Scheduler.py 27 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
from django.db import models
from common.models import Schedule, Sequence, ScheduleHasSequences
from operator import attrgetter
from decimal import *
import time

DEFAULT_PLAN_START = Decimal(2457485.250000)  # April 6th 2016, 18:00:00.0 UT
DEFAULT_PLAN_END = Decimal(2457485.916667)  # April 7th 2016, 10:00:00.0 UT

PRECISION = Decimal(0.0000000001)

SIMULATION = False

TIMESTAMP_JD = 2440587.500000
MAX_OVERHEAD = 25
MAX_OVERHEAD_JD = Decimal(MAX_OVERHEAD / (24 * 60 * 60))

REJECTED_QUOTA = "Insufficient quota"
REJECTED_ROOM = "Insufficient room for this sequence"

'''
    Note : the following functions are necessary due to a too-high precision of Decimal objects
'''


def is_nearby_equal(a: Decimal, b: Decimal, precision: Decimal=PRECISION):
    '''
        Compare the two decimal, according to the given precision
    '''
    return (True if abs(b - a) < PRECISION else False)


def is_nearby_sup_or_equal(a: Decimal, b: Decimal, precision: Decimal=PRECISION):
    '''
        Compare the two decimal, according to the given precision
    '''
    if (a > b):
        return True
    return (True if abs(b - a) < PRECISION else False)


def is_nearby_less_or_equal(a: Decimal, b: Decimal, precision: Decimal=PRECISION):
    '''
        Compare the two decimal, according to the given precision
    '''
    if (a < b):
        return True
    return (True if abs(b - a) < PRECISION else False)


class Interval:
    """
    Simple class that represents an interval of time
    Julian days should be used
    """

    def __init__(self, start, end):
        self._start = Decimal(start)
        self._end = Decimal(end)
        self.duration = Decimal(end - start)

    def __str__(self):
        print("[" + str(self.start) + " - " + str(self.end) + "]")

    def _get_start(self):
        return self._start

    def _set_start(self, start):
        if start > self._end:
            raise ValueError(
                "Cannot set start (%d): must be lower than end (%d)" % (start, self._end))
        self._start = start
        self.duration = self._end - self._start

    def _get_end(self):
        return self._end

    def _set_end(self, end):
        if end < self._start:
            raise ValueError(
                "Cannot set end (%d): must be bigger than start (%d)" % (end, self._start))
        self._end = end
        self.duration = self._end - self._start

    start = property(fget=_get_start, fset=_set_start)
    end = property(fget=_get_end, fset=_set_end)


class Scheduler():
    """
   Role : create a planning for the following/current night

   Read in DB : Sequence, PyrosUser and parents
   Create in DB : Schedule
   Update in DB : Schedule, Sequence
   Delete in DB : None

   Entry point(s) :
           - make_schedule
           - simulate_schedule
    """

    """
    TODO:
        - définition de plan_start et plan_end
        - calcul de la priorité
        - calcul des quotas
        - définir l'attribut 'flag' de Schedule
        - remplissage des espaces libres

    """

    def __init__(self):
        self.schedule = Schedule.objects.create()
        # TODO: quel est le "flag" dans le schedule ??
        self.intervals = []
        self.max_overhead = MAX_OVERHEAD_JD

    def get_night_limits(self):
        '''
        determines and set plan_start and plan_end (beginning & end of the observation night)
        '''

        # TODO: définir comment on calcule plan_start et plan_end (via quels
        # moyens)
        self.schedule.plan_start = DEFAULT_PLAN_START  # default value
        self.schedule.plan_end = DEFAULT_PLAN_END  # default value

    def set_night_limits(self, plan_start, plan_end):
        '''
        Sets given schedule start & end (in julian day)
        '''
        self.schedule.plan_start = Decimal(plan_start)
        self.schedule.plan_end = Decimal(plan_end)

    def make_schedule(self, first_schedule):
        '''
        ENTRY POINT

        Check all 'OBSERVABLE' sequences to create the most optimized planning for the following/current night

        It is assumed that all sequences that MUST and CAN be analyzed have the OBSERVABLE status

        shs means 'ScheduleHasSequences'
        self.sequences is a list of tuples (sequence, shs)

