+0.00023*sin(k2)-0.00014*sin(2*d)+0.00014*cos(2*mp-2*f)-0.00012*sin(mp-2*f);
        tau=tau-0.00012*sin(2*mp)+0.00011*sin(2*mp-2*m-2*d);
        tau*=(self._DR);
        sigma*=(self._DR);
        rho*=(self._DR);
        # =============== earth lon,lat =====================*/
        # --- coord ecl */
        bb = Angle(dec/self._PI)
        ll = Angle(asd/self._PI)
        coords = Coords((1,ll,bb))
        xeq,yeq,zeq = coords.cart()
        xec,yec,zec = self._mc_xyzeq2ec(xeq,yeq,zeq,eps)
        coords = Coords((xec,yec,zec))
        rr,l,b = coords.sphe("rad","rad")
        
        # --- optical topocentric libration ---*/
        w=l-dpsi-o;
        a=atan2(sin(w)*cos(b)*cos(i)-sin(b)*sin(i),cos(w)*cos(b));
        lp=a-f;
        bp=asin(-sin(w)*cos(b)*sin(i)-sin(b)*cos(i));
        # --- physical topocentric libration ---*/
        lpp=-tau+(rho*cos(a)+sigma*sin(a))*tan(bp);
        bpp=sigma*cos(a)-rho*sin(a);
        # --- topocentric libration  ---*/
        v=fmod(4*self._PI+lp+lpp,2*self._PI);
        if (v>(self._PI)):
            v-=(2*(self._PI))
        lonc=v;
        latc=(bp+bpp);
        # --- pole axis position ---*/
        v=o+deps+sigma/sin(i);
        x=sin(i+rho)*sin(v);
        y=sin(i+rho)*cos(v)*cos(eps)-cos(i+rho)*sin(eps);
        w=atan2(x,y);
        v=asin(sqrt(x*x+y*y)*cos(asd-w)/cos(bp+bpp));
        p=fmod(4*self._PI+v,2*self._PI);
        
        # =============== earth lon,lat =====================*/
        # --- sun ---*/
        l=ls+(self._PI)+delta/r*cos(b)*sin(ls-l);
        b=delta/r*b;
                
        # --- optical topocentric libration ---*/
        w=l-dpsi-o;
        a=atan2(sin(w)*cos(b)*cos(i)-sin(b)*sin(i),cos(w)*cos(b));
        lp=a-f;
        bp=asin(-sin(w)*cos(b)*sin(i)-sin(b)*cos(i));
        # --- physical topocentric libration ---*/
        lpp=-tau+(rho*cos(a)+sigma*sin(a))*tan(bp);
        bpp=sigma*cos(a)-rho*sin(a);
        # --- topocentric libration  ---*/
        v=fmod(4*self._PI+lp+lpp,2*self._PI);
        if (v>(self._PI)):
            v-=(2*(self._PI))
        lons=v;
        lats=(bp+bpp)
        return lonc, latc, p, lons, lats

    def _mc_physephem_moon(self, jj,planete,xg,yg,zg,longmpc,rhocosphip,rhosinphip, equinoxe, astrometric, asd, dec, delta, r, ls, bs):
        """
        /***************************************************************************/
        /* Cacul des parametres d'observation physique des planetes                */
        /***************************************************************************/
        /* D'apres "Astronomy with computer".                                      */
        /* pages 135-154 (chapitre 7)                                              */
        /***************************************************************************/
        """
        if ((planete == self._PLN_LUNE) or (planete == self._PLN_LUNE_ELP)):
            diamapp_equ=0.;
            diamapp_pol=0.;
            long1=0.;
            long2=0.;
            long3=0.;
            lati=0.;
            posangle_sun=0.;
            posangle_north=0.;
            # ---
            long1,lati,posangle_north,lons,lats = self._mc_libration(jj,planete,longmpc,rhocosphip,rhosinphip,equinoxe, astrometric, asd, dec)
            long2=long1;
            long3=long1;
            r=sqrt(xg*xg+yg*yg+zg*zg);
            diamapp_equ=2.*atan(1.1617e-5/r);
            diamapp_pol=diamapp_equ;
            posangle_sun=0.;
            lati_sun=lats;
            long1_sun=lons;
        return diamapp_equ,diamapp_pol,long1,long2,long3,lati,posangle_north,posangle_sun,long1_sun,lati_sun

