mountastro_astromecca.py
85.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
# -*- coding: utf-8 -*-
import os
import time
import socket
import numpy as np
import matplotlib.pyplot as plt
import math
# --- celme imports
modulename = 'celme'
if modulename in dir():
del celme
if modulename not in dir():
import celme
from .mountastro import Mountastro
from .mountaxis import Mountaxis
from .mountchannel import Mountchannel
from .mountutils_eqmod import Mountutils_eqmod
# #####################################################################
# #####################################################################
# #####################################################################
# Class Mountastro_Astromecca
# #####################################################################
# #####################################################################
# #####################################################################
class Mountastro_Astromecca(Mountastro,Mountchannel):
# =====================================================================
# =====================================================================
# Private methods
# =====================================================================
# =====================================================================
def error_messages(self, alarm_code):
error_codes = []
error_code = {}
error_code["Phenomenon"] = "No error"
error_code["Alarm_Code"] = "00h"
error_code["ALARM_LED_Blinks"] = "none"
error_code["ALMCLR_Effect"] = "No effect"
error_code["Protective_Function"] = "No error"
error_code["Description"] = "No error"
error_code["Action"] = "Nothing to do"
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "32h"
error_code["ALARM_LED_Blinks"] = "1"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Out of position range"
error_code["Description"] = "The PABS value exceeded the coordinate control range (-2,147,483.648 to +2,147,483.647)."
error_code["Action"] = "Check that PABS is in the range."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "90h"
error_code["ALARM_LED_Blinks"] = "1"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Stack overflow"
error_code["Description"] = "Sequence memory stack exhausted"
error_code["Action"] = "Restructure sequences to reduce the number of nested blocks or subroutine calls"
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "94h"
error_code["ALARM_LED_Blinks"] = "1"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Sequence reference error"
error_code["Description"] = "Attempt to call a non-existing sequence as a subroutine"
error_code["Action"] = "Revise the CALL statement or rename the intended target sequence"
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "98h"
error_code["ALARM_LED_Blinks"] = "1"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Calculation overflow"
error_code["Description"] = "Sequence calculation result exceeded numerical limits"
error_code["Action"] = "Check math operators, make sure they cannot overflow"
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "99h"
error_code["ALARM_LED_Blinks"] = "1"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Parameter range error"
error_code["Description"] = "Attempt to set a parameter to a value outside its range"
error_code["Action"] = "Make sure all assignments stay within defined limits"
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "9Ah"
error_code["ALARM_LED_Blinks"] = "1"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Zero division"
error_code["Description"] = "Attempt to divide by zero"
error_code["Action"] = "Check division operations, test divisor for zero before division"
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "9Dh"
error_code["ALARM_LED_Blinks"] = "1"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "PC command execution error"
error_code["Description"] = "Attempt to modify position counter PC while a motion was in process"
error_code["Action"] = "Make sure that PC is only changed when motor is stopped"
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "9Eh"
error_code["ALARM_LED_Blinks"] = "1"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "User variable reference error"
error_code["Description"] = "Attempt to access a non-existing user-defined variable"
error_code["Action"] = "Make sure the target user-defined variable exists: use the correct name in sequence"
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "9Fh"
error_code["ALARM_LED_Blinks"] = "1"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Parameter write error"
error_code["Description"] = "Attempt to change a parameter under invalid condition"
error_code["Action"] = "Check if you tried to write a parameter, which is not allowed to write to, during operation."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "A0h"
error_code["ALARM_LED_Blinks"] = "1"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Motion while in motion"
error_code["Description"] = "Attempt to execute a motion while an incompatible motion is in progress"
error_code["Action"] = "Make sure motions are not started before a previous motion is complete. Use MEND, poll SIGMOVE, or monitor the MOVE output to detect motion complete."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "E0h"
error_code["ALARM_LED_Blinks"] = "1"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "User alarm"
error_code["Description"] = "ALMSET command intentionally executed"
error_code["Action"] = "If a user alarm was not expected, check sequence programming for inappropriate ALMSET command(s)"
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "10h"
error_code["ALARM_LED_Blinks"] = "4"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Excessive Position Deviation"
error_code["Description"] = "When performing the MEND command or mechanical home seeking operation, the END signal was not output in the time set by ENDWAIT."
error_code["Action"] = "If DEND=0, check whether the overload was occurred or ENDACT (END range) was too small. If DEND=1, check whether the driver END signal is connected, the overload was occurred or the END signal range of the driver was too small."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "60h"
error_code["ALARM_LED_Blinks"] = "7"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "LS logic error"
error_code["Description"] = "Positive and negative position limit signals on simultaneously"
error_code["Action"] = "- Check limit sensors and wiring. - Check input signal configuration. - Check the logic setting for limit sensors (OTLV): Normally open (N.O.) or Normally closed (N.C.)."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "61h"
error_code["ALARM_LED_Blinks"] = "7"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "LS connected in reverse"
error_code["Description"] = "Positive or negative position limit signal detected opposite home seeking direction"
error_code["Action"] = "- Check limit sensors and wiring. - Check input signal configuration. - Check the logic setting for limit sensors (OTLV): Normally open (N.O.) or Normally closed (N.C.)."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "62h"
error_code["ALARM_LED_Blinks"] = "7"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "HOME operation failed"
error_code["Description"] = "Unstable or unexpected position limit signal detected while seeking home position"
error_code["Action"] = "- Check limit sensors and wiring. - Check input signal configuration. - Check the logic setting for limit sensors (OTLV): Normally open (N.O.) or Normally closed (N.C.)."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "63h"
error_code["ALARM_LED_Blinks"] = "7"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "HOMELS not found"
error_code["Description"] = "No HOME input detected between position limit signals while seeking home position"
error_code["Action"] = "Check HOME sensor wiring and connections"
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "64h"
error_code["ALARM_LED_Blinks"] = "7"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "TIM, SENSOR signal error"
error_code["Description"] = "TIM position or SENSOR input expected with HOME input: not found"
error_code["Action"] = "Selected mechanical home seeking operation (see HOMETYP) requires a valid SENSOR input and/or a valid TIM position while HOME input active. Make sure HOME and other required input(s) can be active at the same location."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "6Ah"
error_code["ALARM_LED_Blinks"] = "7"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "LS detected during home offset motion"
error_code["Description"] = "Positive or negative position limit signal detected while moving to OFFSET position after homing"
error_code["Action"] = "Make sure that the OFFSET distance, measured from the HOME signal position, does not trigger a limit sensor"
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "6Eh"
error_code["ALARM_LED_Blinks"] = "7"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Driver alarm"
error_code["Description"] = "Driver alarm signal is active"
error_code["Action"] = "Check the driver and see the operating manual of the driver."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "6Fh"
error_code["ALARM_LED_Blinks"] = "7"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Driver connection error"
error_code["Description"] = "The command was canceled due to no response from the driver during executing the command or before executing the command"
error_code["Action"] = "Be sure to check if driver and the CM10/SCX11 are connected securely."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop"
error_code["Alarm_Code"] = "70h"
error_code["ALARM_LED_Blinks"] = "7"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Motion parameter error"
error_code["Description"] = "Attempt to execute motion with incompatible motion parameters"
error_code["Action"] = "- Make sure current is enabled (CURRENT=1). - Home seeking: make sure required inputs are configured. - Linked indexing: make sure all linked segments execute in the same direction."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop. Motor may or may not have holding torque, depending on ALMACT."