        :returns : The new schedule

        :side-effect :
            - modify sequences status and dates in DB
        '''

        global SIMULATION
        SIMULATION = False

        #if first_schedule is False:
        if first_schedule:
            self.schedule.plan_night_start = self.schedule.plan_start
        else:
            self.copy_from_previous_schedule()

        self.sequences = list(Sequence.objects.filter(status=Sequence.OBSERVABLE))
        # Add to each sequence its schedule id
        shs_list = []

        #EP improved:
        '''
        for sequence in self.sequences:
            shs_list.append(ScheduleHasSequences(sequence=sequence, schedule=self.schedule))
        self.sequences = [(sequence, shs_list[index]) for index, sequence in enumerate(self.sequences)]
        '''
        self.sequences = [(sequence, ScheduleHasSequences(sequence=sequence, schedule=self.schedule)) for sequence in self.sequences]

        self.compute_schedule()
        self.save_schedule()
        return self.schedule

    def copy_from_previous_schedule(self):
        '''
            Copy needed information from the previous schedule :
                - gets the executed sequences from the previous schedule and copy them into the new schedule
                - gets plan_night_start and plan_end
                - computes new plan_restart (plan_start)

            shs means 'ScheduleHasSequences'

            Side effects:
            - create new shs entries
        '''

        # Get all EXECUTED sequences from last schedule
        previous_sched = Schedule.objects.order_by('-created')[1]
        previous_exc_seq = previous_sched.sequences.filter(status=Sequence.EXECUTED)

        # Associate each EXECUTED sequence to the new schedule in DB (by creating a new shs entry for each sequence)
        for seq in previous_exc_seq:
            shs = seq.shs
            shs.pk = None
            shs.schedule = self.schedule
            if SIMULATION == False:
                shs.save()

        self.schedule.plan_night_start = previous_sched.plan_night_start
        self.schedule.plan_end = previous_sched.plan_end

        ''' Schedule starts in MAX_OVERHEAD seconds '''
        self.schedule.plan_start = time.time() / 86400 + TIMESTAMP_JD + self.max_overhead

    def simulate_schedule(self, sequences):
        '''
        ENTRY POINT - SIMULATION

        Do the same as make_schedule but do not touch the DB

        :type sequences : list of Sequence
        :param sequences : sequences to plan

        :returns : a tuple (Schedule, list of sequences)
        '''

        global SIMULATION
        SIMULATION = True

        self.schedule.plan_night_start = self.schedule.plan_start
        self.sequences = sequences
        shs_list = []
        for sequence in self.sequences:
            shs_list.append(ScheduleHasSequences(sequence=sequence, schedule=self.schedule))
        self.sequences = [(sequence, shs_list[index]) for index, sequence in enumerate(self.sequences)]
        self.compute_schedule()
        return (self.schedule, self.sequences)

    def compute_schedule(self):
        #EP TODO: est-on sur ici que self.intervals est VIDE ???
        # Create a unique big empty available interval that takes all the night duration [plan_start,plan_end]
        self.intervals.append(
            Interval(self.schedule.plan_start, self.schedule.plan_end))

        '''
        EP:
        Uniquement à cause des sequences de Alain Klotz (qui sont parfois invalides pour Pyros) ???
        TODO: cette étape pourra être supprimée en production, car les sequences fabriquées par Pyros seront valides
        '''
        #EP renamed
        #self.check_sequences_validity()
        self.remove_invalid_sequences()

        self.determine_priorities()

        self.remove_non_eligible_sequences()

        self.sort_by_jd2_and_priorities()

        #EP renamed:
        #self.organize_sequences()
        self.place_sequences()

    #EP renamed:
    #def check_sequences_validity(self):
    def remove_invalid_sequences(self):
        '''
        Checks come sequence attributes to validate their integrity

        :side-effects :
            - remove invalid sequences from self.sequences
            - set INVALID status for invalid sequences in DB
        '''

