coords.py
13.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import math
import doctest
from .angles import Angle
# ========================================================
# ========================================================
# === COORD
# ========================================================
# ========================================================
class Coords:
""" Class to convert coordinates for astronomy
Coordinate formats are:
* cart = tuple of x, xy, xyz
* sphe = tuple of r, rp, rpt
:Usage:
First, instanciate an object from the class:
::
coord = Coords()
Second, assign a coordinate in any format:
::
xyz = (x, y, z)
coord.coords(xyz)
or
::
phi = Angle(45)
theta = Angle(120)
rpt = (r, phi, theta)
coord.coords(rpt)
Third, get the converted angles:
::
r, phi, theta = coord.sphe()
x,y,y = coord.cart()
Fourth, some tools
::
coord.separation(coord2)
coord.pole(coord2)
coord.scalar_product(coord2)
coord.vectorial_product(coord2)
:Informations:
::
help(Coords)
Coords().infos("doctest")
Coords().infos("doc_methods")
"""
# ========================================================
# === attributs
# ========================================================
_TYPE_UNKN = 0
_TYPE_CART = 1
_TYPE_SPHE = 2
_X = 0
_Y = 1
_Z = 2
_R = 0
_PHI = 1
_THETA = 2
# ---
_x = 0
_y = 0
_z = 0
_r = 0
_phi = 0
_theta = 0
_cos_phi = 1
_sin_phi = 0
_cos_theta = 1
_sin_theta = 0
_computed_rpt = 0
_computed_xyz = 0
_init_cart_or_sphe = (0, 0, 0)
_init_type = _TYPE_UNKN
# ========================================================
# === internal methods
# ========================================================
def _coord_cart_or_sphe_decode(self,cart_or_sphe):
""" Decode the cart_or_sphe tuple into three floats and the type.
"""
dim = len(cart_or_sphe)
# --- Verify integrity of the input tuple
if (dim>=1):
p1 = cart_or_sphe[0]
if isinstance(p1, (int, float)) == False:
raise TypeError
return ""
if (dim>=2):
p2 = cart_or_sphe[1]
if isinstance(p2, (int, float, Angle)) == False:
raise TypeError
return ""
if (dim>=3):
p3 = cart_or_sphe[2]
if isinstance(p3, (int, float, Angle)) == False:
raise TypeError
return ""
else:
raise TypeError
return ""
# ---
x = 0
y = 0
z = 0
r = 0
phi = 0
theta = 0
if (dim==1):
init_type =self. _TYPE_CART
x = cart_or_sphe[self._X]
if (dim>=2):
p1 = cart_or_sphe[0]
p2 = cart_or_sphe[1]
if isinstance(p2, (int, float)) == True:
init_type = self._TYPE_CART
x = cart_or_sphe[self._X]
y = cart_or_sphe[self._Y]
else:
init_type = self._TYPE_SPHE
if isinstance(p2, Angle) == False:
p2 = Angle(p2)
r = cart_or_sphe[self._R]
phi = p2
if (dim==3):
p3 = cart_or_sphe[2]
if (isinstance(p2, (int, float)) == True) and (isinstance(p3, (int, float)) == True):
init_type = self._TYPE_CART
x = cart_or_sphe[self._X]
y = cart_or_sphe[self._Y]
z = cart_or_sphe[self._Z]
else:
init_type =self. _TYPE_SPHE
if isinstance(p2, Angle) == False:
p2 = Angle(p2)
if isinstance(p3, Angle) == False:
p3 = Angle(p3)
r = cart_or_sphe[self._R]
phi = p2
theta = p3
ppp = (0,0,0)
if init_type == self._TYPE_CART:
ppp = (x, y, z)
elif init_type == self._TYPE_SPHE:
ppp = (r, phi.rad(), theta.rad())
return init_type, ppp
def _init(self,cart_or_sphe=(0,0,0)):
""" Initialize internal attributes.
:param cart_or_sphe: Cartesian or spherical coordinates. If the tupple contains two elements it is spherical coordinates. If the tupple contains three elements it is cartesian coordinates.