error_code["Alarm_Code"] = "68h"
error_code["ALARM_LED_Blinks"] = "6"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Panic stop"
error_code["Description"] = "System executed a panic stop because of a PSTOP input or command"
error_code["Action"] = "If a panic stop was unexpected: - Check PSTOP input configuration. - Check sequence programming for inappropriate PSTOP command(s)."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop. Motor may or may not have holding torque, depending on ALMACT."
error_code["Alarm_Code"] = "66h"
error_code["ALARM_LED_Blinks"] = "7"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Hardware over travel"
error_code["Description"] = "Positive or negative position limit signal detected"
error_code["Action"] = "- Check motion parameters. - Make sure home position is correct. - Check limit sensors and wiring. - Check input signal configuration. - Check the logic setting for limit sensors (OTLV): Normally open (N.O.) or Normally closed (N.C.)."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "Motion and sequence execution stop. Motor may or may not have holding torque, depending on ALMACT."
error_code["Alarm_Code"] = "67h"
error_code["ALARM_LED_Blinks"] = "7"
error_code["ALMCLR_Effect"] = "Clears alarm"
error_code["Protective_Function"] = "Software over travel"
error_code["Description"] = "Position outside of programmed positive and negative position limits"
error_code["Action"] = "- Check motion parameters. - Check software position limits. - Make sure home position is correct."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "The motor lacks holding torque."
error_code["Alarm_Code"] = "41h"
error_code["ALARM_LED_Blinks"] = "9"
error_code["ALMCLR_Effect"] = "No effect"
error_code["Protective_Function"] = "EEPROM error"
error_code["Description"] = "User data in non-volatile EEPROM memory is corrupt"
error_code["Action"] = "Contact Oriental Motor to arrange for inspection or repair."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "The motor lacks holding torque."
error_code["Alarm_Code"] = "F0h"
error_code["ALARM_LED_Blinks"] = "ON"
error_code["ALMCLR_Effect"] = "No effect"
error_code["Protective_Function"] = "System error"
error_code["Description"] = "System detected unexpected internal logic state"
error_code["Action"] = "Contact Oriental Motor to arrange for inspection or repair."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "The motor lacks holding torque."
error_code["Alarm_Code"] = "F1h"
error_code["ALARM_LED_Blinks"] = "ON"
error_code["ALMCLR_Effect"] = "No effect"
error_code["Protective_Function"] = "Memory error"
error_code["Description"] = "Internal memory access error"
error_code["Action"] = "Contact Oriental Motor to arrange for inspection or repair."
error_codes.append(error_code)
error_code = {}
error_code["Phenomenon"] = "The motor lacks holding torque."
error_code["Alarm_Code"] = "F2h"
error_code["ALARM_LED_Blinks"] = "ON"
error_code["ALMCLR_Effect"] = "No effect"
error_code["Protective_Function"] = "Sequence internal error"
error_code["Description"] = "Sequence code invalid or corrupt"
error_code["Action"] = "Contact Oriental Motor to arrange for inspection or repair."