        ''' Note(1) '''
        for sequence, shs in list(self.sequences):
            if sequence.jd1 < 0 or sequence.jd2 < 0 or is_nearby_less_or_equal(sequence.duration, 0) or sequence.jd2 - sequence.jd1 < sequence.duration:
                self.sequences.remove((sequence, shs))
                sequence.status = Sequence.INVALID
                if SIMULATION == False:
                    sequence.save()

    def determine_priorities(self):
        '''
        Computes sequences priority according to the user, the scientific program, ...
        '''

        # TODO: définir comment on calcule la priorité
        pass

    def remove_non_eligible_sequences(self):
        '''
        Computes overlap between [jd1; jd2] and [plan_start; plan_end]
        Removes from self.sequences all the sequences that cannot be observed between plan_start and plan_end
        Set UNPLANNABLE sequences if jd2 < plan_start

        :side-effect :
            - remove unwanted sequences from self.sequences
            - mark them as UNPLANNABLE (in DB)
        '''

        ''' Note (1) '''
        for sequence, shs in list(self.sequences):
            overlap = min(self.schedule.plan_end, sequence.jd2) - \
                max(self.schedule.plan_start, sequence.jd1) - self.max_overhead
            if overlap < sequence.duration:
                if sequence.jd1 < self.schedule.plan_start:
                    """ Note (2) """
                    sequence.status = Sequence.UNPLANNABLE
                    if SIMULATION == False:
                        sequence.save()
                self.sequences.remove((sequence, shs))

    def sort_by_jd2_and_priorities(self):
        '''
        Sort by priority and jd2, priority being the main sorting parameter
        '''

        self.sequences.sort(key=lambda x: x[0].jd2)
        self.sequences.sort(key=lambda x: x[0].priority)

    #EP renamed
    #def organize_sequences(self):
    def place_sequences(self):
        '''
        Main function of the Scheduler
        Arrange a maximum of observable sequences in the planning

        Algorithm (for each sequence) :
            - check quota (remove sequence from list if quota is too low)
            - select matching intervals
            - IF matching intervals => place sequence according to tPrefered
            - IF NO matching intervals => try to move other sequences to place this one

        :side-effect :
            - remove unwanted sequences from self.sequences
            - change status and dates of sequences in self.sequences (but not in DB yet)
        '''

        ''' Note (1) '''
        for sequence, shs in list(self.sequences):
            quota = self.determine_quota(sequence)
            if quota < sequence.duration:
                shs.status = Sequence.REJECTED
                shs.desc = REJECTED_QUOTA
                continue

            matching_intervals = self.get_matching_intervals(sequence)
            if len(matching_intervals) > 0:
                self.place_sequence(sequence, shs, matching_intervals)
                sequence_placed = True
            else:
                sequence_placed = self.try_shifting_sequences(sequence, shs)
            if sequence_placed == True:
                shs.status = Sequence.PENDING
                self.update_quota(sequence)
            else:
                shs.status = Sequence.REJECTED
                shs.desc = REJECTED_ROOM

    def determine_quota(self, sequence: Sequence) -> float:
        '''
        Determines the quota (in minutes) according to the current planning duration and the quota of the user and scientific program associated

        :returns : The quota (float)
        '''
        # TODO: définir comment on calcule le quota

        return sequence.request.pyros_user.quota  # default value

    def get_matching_intervals(self, sequence: Sequence):
        '''
        Find the intervals where the sequence could be inserted

        :returns : list of matching Intervals
        '''

        matching_intervals = []

        for interval in self.intervals:
            overlap = min(sequence.jd2, interval.end) - \
                max(sequence.jd1, interval.start) - self.max_overhead
            if overlap > sequence.duration or is_nearby_equal(overlap, sequence.duration):
                matching_intervals.append(interval)

        return matching_intervals

    def place_sequence(self, sequence: Sequence, shs: ScheduleHasSequences, matching_intervals):
        '''
        Place the sequence in the better interval, according to the t_prefered

        :type matching_intervals: list [Interval]
        :param matching_intervals: Intervals in which the sequence can be placed