:type cart_or_sphe: tuple
:Example:
objangle = Coords()
objangle._init()
"""
self._computed_rpt = 0
self._computed_xyz = 0
self._init_dim = 0
self._init_type = self._TYPE_UNKN
init_type, ppp = self._coord_cart_or_sphe_decode(cart_or_sphe)
# print("init_type={} ppp={} ".format(init_type, ppp ))
# ---
if init_type == self._TYPE_UNKN:
raise Exception
return ""
self._init_type = init_type
self._cos_phi = 1
self._sin_phi = 0
self._cos_theta = 1
self._sin_theta = 0
if self._init_type == self._TYPE_CART:
self._x = ppp[self._X]
self._y = ppp[self._Y]
self._z = ppp[self._Z]
xyz = (self._x, self._y, self._z)
res = self.coord_xyz2rpt(xyz)
self._r, self._phi, self._theta, self._cos_phi, self._sin_phi, self._cos_theta, self._sin_theta = res
else:
self._r = ppp[self._R]
self._phi = ppp[self._PHI]
self._theta = ppp[self._THETA]
rpt = (self._r, self._phi, self._theta)
res = self.coord_rpt2xyz(rpt)
self._x, self._y, self._z, self._cos_phi, self._sin_phi, self._cos_theta, self._sin_theta = res
self._computed_rpt = 1
self._computed_xyz = 1
self._init_cart_or_sphe = cart_or_sphe
def _coord_compare(self, coords, operator):
""" Comparaison of radius coords for various operators.
:param coords: An coords in any supported format (cf. help(Coords))
:type coords: Coords()
:param operator: Operator such as == != > >= < <=
:type operator: string
:returns: The logic result of the comparison.
:rtype: bool
:Example:
>>> objcoord1 = Coords()
>>> objcoord2 = Coords()
>>> objcoord1.coords((1,2,3)) ; objcoord2.coords((4,5,6)) ; objcoord1._coord_compare(objcoord2,">")
(1, 2, 3)
(4, 5, 6)
False
"""
if isinstance(coords, Coords) == False:
coords = Coords(coords)
res = False
if (self._computed_rpt == 1) and (coords._computed_rpt == 1):
toeval = str(self._r)+" "+operator+" "+str(coords._r)
res = eval(toeval)
return res
# ========================================================
# === coords methods
# ========================================================
def coord_xyz2rpt(self, xyz):
if (self._computed_rpt ==0):
x, y, z = xyz
r = math.sqrt(x*x + y*y + z*z)
phi = math.atan2(y,x)
if (r==0):
theta = 0
else:
theta = math.asin(z/r)
cos_theta = math.cos(theta)
sin_theta = math.sin(theta)
cos_phi = math.cos(phi)
sin_phi = math.sin(phi)
return r, phi, theta, cos_phi, sin_phi, cos_theta, sin_theta
else:
return self._r, self._phi, self._theta, self._cos_phi, self._sin_phi, self._cos_theta, self._sin_theta
def coord_rpt2xyz(self, rpt):
if (self._computed_xyz ==0):
r, phi, theta = rpt
cos_theta = math.cos(theta)
sin_theta = math.sin(theta)
cos_phi = math.cos(phi)
sin_phi = math.sin(phi)
d = r * cos_theta
x = d * cos_phi
y = d * sin_phi
z = r * sin_theta
return x, y, z, cos_phi, sin_phi, cos_theta, sin_theta
else:
return self._x, self._y, self._z, self._cos_phi, self._sin_phi, self._cos_theta, self._sin_theta
def great_circle_distance(self, coords):
if isinstance(coords, Coords) == False:
coords = Coords(coords)
dx = coords._cos_theta * coords._cos_phi - self._cos_theta * self._cos_phi
dy = coords._cos_theta * coords._sin_phi - self._cos_theta * self._sin_phi
dz = coords._sin_theta - self._sin_theta
#print("dd={} dz={} ct1={} ct2={}".format(math.sqrt(dx*dx + dy*dy), dz,coords._cos_theta,self._cos_theta))
c = math.sqrt(dx*dx + dy*dy + dz*dz)
d = 2*math.asin(c/2)
return d * Angle()._r2d
# ========================================================
# === get/set methods
# ========================================================
def coords(self, cart_or_sphe):
""" Set the input cart_or_sphe in any format
:param cart_or_sphe: Cartesian or spherical coordinates. If the tupple contains two elements it is spherical coordinates. If the tupple contains three elements it is cartesian coordinates.