error_codes.append(error_code)
found = False
for error_code in error_codes:
if (error_code["Alarm_Code"] == alarm_code) or (error_code["Alarm_Code"] == alarm_code+'h'):
found = True
break
return found, error_code
def _my_open_chan(self):
# --- Concrete method
# --- Overloading method according the language protocol
fid = self._fid_chan
if fid==None:
return self.ERR_CHAN_NOT_OPENED
# --- Active echo, message returned are not verbose, clear all alarms
for kaxis in range(Mountaxis.AXIS_MAX):
current_axis = self.axis[kaxis]
if current_axis == None:
continue
if current_axis.real == False:
continue
if current_axis.language_protocol == "SCX11":
cmd = self._talks[kaxis]
# --- Check echo
err, res = self.putread_chan(cmd + " ; ECHO",1)
if res!="1":
self.putread_chan(cmd + " ; ECHO 1")
# --- Check echo
err, res = self.putread_chan(cmd + " ; VERBOSE",1)
if res!="0":
self.putread_chan(cmd + " ; VERBOSE 0")
# --- Check alarms
err, res = self.putread_chan(cmd + " ; ALM",1)
#self.log.print("kaxis={} err={} res={}".format(kaxis,err,res))
#res = "00"
almclr = False
if res!="00":
found, error_code = self.error_messages(res)
almclr = True
msg = error_code["Protective_Function"]
msg += error_code["Description"]
self.log.print("ALARM {} axis {} because: {}".format(res,kaxis,msg))
if res=="66" or res=="67":
almclr = False
msg = error_code["Action"]
if almclr==False:
self.log.print("Cannot clear alarm {} axis {}. Action to do = {}".format(res,kaxis,msg))
else:
self.log.print("Clear alarm {} axis {} ({}) ".format(res,kaxis,msg))
err, res = self.putread_chan(cmd + " ; ALMCLR ; ABORT ; ALMCLR")
# --- activate the software limits LIMN and LIMP
# --- and download the absolute position from the controler
err, res = self.putread_chan(cmd + " ; HOMETYP 12 ; PC = 0 ; EHOME")
time.sleep(0.5)
err, res = self.putread_chan(cmd + " ; RUN getabs")
#err, res = self.putread_chan(cmd + " ; RUN init1")
#self.log.print("kaxis={} err={} res={}".format(kaxis,err,res))
time.sleep(0.5)
# --- First read incs because the first time it is always zero
err, res = self.putread_chan(cmd + " ; PC")
#self.log.print("kaxis={} err={} res={}".format(kaxis,err,res))
err, res = self.putread_chan(cmd + " ; TA=0.5 ; TD=0.5")
err, res = self.putread_chan(cmd + " ; N_BACKLASH -1000")
fid.flush()
time.sleep(3) # long time for the axis dec
return self.NO_ERROR
def _my_read_encs(self, incsimus):
# --- Concrete method
# --- Overloading method according the language protocol
increals = incsimus
# --- Loop over all the possible axis types
for kaxis in range(Mountaxis.AXIS_MAX):
current_axis = self.axis[kaxis]
if current_axis == None:
continue
if current_axis.real == False:
continue
# --- This axis is valid and real. We read the position
if current_axis.language_protocol == "SCX11":
cmd = self._talks[kaxis] + " ; PC"
err, res = self.putread_chan(cmd,1)
if err==self.NO_ERROR:
try:
increals[kaxis] = float(res)
except:
self.log.print("Problem reading PC, axis={} res={}".format(kaxis,res))
return increals
def _update_motion_states(self):
"""
In case of slewing started, perhaps the mount is already tracking.
This method allows to switch the ASCOM states according the mount.
"""
# --- Concrete method
# --- Overloading method according the language protocol
#
# --- Loop over all the possible axis types
axes_motion_state_reals = []
for kaxis in range(Mountaxis.AXIS_MAX):
current_axis = self.axis[kaxis]
if current_axis == None:
axes_motion_state_reals.append(Mountaxis.MOTION_STATE_UNKNOWN)
continue
if current_axis.real == False:
axes_motion_state_reals.append(Mountaxis.MOTION_STATE_UNKNOWN)
continue
# --- This axis is valid and real. We read the position
if current_axis.language_protocol == "SCX11":
cmd = self._talks[kaxis] + " ; SIGMOVE"
err, res = self.putread_chan(cmd,1)
if err==self.NO_ERROR:
try:
sigmove = int(res)
except:
self.log.print("Problem reading SIGMOVE, axis={} res={}".format(kaxis,res))
cmd = self._talks[kaxis] + " ; Z"
err, res = self.putread_chan(cmd,1)
z = -1
if err==self.NO_ERROR:
try:
z = float(res)
except:
self.log.print("Problem reading Z, axis={} res={}".format(kaxis,res))
#print("z={} sigmove={} current_axis.motion_state={}".format(z, sigmove, current_axis.motion_state))
current_axis.motion_state = Mountaxis.MOTION_STATE_UNKNOWN
if z==1 and sigmove==1:
current_axis.motion_state = Mountaxis.MOTION_STATE_SLEWING
elif z==2 and sigmove==1:
current_axis.motion_state = Mountaxis.MOTION_STATE_DRIFTING
elif z==3 and sigmove==1:
current_axis.motion_state = Mountaxis.MOTION_STATE_MOVING
elif z==0 or sigmove==0:
current_axis.motion_state = Mountaxis.MOTION_STATE_NOMOTION
cmd = self._talks[kaxis] + " ; Z=0"