    def _mc_physephem_nomoon(self, jj,planete,xg,yg,zg,x,y,z):
        """
        /***************************************************************************/
        /* Cacul des parametres d'observation physique des planetes                */
        /***************************************************************************/
        /* D'apres "Astronomy with computer".                                      */
        /* pages 135-154 (chapitre 7)                                              */
        /***************************************************************************/
        """
        if ((planete == self._PLN_LUNE) or (planete == self._PLN_LUNE_ELP)):
            return
        a0=0.;d0=0.;w1=0.;w2=0.;w3=0.;f=0.;req=0.;
        sense=1.;
        diamapp_equ=0.;
        diamapp_pol=0.;
        long1=0.;
        long2=0.;
        long3=0.;
        lati=0.;
        posangle_sun=0.;
        posangle_north=0.;
        t=(jj-2451545.)/36525.;
        d=(jj-2451545.);
        if (planete == self._PLN_MERCURE):
            a0=281.01-0.033*t;
            d0=61.45-0.005*t;
            req=2439.;
            f=0.;
            w1=w2=w3=(329.68+6.1385025*d);
            sense=1.;
        elif (planete == self._PLN_VENUS):
            a0=272.76;
            d0=67.16;
            req=6051.;
            f=0.;
            w1=w2=w3=(160.20-1.4813688*d);
            sense=-1.;
        elif (planete == self._PLN_TERRE):
            a0=0.-0.641*t;
            d0=90.0-0.557*t;
            req=6378.14;
            f=0.00335281;
            w1=w2=w3=(190.16+360.9856235*d);
            sense=1.;
        elif (planete == self._PLN_MARS):
            a0=317.681-0.108*t;
            d0=52.886-0.061*t;
            req=3393.4;
            f=0.0051865;
            w1=w2=w3=(176.901+350.8919830*d);
            sense=1.;
        elif (planete == self._PLN_JUPITER):
            a0=268.05-0.009*t;
            d0=64.49+0.003*t;
            req=71398.;
            f=0.0648088;
            w1=(67.1+877.900*d);
            w2=(43.3+870.270*d);
            w3=(284.695+870.536*d);
            sense=1.;
        elif (planete == self._PLN_SATURNE):
            a0=40.589-0.036*t;
            d0=83.537-0.004*t;
            req=60000.;
            f=0.1076209;
            w1=w2=(227.2037+844.300*d);
            w3=(38.90+810.7939024*d);
            sense=1.;
        elif (planete == self._PLN_URANUS):
            a0=257.311;
            d0=-15.175;
            req=25400.;
            f=0.030;
            w1=w2=w3=(203.81-501.1600928*d);
            sense=-1.;
        elif (planete == self._PLN_NEPTUNE):
            n=(357.85+52.316*t)*(self._DR);
            a0=299.36+0.7*sin(n);
            d0=43.46-0.51*cos(n);
            req=24300.;
            f=0.0259;
            w1=w2=w3=(253.18+536.3128492*d-0.48*sin(n));
            sense=1.;
        elif (planete == self._PLN_PLUTON):
            a0=313.02;
            d0=9.09;
            req=1500.;
            f=0.;
            w1=w2=w3=(236.77-56.3623195*d);
            sense=-1.;
        elif (planete == self._PLN_SOLEIL):
            a0=286.13;
            d0=63.87;
            req=696000.;
            f=0.;
            w1=w2=w3=(84.182+14.1844000*d);