        :side-effect :
            - changes self.intervals
            - change the sequence if it it placed
        '''

        if len(matching_intervals) == 0:
            raise ValueError("matching_intervals shall not be empty")

        prefered_interval = self.get_prefered_interval(
            sequence, matching_intervals)
        sequence_position_in_interval = self.get_sequence_position_in_interval(
            sequence, prefered_interval)
        self.insert_sequence_in_interval(
            sequence, shs, prefered_interval, sequence_position_in_interval)
        self.cut_interval(sequence, shs, prefered_interval)
        self.update_other_deltas(sequence, shs, prefered_interval)

    def get_prefered_interval(self, sequence: Sequence, matching_intervals) -> Interval:
        '''
        Find the better interval, according to the t_prefered (get the nearest)

        :type matching_intervals: list [Interval]
        :param matching_intervals: Intervals in which the sequence can be placed

        :returns : An Interval that fits sequence.t_prefered at most
        '''

        if len(matching_intervals) == 0:
            raise ValueError("matching_intervals shall not be empty")

        if sequence.t_prefered == 0 or len(matching_intervals) == 1:
            prefered_interval = matching_intervals[0]
        else:
            for index, interval in enumerate(matching_intervals):
                if is_nearby_less_or_equal(interval.start, sequence.t_prefered) and is_nearby_less_or_equal(sequence.t_prefered, interval.end):
                    prefered_interval = interval
                    break
                elif sequence.t_prefered < interval.start:
                    if index == 0:
                        prefered_interval = interval
                    elif interval.start + self.max_overhead - sequence.t_prefered < sequence.t_prefered - matching_intervals[index - 1].end:
                        prefered_interval = interval
                    else:
                        prefered_interval = matching_intervals[index - 1]
                    break
        return prefered_interval

    def get_sequence_position_in_interval(self, sequence: Sequence, interval: Interval) -> str:
        '''
        Determines where the sequence will be inserted in the interval, regarding sequence.t_prefered

        :returns : A string in ["START", "END", "PREFERED"] describing where the sequence will be inserted in the interval
        '''

        if is_nearby_less_or_equal(interval.start, sequence.t_prefered) and is_nearby_less_or_equal(sequence.t_prefered, interval.end):
            if is_nearby_less_or_equal(sequence.t_prefered - Decimal(0.5) * sequence.duration, interval.start):
                position_in_interval = "START"
            elif is_nearby_sup_or_equal(sequence.t_prefered + Decimal(0.5) * sequence.duration, interval.end):
                position_in_interval = "END"
            else:
                position_in_interval = "PREFERED"
        else:
            if sequence.t_prefered < interval.start:
                position_in_interval = "START"
            else:
                position_in_interval = "END"
        return position_in_interval

    def insert_sequence_in_interval(self, sequence: Sequence, shs: ScheduleHasSequences, interval: Interval, position: str):
        '''
        Inserts the sequence in the interval:
            - sets sequence.tsp and sequence.tep
            - sets sequence.deltaTL and sequence.deltaTR

        :param interval: Interval in which the sequence will be inserted
        :param position: String describing where the sequence will be inserted in the interval

        :side-effect :
            - modify sequence attributes (tsp, tep, deltaTL, deltaTR)
        '''

        if position not in ["START", "END", "PREFERED"]:
            raise ValueError(
                "position must be either 'START', 'END' or 'PREFERED'")

        if position == "START":
            shs.tsp = max(
                interval.start + self.max_overhead, sequence.jd1)
            shs.tep = shs.tsp + sequence.duration
            shs.deltaTL = 0
            shs.deltaTR = min(
                interval.end, sequence.jd2) - shs.tep
        elif position == "END":
            shs.tep = min(interval.end, sequence.jd2)
            shs.tsp = shs.tep - sequence.duration
            shs.deltaTL = shs.tsp - \
                max(interval.start + self.max_overhead, sequence.jd1)
            shs.deltaTR = 0
        else:
            shs.tsp = max(
                sequence.jd1, sequence.t_prefered - Decimal(0.5) * sequence.duration)
            if shs.tsp - interval.start < self.max_overhead:
                shs.tsp = interval.start + self.max_overhead
            shs.tep = shs.tsp + sequence.duration
            shs.deltaTL = shs.tsp - \
                max(interval.start + self.max_overhead, sequence.jd1)
            shs.deltaTR = min(
                interval.end, sequence.jd2) - shs.tep

    def cut_interval(self, sequence: Sequence, shs: ScheduleHasSequences, interval: Interval):
        '''
        Separates the interval in two parts regarding to the sequence position
        Sorts the interval list in time order