err, res = self.putread_chan(cmd,1)
# ---
axes_motion_state_reals.append(current_axis.motion_state)
return axes_motion_state_reals
def _my_hadec_drift(self,hadec_speeddrift_ha_deg_per_sec:float, hadec_speeddrift_dec_deg_per_sec:float):
# --- Concrete method
# --- Overloading method according the language protocol
err = self.NO_ERROR
res = 0
ha_target = 0 # any value is correct
dec_target = 0 # any value is correct
# --- Compute incs of the target and the drifts (for any mount_type)
celb, celp, celr, dcelb, dcelp, dcelr = self.astro2cel("HADEC", ha_target, dec_target, hadec_speeddrift_ha_deg_per_sec, hadec_speeddrift_dec_deg_per_sec)
# --- Loop over all the possible axis types
for kaxis in range(Mountaxis.AXIS_MAX):
current_axis = self.axis[kaxis]
if current_axis == None:
continue
if current_axis.real == False:
continue
# --- This axis is valid and real. We read the position
if current_axis.language_protocol == "SCX11":
# === Target position and drift
if kaxis == Mountaxis.BASE:
dcel = dcelb
elif kaxis == Mountaxis.POLAR:
dcel = dcelp
elif kaxis == Mountaxis.ROTATOR:
dcel = dcelr
# === Drift Velocity inc/sec
inc_per_sec_drift = dcel * current_axis.senseinc * current_axis.inc_per_deg
#print("Inital drift={} inc/sec".format(inc_per_sec_drift))
inc_per_sec_drift *= self.mult_inc_per_sec_drift
if self.site.latitude>=0:
inc_per_sec_drift *= -1
# ---
cmd = self._talks[kaxis]
cmd += " ; MSTOP ; ABORT"
self.log.print("hadec_drift {} cmd >> {}".format(current_axis._axis_type, cmd))
err, res = self.putread_chan(cmd)
time.sleep(0.05)
if inc_per_sec_drift!=0:
cmd = self._talks[kaxis]
cmd += " ; N_DRFVEL={:.3f}".format(inc_per_sec_drift)
self.log.print("hadec_drift {} cmd >> {}".format(current_axis._axis_type, cmd))
err, res = self.putread_chan(cmd)
cmd = self._talks[kaxis]
if kaxis == Mountaxis.BASE:
cmd += " ; N_PECPHASE=0; N_PEC1VEL=0.0 ; N_PEC2VEL=0.0"
#cmd += " ; N_PECPHASE=-80; N_PEC1VEL=0.120; N_PEC2VEL=0.080"
else:
cmd += " ; N_PECPHASE=0; N_PEC1VEL=0.0 ; N_PEC2VEL=0.0"
cmd += " ; RUN drf1"
self.log.print("hadec_drift {} cmd >> {}".format(current_axis._axis_type, cmd))
err, res = self.putread_chan(cmd)
current_axis.motion_state = Mountaxis.MOTION_STATE_DRIFTING
return err, res
def _my_hadec_goto(self, ha_target, dec_target, pierside_target):
# --- Concrete method
# --- Overloading method according the language protocol
err = self.NO_ERROR
res = 0
# --- Compute incs of the target and the drifts (for any mount_type)
celb, celp, celr, dcelb, dcelp, dcelr = self.astro2cel("HADEC", ha_target, dec_target, self._hadec_speeddrift_ha_deg_per_sec, self._hadec_speeddrift_dec_deg_per_sec)
incb, incp = self.cel2enc(celb, celp, pierside_target, self.OUTPUT_SHORT, self.SAVE_NONE)
incr = 0
#print("ha_target={} dec_target={} pierside_target={}".format(ha_target,dec_target,pierside_target))
#print("celb={} celp={}".format(celb,celp))
#print("incb={} incp={}".format(incb,incp))
# --- Loop over all the possible axis types
for kaxis in range(Mountaxis.AXIS_MAX):
current_axis = self.axis[kaxis]
if current_axis == None:
continue
if current_axis.real == False:
continue
# --- This axis is valid and real. We read the position
if current_axis.language_protocol == "SCX11":
# === Target position and drift
if kaxis == Mountaxis.BASE:
inc = incb
dcel = dcelb
elif kaxis == Mountaxis.POLAR:
inc = incp
dcel = dcelp
elif kaxis == Mountaxis.ROTATOR:
inc = incr
dcel = dcelr
# === Target slew
dslw = current_axis.slew_deg_per_sec
# === Slew Velocity inc/sec
inc_per_sec_slew = dslw * current_axis.senseinc * current_axis.inc_per_deg
# === Drift Velocity inc/sec
inc_per_sec_drift = dcel * current_axis.senseinc * current_axis.inc_per_deg
#print("Inital drift={} inc/sec".format(inc_per_sec_drift))
inc_per_sec_drift *= self.mult_inc_per_sec_drift
if self.site.latitude>=0:
inc_per_sec_drift *= -1
# ---
cmd = self._talks[kaxis]
cmd += " ; MSTOP ; ABORT"
self.log.print("hadec_goto {} cmd >> {}".format(current_axis._axis_type, cmd))
err, res = self.putread_chan(cmd)
time.sleep(0.05)
if inc_per_sec_drift==0:
cmd = self._talks[kaxis]
cmd += " ; N_GOTOVEL={:.3f}".format(abs(inc_per_sec_slew))
cmd += " ; N_GOTOPOS={:.0f}".format(inc)
cmd += " ; RUN goto1"
self.log.print("hadec_goto {} cmd >> {}".format(current_axis._axis_type, cmd))
err, res = self.putread_chan(cmd)
else:
cmd = self._talks[kaxis]
cmd += " ; N_GOTOVEL={:.3f}".format(abs(inc_per_sec_slew))
cmd += " ; N_GOTOPOS={:.0f}".format(inc)
cmd += " ; N_DRFVEL={:.3f}".format(inc_per_sec_drift)
self.log.print("hadec_goto {} cmd >> {}".format(current_axis._axis_type, cmd))
err, res = self.putread_chan(cmd)
cmd = self._talks[kaxis]
if kaxis == Mountaxis.BASE:
cmd += " ; N_PECPHASE=0; N_PEC1VEL=0.0 ; N_PEC2VEL=0.0"
#cmd += " ; N_PECPHASE=-80; N_PEC1VEL=0.120; N_PEC2VEL=0.080"
else:
cmd += " ; N_PECPHASE=0; N_PEC1VEL=0.0 ; N_PEC2VEL=0.0"
cmd += " ; RUN goto_drf1"
self.log.print("hadec_goto {} cmd >> {}".format(current_axis._axis_type, cmd))
err, res = self.putread_chan(cmd)
current_axis.motion_state = Mountaxis.MOTION_STATE_SLEWING
return err, res
def _my_hadec_move(self, ha_move_deg_per_sec, dec_move_deg_per_sec):
# --- Concrete method
# --- Overloading method according the language protocol
err = self.NO_ERROR
res = 0
ha_target = 0 # any value is correct
dec_target = 0 # any value is correct
# --- Compute incs of the target and the drifts (for any mount_type)
celb, celp, celr, dcelb, dcelp, dcelr = self.astro2cel("HADEC", ha_target, dec_target, ha_move_deg_per_sec, dec_move_deg_per_sec)
# ---
# --- Loop over all the possible axis types
for kaxis in range(Mountaxis.AXIS_MAX):
current_axis = self.axis[kaxis]
if current_axis == None:
continue
if current_axis.real == False:
continue
# --- This axis is valid and real. We read the position
if current_axis.language_protocol == "SCX11":
# === Target position and drift
if kaxis == Mountaxis.BASE:
dmov = dcelb
elif kaxis == Mountaxis.POLAR:
dmov = dcelp
elif kaxis == Mountaxis.ROTATOR:
dmov = dcelr
# === Move Velocity inc/sec
inc_per_sec_move = dmov * current_axis.senseinc * current_axis.inc_per_deg
#print("Inital inc_per_sec_move={} inc/sec".format(inc_per_sec_move))
if self.site.latitude>=0:
inc_per_sec_move *= -1
# ---
cmd = self._talks[kaxis]
cmd += " ; MSTOP ; ABORT"
self.log.print("hadec_move {} cmd >> {}".format(current_axis._axis_type, cmd))
err, res = self.putread_chan(cmd)
time.sleep(0.05)
# ---
cmd = self._talks[kaxis]
#cmd += " ; Z = 0" ; # means no drift
cmd += " ; N_GOTOVEL={:.3f}".format(inc_per_sec_move)
cmd += " ; RUN gotolimit1"
self.log.print("hadec_move {} cmd >> {}".format(current_axis._axis_type, cmd))
err, res = self.putread_chan(cmd)
current_axis.motion_state = Mountaxis.MOTION_STATE_MOVING
return err, res
def _my_hadec_move_stop(self):
# --- Concrete method
# --- Overloading method according the language protocol
err = self.NO_ERROR
res = 0
ha_target = 0 # any value is correct
dec_target = 0 # any value is correct
# --- Compute incs of the target and the drifts (for any mount_type)
celb, celp, celr, dcelb, dcelp, dcelr = self.astro2cel("HADEC", ha_target, dec_target, self._hadec_speeddrift_ha_deg_per_sec, self._hadec_speeddrift_dec_deg_per_sec)
# --- Loop over all the possible axis types
for kaxis in range(Mountaxis.AXIS_MAX):
current_axis = self.axis[kaxis]
if current_axis == None:
continue
if current_axis.real == False:
continue
# --- This axis is valid and real. We read the position
if current_axis.language_protocol == "SCX11":
# === Target position and drift
if kaxis == Mountaxis.BASE:
dcel = dcelb
elif kaxis == Mountaxis.POLAR:
dcel = dcelp
elif kaxis == Mountaxis.ROTATOR:
dcel = dcelr
# === Drift Velocity inc/sec
inc_per_sec_drift = dcel * current_axis.senseinc * current_axis.inc_per_deg
#print("Inital drift={} inc/sec".format(inc_per_sec_drift))
inc_per_sec_drift *= self.mult_inc_per_sec_drift
if self.site.latitude>=0:
inc_per_sec_drift *= -1
# ---
cmd = self._talks[kaxis]
cmd += " ; MSTOP ; ABORT"
self.log.print("hadec_move_stop {} cmd >> {}".format(current_axis._axis_type, cmd))
err, res = self.putread_chan(cmd)
time.sleep(0.05)
if inc_per_sec_drift!=0:
cmd = self._talks[kaxis]
cmd += " ; N_DRFVEL={:.3f}".format(inc_per_sec_drift)
self.log.print("hadec_move_stop {} cmd >> {}".format(current_axis._axis_type, cmd))
err, res = self.putread_chan(cmd)
cmd = self._talks[kaxis]
if kaxis == Mountaxis.BASE:
cmd += " ; N_PECPHASE=0; N_PEC1VEL=0.0 ; N_PEC2VEL=0.0"
#cmd += " ; N_PECPHASE=-80; N_PEC1VEL=0.120; N_PEC2VEL=0.080"
else:
cmd += " ; N_PECPHASE=0; N_PEC1VEL=0.0 ; N_PEC2VEL=0.0"
cmd += " ; RUN drf1"
current_axis.motion_state = Mountaxis.MOTION_STATE_DRIFTING
else:
current_axis.motion_state = Mountaxis.MOTION_STATE_NOMOTION
self.log.print("hadec_move_stop {} cmd >> {}".format(current_axis._axis_type, cmd))
err, res = self.putread_chan(cmd)
return err, res
def _my_hadec_stop(self):
# --- Concrete method
# --- Overloading method according the language protocol
err = self.NO_ERROR
res = 0
# --- Loop over all the possible axis types
for kaxis in range(Mountaxis.AXIS_MAX):
current_axis = self.axis[kaxis]
if current_axis == None:
continue
if current_axis.real == False:
continue
# --- This axis is valid and real. We read the position
if current_axis.language_protocol == "SCX11":
# ---
cmd = self._talks[kaxis]
cmd += " ; MSTOP" # or ABORT at high speed ?