            sense=-1.;
        a0*=(self._DR);
        d0*=(self._DR);
        w1*=(self._DR);
        w2*=(self._DR);
        w3*=(self._DR);
        req/=(self._UA*1e-3);
        sina=sin(a0);
        cosa=cos(a0);
        sind=sin(d0);
        cosd=cos(d0);
        dx=cosa*cosd;
        dy=sina*cosd;
        dz=sind;
        rho=sqrt(xg*xg+yg*yg);
        r=sqrt(xg*xg+yg*yg+zg*zg);
        diamapp_equ=2*asin(req/r);
        costh=((-xg*zg)*dx+(-yg*zg)*dy+(xg*xg+yg*yg)*dz)/(r*rho);
        sinth=(-yg*dx+xg*dy)/rho;
        th=atan2(sinth,costh);
        posangle_north=fmod(4*self._PI+th,2*self._PI);
        # /* w1 */
        cosw=cos(w1);
        sinw=sin(w1);
        e1x=-cosw*sina-sinw*sind*cosa;
        e1y= cosw*cosa-sinw*sind*sina;
        e1z= sinw*cosd;
        e2x= sinw*sina-cosw*sind*cosa;
        e2y=-sinw*cosa-cosw*sind*sina;
        e2z= cosw*cosd;
        e3x= cosd*cosa;
        e3y= cosd*sina;
        e3z= sind;
        sx=-(e1x*xg+e1y*yg+e1z*zg);
        sy=-(e2x*xg+e2y*yg+e2z*zg);
        sz=-(e3x*xg+e3y*yg+e3z*zg);
        phip=atan2(sz,sqrt(sx*sx+sy*sy));
        phi=atan2(tan(phip),((1-f)*(1-f)));
        lambdp=atan2(sy,sx);
        lambd=-1.*sense*lambdp;
        lati=phi;
        diamapp_pol=(diamapp_equ)*(1-f*cos(phip)*cos(phip));
        long1=fmod(4*self._PI+lambd,2*self._PI);
        # /* w1 sun */
        sx=-(e1x*x+e1y*y+e1z*z);
        sy=-(e2x*x+e2y*y+e2z*z);
        sz=-(e3x*x+e3y*y+e3z*z);
        phip=atan2(sz,sqrt(sx*sx+sy*sy));
        phi=atan2(tan(phip),((1-f)*(1-f)));
        lambdp=atan2(sy,sx);
        lambd=-1.*sense*lambdp;
        lati_sun=phi;
        long1_sun=fmod(4*self._PI+lambd,2*self._PI);
        # /* w2 */
        cosw=cos(w2);
        sinw=sin(w2);
        e1x=-cosw*sina-sinw*sind*cosa;
        e1y= cosw*cosa-sinw*sind*sina;
        e1z= sinw*cosd;
        e2x= sinw*sina-cosw*sind*cosa;
        e2y=-sinw*cosa-cosw*sind*sina;
        e2z= cosw*cosd;
        e3x= cosd*cosa;
        e3y= cosd*sina;
        e3z= sind;
        sx=-(e1x*xg+e1y*yg+e1z*zg);
        sy=-(e2x*xg+e2y*yg+e2z*zg);
        lambdp=atan2(sy,sx);
        lambd=-1.*sense*lambdp;
        long2=fmod(4*self._PI+lambd,2*self._PI);
        # /* w3 */
        cosw=cos(w3);
        sinw=sin(w3);
        e1x=-cosw*sina-sinw*sind*cosa;
        e1y= cosw*cosa-sinw*sind*sina;
        e1z= sinw*cosd;
        e2x= sinw*sina-cosw*sind*cosa;
        e2y=-sinw*cosa-cosw*sind*sina;
        e2z= cosw*cosd;
        e3x= cosd*cosa;
        e3y= cosd*sina;
        e3z= sind;
        sx=-(e1x*xg+e1y*yg+e1z*zg);
        sy=-(e2x*xg+e2y*yg+e2z*zg);
        sz=-(e3x*xg+e3y*yg+e3z*zg);
        lambdp=atan2(sy,sx);
        lambd=-1.*sense*lambdp;
        long3=fmod(4*self._PI+lambd,2*self._PI);
        # /* sun */
        d=sqrt(x*x+y*y+z*z);
        dx=-x;
        dy=-y;
        dz=-z;
        costh=((-xg*zg)*dx+(-yg*zg)*dy+(xg*xg+yg*yg)*dz)/(r*rho);
        sinth=(-yg*dx+xg*dy)/rho;
        th=atan2(sinth,costh);
        posangle_sun=fmod(4*self._PI+th,2*self._PI);
        if (planete == self._PLN_SOLEIL):
            posangle_sun=0.;
            lati_sun=lati;
            long1_sun=long1;
        return diamapp_equ,diamapp_pol,long1,long2,long3,lati,posangle_north,posangle_sun,long1_sun,lati_sun