        :param interval : the interval in which the sequence was added

        :side-effect :
            - removes interval from self.intervals
            - add created intervals to self.intervals
            - sorts self.intervals
        '''

        interval_before_sequence = Interval(
            interval.start, shs.tsp - self.max_overhead)
        interval_after_sequence = Interval(shs.tep, interval.end)

        self.intervals.remove(interval)
        if interval_before_sequence.duration > 0:
            self.intervals.append(interval_before_sequence)
        if interval_after_sequence.duration > 0:
            self.intervals.append(interval_after_sequence)
        self.intervals.sort(key=lambda interval: interval.start, reverse=False)

    def update_other_deltas(self, sequence: Sequence, shs: ScheduleHasSequences, interval: Interval):
        '''
        Update deltaTL and deltaTR of sequences planned near this sequence

        :param interval: Interval in which the sequence was added

        :side-effect :
            - modify deltaTL and deltaTR of sequences before and after the interval
        '''

        for sequence_, shs_ in self.sequences:
            if shs_.status == Sequence.PENDING:
                if is_nearby_equal(shs_.tep, interval.start):
                    sequence_before_interval, shs_b_i = sequence_, shs_
                elif is_nearby_equal(shs_.tsp - self.max_overhead, interval.end):
                    sequence_after_interval, shs_a_i = sequence_, shs_

        if 'sequence_before_interval' in locals():
            shs_b_i.deltaTR = min(
                shs.tsp - self.max_overhead, sequence_before_interval.jd2) - shs_b_i.tep
        if 'sequence_after_interval' in locals():
            shs_a_i.deltaTL = shs_a_i.tsp - self.max_overhead - \
                max(shs.tep, sequence_after_interval.jd1)

    def try_shifting_sequences(self, sequence: Sequence, shs: ScheduleHasSequences) -> bool:
        '''
        Tries to find a place in the planning for the sequence, moving the other sequences

        :returns : A boolean -> True if the sequence was placed, False otherwise

        :side-effect:
            - might change some sequences' deltaTL and/or deltaTR
        '''

        potential_intervals = self.get_potential_intervals(sequence)
        potential_intervals.sort(key=attrgetter("duration"), reverse=True)
        for interval in potential_intervals:
            ''' we get the adjacent sequences '''
            for sequence_, shs_ in self.sequences:
                if shs_.status == Sequence.PENDING:
                    if is_nearby_equal(shs_.tep, interval.start):
                        sequence_before_interval, shs_b_i = sequence_, shs_
                    elif is_nearby_equal(shs_.tsp - self.max_overhead, interval.end):
                        sequence_after_interval, shs_a_i = sequence_, shs_

            available_duration = min(
                interval.end, sequence.jd2) - max(interval.start, sequence.jd1)
            missing_duration = sequence.duration - \
                available_duration + self.max_overhead
            if 'sequence_before_interval' in locals():
                possible_move_to_left = min(
                    shs_b_i.deltaTL, interval.start - sequence.jd1)
            else:
                possible_move_to_left = 0

            if 'sequence_after_interval' in locals():
                possible_move_to_right = min(
                    shs_a_i.deltaTR, sequence.jd2 - interval.end)
            else:
                possible_move_to_right = 0

            if is_nearby_sup_or_equal(possible_move_to_left, missing_duration):
                self.move_sequence(
                    sequence_before_interval, shs_b_i, missing_duration, "LEFT")
            elif is_nearby_sup_or_equal(possible_move_to_right, missing_duration):
                self.move_sequence(
                    sequence_after_interval, shs_a_i, missing_duration, "RIGHT")
            elif is_nearby_sup_or_equal(possible_move_to_left + possible_move_to_right, missing_duration):
                self.move_sequence(
                    sequence_before_interval, shs_b_i, possible_move_to_left, "LEFT")
                self.move_sequence(
                    sequence_after_interval, shs_a_i, missing_duration - possible_move_to_left, "RIGHT")
            else:
                continue

            matching_intervals = self.get_matching_intervals(sequence)

            if len(matching_intervals) != 1:
                raise ValueError(
                    "There should be one and only one matching interval after shifting")
            self.place_sequence(sequence, shs, matching_intervals)

            return True

        return False

    def get_potential_intervals(self, sequence: Sequence):
        '''
        Find the intervals where a part of the sequence could be inserted