err, res = self.putread_chan(cmd)
current_axis.motion_state = Mountaxis.MOTION_STATE_NOMOTION
return err, res
def _my_inc_goto(self, axis_id:int, inc:float, inc_per_sec_slew:float):
# --- Concrete method
# --- Overloading method according the language protocol
cmd = ""
err = self.NO_ERROR
res = 0
kaxis = axis_id
current_axis = self.axis[kaxis]
if current_axis.real==True:
cmd = self._talks[kaxis]
if cmd != "":
cmd += " ; MSTOP ; ABORT ; VR={:.3f}".format(inc_per_sec_slew)
cmd += " ; TA=0.5 ; TD=0.5 ; MA {:.0f}".format(inc)
self.log.print("inc_goto axis={} cmd >> {}".format(axis_id,cmd))
err, res = self.putread_chan(cmd)
return err, res
def _my_goto_park(self, incb:float, incp:float, incr:float):
# --- Concrete method
# --- Overloading method according the language protocol
err = self.NO_ERROR
res = 0
self.hadec_goto(self.park_ha,self.park_dec,side=self.park_side)
return err, res
def hadec_travel(self):
"""
Exemple of using RUN lutpos1
"""
dposs = np.zeros(20)
vels = np.zeros(20)
kaxis = 0
cmd = self._talks[kaxis] + " ; PC"
err, res = self.putread_chan(cmd,1)
pc0 = float(res)
dposs = np.linspace(1000,100000,20)
poss = pc0 + dposs
vels += 1000
n = len(dposs)
for k in range(n):
v = 1000 + (10000-1000)*math.exp(-(k-n/2.)*(k-n/2.)/12.0)
vels[k] = v
#return poss, vels
# --
k = 0
cmd = self._talks[kaxis]
cmd += " ; A={:.3f}".format(abs(vels[k]))
cmd += " ; B={:.3f}".format(abs(poss[k]))
self.log.print("hadec_travel cmd >> {}".format(cmd))
err, res = self.putread_chan(cmd)
# --
k = 1
cmd = self._talks[kaxis]
cmd += " ; C={:.3f}".format(abs(vels[k]))
cmd += " ; D={:.3f}".format(abs(poss[k]))
self.log.print("hadec_travel cmd >> {}".format(cmd))
err, res = self.putread_chan(cmd)
# --
k = 2
cmd = self._talks[kaxis]
cmd += " ; E={:.3f}".format(abs(vels[k]))
cmd += " ; F={:.3f}".format(abs(poss[k]))
self.log.print("hadec_travel cmd >> {}".format(cmd))
err, res = self.putread_chan(cmd)
# --
k = 3
cmd = self._talks[kaxis]
cmd += " ; G={:.3f}".format(abs(vels[k]))
cmd += " ; H={:.3f}".format(abs(poss[k]))
self.log.print("hadec_travel cmd >> {}".format(cmd))
err, res = self.putread_chan(cmd)
# --
cmd = self._talks[kaxis]
cmd += " ; run lutpos1"
err, res = self.putread_chan(cmd)
# --
cmd = self._talks[kaxis]
cmd += " ; Y"
err, res = self.putread_chan(cmd,1)
y0 = float(res)
y = y0
self.log.print("hadec_travel y0={}".format(y0))
# --
n = len(poss)
for k in range(4,n):
cmd = self._talks[kaxis] + " ; PC"
err, res = self.putread_chan(cmd,1)
pc = float(res)
self.log.print("hadec_travel k={} y={} pc={}".format(k,y,pc))
while True:
# --
cmd = self._talks[kaxis]
cmd += " ; Y"
err, res = self.putread_chan(cmd,1)
y = float(res)
if (y!=y0):
break
y0 = y
self.log.print("hadec_travel k={} y={}".format(k,y))
cmd = self._talks[kaxis]
if (y==2):
cmd += " ; A={:.3f}".format(abs(vels[k]))
cmd += " ; B={:.3f}".format(abs(poss[k]))
elif (y==3):
cmd += " ; C={:.3f}".format(abs(vels[k]))
cmd += " ; D={:.3f}".format(abs(poss[k]))
elif (y==4):
cmd += " ; E={:.3f}".format(abs(vels[k]))
cmd += " ; F={:.3f}".format(abs(poss[k]))
elif (y==1):
cmd += " ; G={:.3f}".format(abs(vels[k]))
cmd += " ; H={:.3f}".format(abs(poss[k]))
self.log.print("hadec_travel cmd >> {}".format(cmd))
err, res = self.putread_chan(cmd)
kaxis = 0
cmd = self._talks[kaxis] + " ; SSTOP ; ABORT"
err, res = self.putread_chan(cmd,1)
self.log.print("hadec_travel Finished")
def tachymeter_read_enc(self, axis_id:int):
cmd = ""
err = self.NO_ERROR
res = 0
kaxis = axis_id
current_axis = self.axis[kaxis]
if current_axis.real==True:
cmd = self._talks[kaxis]
if cmd != "":
cmd += " ; PC"
err, res = self.putread_chan(cmd,1)
return err, res
def tachymeter_check_vrs(self, duration_sec:float, vrmin:float, vrmax:float, dvr:float):
duration_sec0 = duration_sec
axis_id = Mountaxis.BASE
current_axis = self.axis[axis_id]
vr = vrmin
while vr <= vrmax:
deg_per_sec = 1.0*vr/(current_axis.senseinc * current_axis.inc_per_deg)
arcsec_per_sec = deg_per_sec*3600
duration_sec = duration_sec0
deg = deg_per_sec * duration_sec
if deg>120:
duration_sec /= 2
v, dv, ratio = self.tachymeter_check_vr(duration_sec, vr)
msg = "==> VR={:.3f} Vobs={:.4f} +/- {:.4f} ratio={:.5f} drift={:.3f}".format(vr,v,dv,ratio,arcsec_per_sec)
self.log.print(msg)
vr +=dvr
def tachymeter_check_vr(self, duration_sec:float, vr:float=""):
axis_id = Mountaxis.BASE
# ---
if vr=="":
cmd = self._talks[axis_id] + " ; VR"
err, res = self.putread_chan(cmd,1)
if err==self.NO_ERROR:
vr = float(res)
else:
vr = 0
#self.log.print("vr = {}".format(vr))
# ---
if False:
# --- methode classique
motion = "MCN"
# ---
cmd = "MSTOP".format(vr,motion)
err, res = self.putread_chan(cmd,1)
time.sleep(1)
cmd = "VR={:.3f} ; {}".format(vr,motion)
err, res = self.putread_chan(cmd,1)
else:
# --- methode en alternance
inc_per_sec_drift = vr
#period = 10.0 # sec
#dpr = self.axis[axis_id].inc_per_motor_rev/10000
#fdpr = round((1.0+dpr),3)-1.0