# ========================================================
# === internal methods : Misc
# ========================================================

    def _mc_altitude2tp(self, altitude_m, pressure_0m_pascal=101325):
        """
        /****************************************************************************/
        /* Copute the ICAO temperature & pressure from a given altitude             */
        /****************************************************************************/
        /****************************************************************************/
        """
        alti=altitude_m
        p0m=pressure_0m_pascal
        tk0m=273.15+15;
        if (alti<11000):
            tk=tk0m-0.0065*alti
            p=p0m*pow(tk/tk0m,5.255)
        elif (alti<15000):
            tk0m=273.15+15
            tk=tk0m-0.0065*11000
            p=p0m*pow((tk0m-0.0065*alti)/tk0m,5.255)
        elif ((alti>=15000) and (alti<20000)):
            h1=15000; p1=p0m*pow((tk0m-0.0065*h1)/tk0m,5.255); t1=tk0m-0.0065*11000
            h2=20000; p2=5500; t2=273.15-46
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif ((alti>=20000) and (alti<30000)):
            h1=20000; p1=5500; t1=273.15-46
            h2=30000; p2=1100; t2=273.15-38
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif ((alti>=30000) and (alti<40000)):
            h1=30000; p1=1100; t1=273.15-38
            h2=40000; p2=300; t2=273.15-5
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif ((alti>=40000) and (alti<50000)):
            h1=40000; p1=300; t1=273.15-5
            h2=50000; p2=90; t2=273.15+1
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif ((alti>=50000) and (alti<60000)):
            h1=50000; p1=90; t1=273.15+1
            h2=60000; p2=25; t2=273.15-20
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif ((alti>=60000) and (alti<100000)):
            h1=60000; p1=25; t1=273.15-20
            h2=100000; p2=0.04; t2=273.15-64
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif ((alti>=100000) and (alti<200000)):
            h1=100000; p1=0.04; t1=273.15-64
            h2=200000; p2=1.3e-4; t2=273.15-82.2
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif ((alti>=200000) and (alti<400000)):
            h1=200000; p1=1.3e-4; t1=273.15-82.2
            h2=400000; p2=4.4e-6; t2=273.15-97.3
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif ((alti>=200000) and (alti<400000)):
            h1=400000; p1=4.4e-6; t1=273.15-97.3
            h2=500000; p2=0; t2=273.15-97.7
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        else:
            p=0
            tk=273.15-97.7
        return tk,p

# ========================================================
# === internal methods : Ephemeris
# ========================================================

    def _mc_radec2app(self, date_utc, longmpc, rhocosphip, rhosinphip, ra, dec, equinox, epoch, mura, mudec, plx, tk,ppa,hump,lnm,outputs):
        # --- date        
        jjutc = date_utc.jd()
        jds = [ jjutc ]

        # --- home
        longmpc *= self._DR
        latitude, altitude = self._mc_rhophi2latalt(rhosinphip, rhocosphip)
        latrad = latitude * self._DR

        # --- outputs (list of keywords, such as RA, DEC, ELONG)
        outputs = [ output.upper() for output in outputs ]
        results = []
        
        #print("-1. ra={} dec={}".format(ra,dec))
        ra*=self._DR ;
        dec*=self._DR;
        #print("0. ra={} dec={}".format(ra/self._DR,dec/self._DR))
        muramas=mura;
        mudecmas=mudec;
        for jd in jds:
            
            #print("1. ra={} dec={}".format(ra/self._DR,dec/self._DR))
            cosdec=cos(dec);
            mura=muramas*1e-3/86400/cosdec;
            mudec=mudecmas*1e-3/86400;
            parallax=plx;
                
            # --- aberration annuelle ---*/
            asd2, dec2 = self._mc_aberration_annuelle(jd,ra,dec,1)
            ra=asd2
            dec=dec2
            #print("2. ra={} dec={}".format(ra/self._DR,dec/self._DR))
            
            #--- calcul de mouvement propre ---*/
            ra+=(jd-epoch)/365.25*mura;
            dec+=(jd-epoch)/365.25*mudec;
            #print("3. ra={} dec={}".format(ra/self._DR,dec/self._DR))
            
				# --- calcul de la precession ---*/
            asd2, dec2 = self._mc_precad(equinox,ra,dec,jd)
            ra=asd2;
            dec=dec2;
            #print("4. ra={} dec={}".format(ra/self._DR,dec/self._DR))
            