        :returns : list of partially-matching Intervals
        '''

        potential_intervals = []

        for interval in self.intervals:
            overlap = min(sequence.jd2, interval.end) - \
                max(sequence.jd1, interval.start) - self.max_overhead
            if overlap > 0:
                potential_intervals.append(interval)

        return potential_intervals

    def move_sequence(self, sequence: Sequence, shs: ScheduleHasSequences, time_shift: Decimal, direction: str):
        '''
        Moves the sequence in the wanted direction, decreasing its deltaTL or deltaTR.

        :param sequence: sequence to be moved
        :param time_shift: amplitude of the shift
        :param direction: "LEFT" or "RIGHT"

        :side-effect :
            - modify the sequence in self.sequences
            - changes the interval before and the interval after the sequence
        '''

        if direction not in ["LEFT", "RIGHT"]:
            raise ValueError("direction must be 'LEFT' or 'RIGHT'")
        if time_shift > (shs.deltaTL if direction == "LEFT" else shs.deltaTR):
            raise ValueError("Shift value is bigger than deltaT(R/L)")

        for interval in self.intervals:
            if is_nearby_equal(interval.end, shs.tsp - self.max_overhead):
                interval_before = interval
            elif is_nearby_equal(interval.start, shs.tep):
                interval_after = interval

        if direction == "LEFT":
            interval_before.end -= time_shift
            if "interval_after" in locals():
                interval_after.start -= time_shift
            shs.tsp -= time_shift
            shs.tep -= time_shift
            shs.deltaTL -= time_shift
            shs.deltaTR += time_shift
        else:
            if "interval_before" in locals():
                interval_before.end += time_shift
            interval_after.start += time_shift
            shs.tsp += time_shift
            shs.tep += time_shift
            shs.deltaTL += time_shift
            shs.deltaTR -= time_shift
        if "interval_before" in locals() and is_nearby_equal(interval_before.duration, 0):
            self.intervals.remove(interval_before)
        if "interval_after" in locals() and is_nearby_equal(interval_after.duration, 0):
            self.intervals.remove(interval_after)

    def update_quota(self, sequence: Sequence):
        '''
        Update the quota of the user / scientific program / whatever by substracting the sequence duration to the quotas

        :side-effect:
            - Modify User quota in DB
        '''

        # TODO: faire les vrais calculs de quota
        user = sequence.request.pyros_user
        # action par défaut qui correspond au code de self.determine_quota
        user.quota -= float(sequence.duration)

        if SIMULATION == False:
            user.save()

    def save_schedule(self):
        '''
        Final function : save in the db all modifications done to sequences, and the schedule

        :side-effect :
            - change sequences status and dates in DB
            - add a schedule in the DB
        '''

        self.schedule.save()
        for sequence, shs in self.sequences:
            shs.schedule = self.schedule
            shs.save()

    def print_schedule(self):
        '''
        ONLY FOR DEBUG

        Prints the planned sequences
        '''

        sequences = Sequence.objects.filter(
            shs__status=Sequence.PENDING).order_by('shs__tsp')

        print("---- There are %d sequence(s) planned ----" % len(sequences))

        for sequence in sequences:
            print("name: %r\t, start: %d\t, end: %d\t, duration: %d\t, deltaTL: %d\t, deltaTR: %d\t"
                  % (sequence.name, sequence.shs.tsp, sequence.shs.tep, sequence.duration, sequence.shs.deltaTL, sequence.shs.deltaTR))

        print("---- There are %d free interval(s) ----" % len(self.intervals))

        for interval in self.intervals:
            print("start: %d\t, end: %d\t" % (interval.start, interval.end))

''' Notes

(1) list(self.sequences) creates a copy in order to modify self.sequences and still iterate on it without unexpected behavior
(2) UNPLANNABLE is a definitive status meaning that the sequence will never be able to be scheduled

'''