#m = inc_per_sec_drift/fdpr
#print("Corrected drift={} inc/sec dpr={} fdpr={} m={}".format(inc_per_sec_drift,dpr,fdpr,m))
#mint1 = math.floor(m)
#cycrat = m - mint1
#vr1 = (mint1+0.5)*fdpr
#p1 = (1-cycrat)*period
#mint2 = mint1+1
#vr2 = (mint2+0.5)*fdpr
#p2 = cycrat*period
#print("C={:.3f}({:.3f}) D={:.3f} E={:.3f}({:.3f}) F={:.3f}".format(vr1,mint1*fdpr,p1,vr2,mint2*fdpr,p2))
# ---
cmd = self._talks[axis_id]
cmd += " ; MSTOP ; ABORT"
err, res = self.putread_chan(cmd)
time.sleep(0.1)
cmd = self._talks[axis_id]
cmd += " ; N_DRFVEL={:.3f}".format(inc_per_sec_drift)
err, res = self.putread_chan(cmd)
cmd = self._talks[axis_id]
cmd += " ; TA = 0.5 ; TD=0.5 ; RUN drf1"
err, res = self.putread_chan(cmd)
time.sleep(2)
# ---
v_av0 = 0
v_av = 0
t0 = time.time()
ts = []
incs = []
dincs = []
while True:
t = time.time()
dt_sec = (t-t0)
if dt_sec > duration_sec:
break
# ---
err, inc = self.tachymeter_read_enc(axis_id)
inc = float(inc)
if incs==[]:
inc0 = inc
dinc = inc - inc0
ts.append(dt_sec)
incs.append(inc)
dincs.append(dinc)
# ---
if len(incs)>=2:
# --- instantaneous
dinc2 = dincs[-1]
dinc1 = dincs[-2]
t2 = ts[-1]
t1 = ts[-2]
dinc = dinc2-dinc1 # inc
dt = t2-t1 # sec
if len(incs)>=3:
# --- averaged
dinc2 = dincs[-1]
dinc1 = dincs[1]
t2 = ts[-1]
t1 = ts[1]
dinc = dinc2-dinc1 # inc
dt = t2-t1 # sec
v_av = dinc/dt # inc/sec
else:
v_av = 0
dv_av = v_av - v_av0
# ---
#ligne = "{} {} {}".format(dt_sec,v,v_av)
#with open("sideral_positions.txt","a",encoding='utf-8') as fid:
# fid.write(ligne+"\n")
# ---
#self.log.print("dt_sec={:.1f} v={:.4f} v_av={:.4f} dv_av={:.4f}".format(dt_sec,v,v_av,dv_av))
time.sleep(5.0)
v_av0 = v_av
# ---
cmd = "SSTOP"
err, res = self.putread_chan(cmd,1)
# ---
# ===
if v_av==0:
ratio = 1
else:
ratio = vr/v_av
return v_av, abs(dv_av), ratio
def tachymeter_check_sideral(self, duration_min, mult=""):
self.log.print("calib_sideral_duration {} minutes".format(duration_min))
# ---
if mult=="":
mult = self.mult_inc_per_sec_drift
self.mult_inc_per_sec_drift = mult
self.log.print("mult = {}".format(mult))
# ---
angle = str(self.site.longitude)
date = celme.Date("now")
jd = date.jd() + 3./24
longuai = celme.Angle(angle).rad()
meca = celme.Mechanics()
lst = meca._mc_tsl(jd,-longuai)
ang = celme.Angle(str(lst)+"r")
lst_hms = ang.sexagesimal("H0.0")
ra = lst_hms
dec = 0
self.log.print("Pointing {} {}".format(ra,dec))
self.hadec_speeddrift("diurnal",0)
self.radec_goto(ra, dec, blocking=False)
time.sleep(10.0)
self.log.print("End of pointing")
#diurnal_drift = 360*3600/self._sideral_sec_per_day # 15.0410844 arcsec/sec
t0 = time.time()
ts = []
ras = []
dras = []
while True:
t = time.time()
dt_sec = (t-t0)
dt_min = dt_sec/60.
if dt_min > duration_min:
self.log.print("exit after dt_min={}".format(dt_min))
break
# ---
ra, dec, side = self.radec_coord()
ra_deg = celme.Angle(ra).deg()
if ras==[]:
ra_deg0 = ra_deg
dra_deg = ra_deg - ra_deg0
ts.append(dt_sec)
ras.append(ra_deg)
dras.append(dra_deg*3600)
# ---
if len(ras)>=2:
# --- instantaneous
dra2 = dras[-1]
dra1 = dras[-2]
t2 = ts[-1]
t1 = ts[-2]
dra = dra2-dra1 # arcsec
dt = t2-t1 # sec
drift = dra/dt # arcsec/sec
else:
drift = 0
if len(ras)>=3:
# --- averaged
dra2 = dras[-1]
dra1 = dras[1]
t2 = ts[-1]
t1 = ts[1]
dra = dra2-dra1 # arcsec
dt = t2-t1 # sec
drift_av = dra/dt # arcsec/sec
else:
drift_av = 0
# ---
ligne = "{} {} {}".format(dt_sec,dra_deg*3600,ra_deg)
with open("sideral_positions.txt","a",encoding='utf-8') as fid:
fid.write(ligne+"\n")
# ---
self.log.print("dt_sec={:.1f} dra={:.2f} drift={:.2f} arcsec/sec av={:2f}".format(dt_sec,dra_deg*3600,drift,drift_av))
time.sleep(5.0)
# ===
xs = np.array(ts)
ys = np.array(dras)
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
h = ax.plot(xs,ys,"r-")
h[0].set_linewidth(1.5)
plt.title("Derive during sideral drift mult={}".format(mult))
plt.xlabel("time (sec)")
plt.ylabel("R.A. offset (arcsec)")
plt.grid(True)
plt.show()
outfile = "sideral_positions.png"
plt.savefig(outfile, facecolor='w', edgecolor='w')
self.hadec_stop()
# =====================================================================
# =====================================================================
# Methods for experimented users (debug, etc)
# =====================================================================
# =====================================================================
def putread(self, axis_id:int, msg, index=-1, disp=True):
cmd = ""
err = self.NO_ERROR
res = 0
kaxis = axis_id
current_axis = self.axis[kaxis]
if current_axis.real==True:
cmd = self._talks[kaxis]
if cmd != "":
cmd += " ; {}".format(msg)
if disp==True:
self.log.print("putread {} cmd >> {}".format(axis_id,cmd))
err, res = self.putread_chan(cmd, index)
return err, res