            # --- correction de parallaxe stellaire*/
            if (parallax>0):
                asd2, dec2 = self._mc_parallaxe_stellaire(jd,ra,dec,parallax)
                ra=asd2;
                dec=dec2;
            #print("5. ra={} dec={}".format(ra/self._DR,dec/self._DR))

            # --- correction de nutation */
            asd2, dec2 = self._mc_nutradec(jd,ra,dec,1);
            ra=asd2
            dec=dec2
            #print("6. ra={} dec={}".format(ra/self._DR,dec/self._DR))

            # --- aberration de l'aberration diurne*/
            asd2, dec2 = self._mc_aberration_diurne(jd,ra,dec,longmpc,rhocosphip,rhosinphip,1)
            ra=asd2;
            dec=dec2;
            #print("7. ra={} dec={}".format(ra/self._DR,dec/self._DR))

				# --- coordonnees horizontales---*/
            ha = self._mc_ad2hd(jd,longmpc,ra)
            az, h = self._mc_hd2ah(ha,dec,latrad)

				# --- refraction ---*/
            #lnm=590,
            #refraction = self._mc_refraction2(h,1,tk,ppa,lnm,hump,latitude,altitude)
            #h += refraction;     
            #ha, dec = self._mc_ah2hd(az,h,latrad)

            parallactic = self._mc_hd2parallactic(ha,dec,latrad)
            ra = self._mc_hd2ad(jd,longmpc,ha)

        if 'RA_APP' in outputs or 'RA' in outputs:
            results.append(['RA_APP',ra/self._DR])
        if 'DEC_APP' in outputs or 'DEC' in outputs :
            results.append(['DEC_APP',dec/self._DR])
        if 'HA' in outputs:
            results.append(['HA',ha/self._DR])
        if 'AZ' in outputs:
            results.append(['AZ',az/self._DR])
        if 'ELEV' in outputs or 'ALT' in outputs or 'ALTITUDE' in outputs:
            results.append(['ELEV',h/self._DR])
        if 'PARALLACTIC' in outputs:
            results.append(['PARALLACTIC',parallactic/self._DR])
        return dict(results)
    
    def _mc_ephem_planet(self, planet_name, date_utc, longmpc, rhocosphip, rhosinphip, astrometric, jd_equinox, outputs):
        """ Compute a planet ephemeris.
        
        :param planet_name: The name of a planet.
        :type planet_name: string
        :param date_utc: The Date (UTC)
        :type date_utc: Date
        :param coords_home: The Coords of the home place (for parallax)
        :type coords_home: Coords
        :param astrometric: Flag to compute astrometric (=1) or true coordinates (=0)
        :type astrometric: int
        :param jd_equinox: The equinox julian day if astrometric flag = 1
        :type jd_equinox: float
        """
        # --- planet
        planet_num = self._mc_name2planetnum(planet_name)
        
        # --- The case of a false planet
        if (planet_num == self._PLN_OTHERPLANET):
            raise Exception
            return ""
        
        # --- date        
        jjutc = date_utc.jd()
        jj = self._mc_tu2td(jjutc)
        jjd=jj

        # --- home
        #altitude, longmpc , latitude = coords_home.sphe("rad","deg")
        latitude, altitude = self._mc_rhophi2latalt(rhosinphip, rhocosphip)
        longmpc*=self._DR
        
        # --- computation method
        afm = self._AFM_VFP79
        
        # --- outputs (list of keywords, such as RA, DEC, ELONG)
        outputs = [ output.upper() for output in outputs ]
        results = []
        
        if (planet_num == self._PLN_LUNE) or (planet_num == self._PLN_LUNE_ELP):
            # =====================================
            # === The moon only
            # =====================================
            
            ttminusutc=jj-jjutc
            # --- soleil ---
            delta = 1. ; # correction de l'abberation planetaire a priori pour la Lune            
            jjds = self._mc_aberpla(jjd,delta)
            llp, mmp, uup = self._mc_jd2lbr1a(jjds);
            coords = self._mc_jd2lbr1b(jjds, self._PLN_SOLEIL, llp, mmp, uup, afm)
            xs,ys,zs = coords.cart()
            rs,ls,bs = coords.sphe("rad","rad")            
            