:type cart_or_sphe: tuple
Angles are in any supported format (cf. help(Coords))
:Example:
>>> objcoord = Coords()
>>> objcoord.coords((1,3,6))
(1, 3, 6)
:Related topics:
After using objcoord.coords() get conversions with methods as objcoord.cart() or objcoord.sphe().
"""
if cart_or_sphe != "":
if (cart_or_sphe != self._init_cart_or_sphe):
self._init(cart_or_sphe)
self.init_cart_or_sphe = cart_or_sphe
return self.init_cart_or_sphe
def cart(self):
""" Get the cartesian coordinates
:returns: The tuple (x,y,z)
:rtype: tuple(float, float, float)
:Example:
>>> objcoord = Coords()
>>> objcoord.coords((1,3,6))
(1, 3, 6)
>>> objcoord.cart()
(1, 3, 6)
.. note:: Before use objcoord.cart() to set the input coords with objcoord.coords().
"""
if (self._computed_xyz == 0):
raise Exception
return ""
return self._x, self._y, self._z
def sphe(self,format_phi="deg",format_theta="deg"):
""" Get the spherical coordinates
:param format_phi: Angle format unit.
:type format_phi: str
:param format_theta: Angle format unit.
:type format_theta: str
:returns: The tuple (x,y,z)
:rtype: tuple(float, float, float)
:Example:
>>> objcoord = Coords()
>>> objcoord.coords((1,3,6))
(1, 3, 6)
>>> objcoord.sphe("H","d")
(6.782329983125268, '4h46m15.61s', '62d12m31.30s')
.. note:: Before use objcoord.sphe() to set the input coords with objcoord.coords().
"""
if (self._computed_rpt == 0):
raise Exception
return ""
if format_phi=="rad":
pout = self._phi
elif format_phi=="deg":
pout = self._phi * Angle()._r2d
else:
p = Angle(self._phi * Angle()._r2d)
pout = p.sexagesimal(format_phi)
if format_theta=="rad":
tout = self._theta
elif format_theta=="deg":
tout = self._theta * Angle()._r2d
else:
t = Angle(self._theta * Angle()._r2d)
tout = t.sexagesimal(format_theta)
return self._r, pout, tout
# ========================================================
# === debug methods
# ========================================================
def infos(self, action) -> None:
""" To get informations about this class
:param action: A command to run a debug action (see examples).
:type action: string
:Example:
Coords().infos("doctest")
Coords().infos("doc_methods")
Coords().infos("internal_attributes")
Coords().infos("public_methods")
"""
if (action == "doc_methods"):
publics = [x for x in dir(self) if x[0]!="_"]
for public in publics:
varname = "{}".format(public)
if (callable(getattr(self,varname))==True):
print("\n{:=^40}".format(" method "+varname+" "))
t = "Coords()."+varname+".__doc__"
tt =eval(t)
print(tt)
if (action == "doctest"):
if __name__ == "__main__":
print("\n{:~^40}".format("doctest"))
doctest.testmod(verbose=False)
if (action == "internal_attributes"):
internals = [x for x in dir(self) if x[0]=="_" and x[1]!="_"]
for internal in internals:
varname = "{}".format(internal)
#if (hasattr(self,varname)==True):
if (callable(getattr(self,varname))==False):
print(varname + "=" + str(getattr(self,varname)))
if (action == "public_methods"):
publics = [x for x in dir(self) if x[0]!="_"]
for public in publics:
varname = "{}".format(public)
if (callable(getattr(self,varname))==True):
print(varname)
# ========================================================
# === special methods
# ========================================================
def __init__(self, cart_or_sphe=(0,0,0)):
""" Object initialization where cart_or_sphe is the input tuple of cartesian or spheric coordinates.
:param cart_or_sphe: An angle in any supported format (cf. help(Angle))
:type cart_or_sphe: tuple
cartesian coords = tuple(float, float, float)
spheric coords = tuple(float, Angle, Angle)
"""
self._init(cart_or_sphe)