            # --- correction de la parallaxe ---
            eps = self._mc_obliqmoy(jjds)
            xs,ys,zs = self._mc_xyzec2eq(xs,ys,zs,eps)
            dxeq,dyeq,dzeq = self._mc_paraldxyzeq(jjds-ttminusutc,longmpc,rhocosphip,rhosinphip)
            xs-=dxeq
            ys-=dyeq
            zs-=dzeq
            xs,ys,zs = self._mc_xyzeq2ec(xs,ys,zs,eps)

            # --- soleil : coordonnes asd,dec du Soleil ---
            if (astrometric==0):
                coords = Coords((xs,ys,zs))
                rs,ls,bs = coords.sphe("rad","rad")
                dpsi, deps = self._mc_nutation(jjd,1)
                ls += dpsi
                eps += deps
                bb = Angle(bs/self._DR)
                ll = Angle(ls/self._DR)
                coords = Coords((rs,ll,bb))
                xs,ys,zs = coords.cart()
            xs,ys,zs = self._mc_xyzec2eq(xs,ys,zs,eps)
            coords = Coords((xs,ys,zs))
            delta,asds,decs = coords.sphe("rad","rad")

            # a ce niveau on retient (asds,decs) pour le calcul de la phase */
            # On recommence tout le calcul sans abberation pour la position */
            #dans le repere heliocentrique */

            # --- Terre ---
            llp, mmp, uup = self._mc_jd2lbr1a(jjd);
            coords = self._mc_jd2lbr1b(jjd, self._PLN_SOLEIL, llp, mmp, uup, afm)
            xs,ys,zs = coords.cart()
            r,ls,bs = coords.sphe("rad","rad")            
            
            # --- Terre : correction de la parallaxe ---
            eps = self._mc_obliqmoy(jjd)
            xs,ys,zs = self._mc_xyzec2eq(xs,ys,zs,eps)
            dxeq,dyeq,dzeq = self._mc_paraldxyzeq(jjd-ttminusutc,longmpc,rhocosphip,rhosinphip)
            xs-=dxeq
            ys-=dyeq
            zs-=dzeq
            xs,ys,zs = self._mc_xyzeq2ec(xs,ys,zs,eps)
            
            # --- Terre : coordonnes asd,dec du Soleil ---
            if (astrometric==0):
                coords = Coords((xs,ys,zs))
                rs,ls,bs = coords.sphe("rad","rad")
                dpsi, deps = self._mc_nutation(jjd,1)
                ls += dpsi
                eps += deps
                bb = Angle(bs/self._DR)
                ll = Angle(ls/self._DR)
                coords = Coords((r,ll,bb))
                xs,ys,zs = coords.cart()
            xs,ys,zs = self._mc_xyzec2eq(xs,ys,zs,eps)
            coords = Coords((xs,ys,zs))
            delta,asd,dec = coords.sphe("rad","rad")
            
            # ici on ne garde que (xs,ys,zs,delta) pour la position geocentrique

            # --- LUNE : planete (coordonnees ecliptiques astrometriques a la date) ---
            llp, mmp, uup = self._mc_jd2lbr1a(jjd);
            coords = self._mc_jd2lbr1b(jjd, planet_num, llp, mmp, uup, afm)
            x,y,z = coords.cart()
            eps = self._mc_obliqmoy(jjd)
            x,y,z = self._mc_xyzec2eq(x,y,z,eps)
            coords = Coords((x,y,z))
            delta,asd,dec = coords.sphe("rad","rad")

            # --- planete corrigee de l'aberration de la lumiere ---
            jjd = self._mc_aberpla(jjd,delta)
            llp, mmp, uup = self._mc_jd2lbr1a(jjd);
            coords = self._mc_jd2lbr1b(jjd, planet_num, llp, mmp, uup, afm)
            x,y,z = coords.cart()
            eps = self._mc_obliqmoy(jjd)
            
            # --- correction de la nutation ---
            r,l,b = coords.sphe()
            if (astrometric==0):
                dpsi, deps = self._mc_nutation(jjd,1)
                l += dpsi
                eps += deps
                bb = Angle(b/self._DR)
                ll = Angle(l/self._DR)
                coords = Coords((r,ll,bb))
                x,y,z = coords.cart()
                
            # --- correction de la parallaxe ---
            x,y,z = self._mc_xyzec2eq(x,y,z,eps)
            x-=dxeq
            y-=dyeq
            z-=dzeq
            
            # --- coord. spheriques ---
            coords = Coords((x,y,z))
            delta,asd,dec = coords.sphe("rad","rad")

            #--- parametres physiques --- (not implemented)
            if ('APPDIAMEQU' in outputs) or ('APPDIAMPOL' in outputs) or ('LONGI' in outputs) or ('LONGII' in outputs) or ('LONGIII' in outputs) or ('LATI' in outputs) or ('POSNORTH' in outputs) or ('POSSUN' in outputs) or ('LONGI_SUN' in outputs) or ('LATI_SUN' in outputs):
                diamapp_equ,diamapp_pol,long1,long2,long3,lati,posangle_north,posangle_sun,long1_sun,lati_sun = self._mc_physephem_moon(jjd,planet_num,x,y,z,longmpc, rhocosphip, rhosinphip, asd, dec, delta, r, ls, bs)
            
            # --- parametres elong et magnitude ---
            x,y,z = self._mc_he2ge(x,y,z,-xs,-ys,-zs)
            r=sqrt(x*x+y*y+z*z)
            if ('ELONG' in outputs) or ('PHASE' in outputs) or ('POSSUN' in outputs) or ('MAG' in outputs) or ('APPDIAM' in outputs):
                elong, phase, limb = self._mc_elonphaslimb(asd,dec,asds,decs,rs,delta);
                posangle_sun = limb
            if ('MAG' in outputs) or ('APPDIAM' in outputs):
                mag, diamapp = self._mc_magplanet(r, delta, planet_num,phase, l, b)

            # --- correction de l'aberration annuelle ---
            if (astrometric==0):
                asd, dec = self._mc_aberration_annuelle(jjd, asd, dec, 1)
    
            # --- correction de la precession ---
            asd,dec = self._mc_precad(jjd,asd,dec,jd_equinox); # equatorial J2000

            # --- parametres physiques ---*/
            
        else:
            # =====================================
            # === All planets and Sun
            # =====================================
            
            # --- soleil ---
            llp, mmp, uup = self._mc_jd2lbr1a(jjd);
            coords = self._mc_jd2lbr1b(jjd, self._PLN_SOLEIL, llp, mmp, uup, afm)
            xs,ys,zs = coords.cart()
            rs,ls,bs = coords.sphe("rad","rad")
            if (planet_num == self._PLN_SOLEIL):
                # --- special case of Sun
                jjd = self._mc_aberpla(jjd,rs)
                llp, mmp, uup = self._mc_jd2lbr1a(jjd);
                coords = self._mc_jd2lbr1b(jjd, planet_num, llp, mmp, uup, afm)
                xs,ys,zs = coords.cart()
                rs,ls,bs = coords.sphe("rad","rad")            
            
            # --- correction de la parallaxe ---
            eps = self._mc_obliqmoy(jjd)
            xs,ys,zs = self._mc_xyzec2eq(xs,ys,zs,eps)
            dxeq,dyeq,dzeq = self._mc_paraldxyzeq(jjd,longmpc,rhocosphip,rhosinphip)
            xs-=dxeq
            ys-=dyeq
            zs-=dzeq
            xs,ys,zs = self._mc_xyzeq2ec(xs,ys,zs,eps)
    
            if (planet_num == self._PLN_SOLEIL):
                xg=xs; yg=ys; zg=zs
            else:
                # --- planet ---
                coords = self._mc_jd2lbr1b(jjd, planet_num, llp, mmp, uup, afm)
                x,y,z = coords.cart()   
                x,y,z = self._mc_he2ge(x,y,z,xs,ys,zs)
                x,y,z = self._mc_xyzec2eq(x,y,z,eps)
                coords = Coords((x,y,z))
                delta,asd,dec = coords.sphe("rad","rad")
        
                # --- planete corrigee de l'aberration de la lumiere ---
                jjd = self._mc_aberpla(jjd,delta)
                llp, mmp, uup = self._mc_jd2lbr1a(jjd)
                coords = self._mc_jd2lbr1b(jjd, planet_num, llp, mmp, uup, afm)
                x,y,z = coords.cart()
                rr,l,b = coords.sphe("rad","rad")
                xg,yg,zg = self._mc_he2ge(x,y,z,xs,ys,zs)
                eps = self._mc_obliqmoy(jjd)
    
            # --- correction de la nutation ---
            if (astrometric==0):
                coords = Coords((xg,yg,zg))
                r,l,b = coords.sphe("rad","rad")
                dpsi, deps = self._mc_nutation(jjd,1)
                l += dpsi
                eps += deps
                bb = Angle(b/self._DR)
                ll = Angle(l/self._DR)
                coords = Coords((r,ll,bb))
                xg,yg,zg = coords.cart()
    
            # --- coord. spheriques ---
            xg,yg,zg = self._mc_xyzec2eq(xg,yg,zg,eps)
            coords = Coords((xg,yg,zg))
            delta,asd,dec = coords.sphe("rad","rad")
    
            # --- correction de l'aberration annuelle ---
            if (astrometric==0):
                asd, dec = self._mc_aberration_annuelle(jjd, asd, dec, 1)
    
            # --- correction de la precession ---
            if (planet_num != self._PLN_PLUTON):
                asd,dec = self._mc_precad(jjd,asd,dec,jd_equinox); # equatorial J2000
    
            # --- parametres elong et magnitude ---*/
            if (planet_num != self._PLN_SOLEIL):
                r = rr
                if ('ELONG' in outputs) or ('PHASE' in outputs) or ('MAG' in outputs) or ('DIAMAPP' in outputs):
                    elong, phase = self._mc_elonphas(r, rs, delta)
            else:
                elong = 0
                phase = 0
            if ('MAG' in outputs) or ('APPDIAM' in outputs):
                mag, diamapp = self._mc_magplanet(r, delta, planet_num, phase, l, b)

            # --- parametres physiques ---*/
            if ('APPDIAMEQU' in outputs) or ('APPDIAMPOL' in outputs) or ('LONGI' in outputs) or ('LONGII' in outputs) or ('LONGIII' in outputs) or ('LATI' in outputs) or ('POSNORTH' in outputs) or ('POSSUN' in outputs) or ('LONGI_SUN' in outputs) or ('LATI_SUN' in outputs):
                x,y,z = self._mc_xyzec2eq(x,y,z,eps) ; # coord. helio equatoriales
                diamapp_equ,diamapp_pol,long1,long2,long3,lati,posangle_north,posangle_sun,long1_sun,lati_sun = self._mc_physephem_nommon(jjd,planet_num,xg,yg,zg,x,y,z)
        
        # --- outputs 
        if 'NAME' in outputs:
            results.append(['NAME',planet_name])
        if 'RA' in outputs:
            results.append(['RA',asd/self._DR])
        if 'DEC' in outputs:
            results.append(['DEC',dec/self._DR])
        if 'EQUINOX' in outputs:
            results.append(['EQUINOX',(Date(jd_equinox)).equinox()])
        if 'ELONG' in outputs:
            results.append(['ELONG',elong/self._DR])
        if 'PHASE' in outputs:
            results.append(['PHASE',phase/self._DR])
        if 'DELTA' in outputs:
            results.append(['DELTA',delta])
        if 'R' in outputs:
            results.append(['R',rs])
        if 'MAG' in outputs:
            results.append(['MAG',mag])
        if 'APPDIAM' in outputs:
            results.append(['APPDIAM',diamapp/self._DR])
        if 'APPDIAMEQU' in outputs:
            results.append(['APPDIAMEQU',diamapp_equ/self._DR])
        if 'APPDIAMPOL' in outputs:
            results.append(['APPDIAMPOL',diamapp_pol/self._DR])
        if 'LONGI' in outputs:
            results.append(['LONGI',long1/self._DR])
        if 'LONGII' in outputs:
            results.append(['LONGII',long2/self._DR])
        if 'LONGIII' in outputs:
            results.append(['LONGIII',long3/self._DR])
        if 'LATI' in outputs:
            results.append(['LATI',lati/self._DR])
        if 'POSNORTH' in outputs:
            results.append(['POSNORTH',posangle_north/self._DR])
        if 'POSSUN' in outputs:
            results.append(['POSNORTH',posangle_sun/self._DR])
        if 'LONGI_SUN' in outputs:
            results.append(['LONGI_SUN',long1_sun/self._DR])
        if 'LATI_SUN' in outputs:
            results.append(['LATI_SUN',lati_sun/self._DR])
        return dict(results)
        
# ========================================================
# === special methods
# ========================================================
        
    def __init__(self):
        """ Object initialization where planet_name is the name of the planet
        """
        self._init_mechanics()