# =====================================================================
# =====================================================================
# Methods for users
# =====================================================================
# =====================================================================
# =====================================================================
# =====================================================================
# Special methods
# =====================================================================
# =====================================================================
def __init__(self, *args, **kwargs):
"""
Conversion from Uniform Python object into protocol language
Usage : Mountastro("HADEC", name="SCX11")
"""
# === Decode params
# --- Use the __init__ of the parent class Mountastro
super(Mountastro_Astromecca,self).__init__(*args, **kwargs)
# --- Special params for this mount
# --- Dicos of optional and mandatory parameters
params_optional = {}
# --- special SCX11 for TALK function
params_optional["CONTROLLER_BASE_ID"] = (int,1)
params_optional["CONTROLLER_POLAR_ID"] = (int,2)
params_optional["CONTROLLER_ROT_ID"] = (int,3)
params_mandatory = {}
# --- Decode parameters
params = self.decode_kwargs(params_optional, params_mandatory, **kwargs)
# --- Add the personnal dict to the general one
self._mount_params.update(params)
# === Configure according params
# --- talks are string that are prefix of SCX11 commands to switch in the dedicaded controler in daisy chain
self._talks = ["" for kaxis in range(Mountaxis.AXIS_MAX)]
self._talks[Mountaxis.BASE] = "TALK"+str(self._mount_params["CONTROLLER_BASE_ID"])
self._talks[Mountaxis.POLAR] = "TALK"+str(self._mount_params["CONTROLLER_POLAR_ID"])
self._talks[Mountaxis.ROT] = "TALK"+str(self._mount_params["CONTROLLER_ROT_ID"])
# --- shortcuts
axisb = self.axis[Mountaxis.BASE]
axisp = self.axis[Mountaxis.POLAR]
axisr = self.axis[Mountaxis.ROT]
# --- initialize
if axisb!=None:
axisb.real = True
axisb.ratio_wheel_puley = 6.29870
axisb.inc_per_motor_rev = 1540 # IMC parameter. System Confg -> System Parameters - Distance/Revolution
axisb.ratio_puley_motor = 100 # harmonic reducer
axisb.senseinc = -1
axisb.slew_deg_per_sec = 10
axisb.update_inc0(0,-90,axisb.PIERSIDE_POS1)
axisb.language_protocol = "SCX11"
if axisp!=None:
axisp.real = False
axisp.ratio_wheel_puley = 6.4262
axisp.inc_per_motor_rev = 1525
axisp.ratio_puley_motor = 100 # harmonic reducer
axisp.senseinc = -1
axisp.slew_deg_per_sec = 10
axisp.update_inc0(0,90,axisp.PIERSIDE_POS1)
axisp.language_protocol = "SCX11"
if axisr!=None:
axisr.real = False
axisr.ratio_wheel_puley = 6.4262
axisr.inc_per_motor_rev = 1525
axisp.ratio_puley_motor = 100
axisr.senseinc = -1
axisr.slew_deg_per_sec = 10
axisr.update_inc0(0,90,axisr.PIERSIDE_POS1)
axisr.language_protocol = "SCX11"
# ---
self.mult_inc_per_sec_drift = 1.017 * 0.9914 ; # 0.9984 # 1.00517
self.mult_inc_per_sec_drift = 1.0082+0.0082*1.4
def __del__(self):
try:
self.close_chan()
except:
pass
# #####################################################################
# #####################################################################
# #####################################################################
# Main
# #####################################################################
# #####################################################################
# #####################################################################
if __name__ == "__main__":
cwd = os.getcwd()
hostname = socket.gethostname()
example = 1
print("Example = {}".format(example))
if 'mount_astromecca' in globals():
del(mount_astromecca)
if 'eqmod_chan' in globals():
del(eqmod_chan)
#try:
# mount_astromecca.close_chan()
#except:
# pass
#try:
# eqmod_chan.close_chan()
#except:
# pass
# --- configuration depending the computer
if hostname == "titanium":
print("Configuration = {}".format(hostname))
port_serial_scx11='//./com6' ; # '//./com4'
port_serial_eqmod='//./com1'
elif hostname == "rapido2":
print("Configuration = {}".format(hostname))
port_serial_scx11='/dev/ttyAMA0'
port_serial_eqmod='/dev/ttyAMA1'
else:
print("Attention, pas de configuration pour {}".format(hostname))
port_serial_scx11='//./com1'
port_serial_eqmod='//./com2'
print("port_scx11 = {}".format(port_serial_scx11))
print("port_eqmod = {}".format(port_serial_eqmod))
if example == 1:
"""
Basic example
"""
home = celme.Home("GPS 2.0375 E 43.6443484725 136.9")
site = celme.Site(home)
# === ASTROMECCA connection
mount_astromecca = Mountastro_Astromecca("HADEC", name="Guitalens Mount", manufacturer="Astro MECCA", model="TM350", serial_number="beta001", site=site, CONTROLLER_BASE_ID=1, CONTROLLER_POLAR_ID=2)
mount_astromecca.set_channel_params("SERIAL", port=port_serial_scx11, baud_rate=115200, delay_init_chan=0.1, end_of_command_to_send="\r\n".encode('utf8'), end_of_command_to_receive="\r\n".encode('utf8'), delay_put_read=0.06)
mount_astromecca.verbose_chan = False
# --- shortcuts
mount_astromecca_axisb = mount_astromecca.axis[Mountaxis.BASE]
mount_astromecca_axisp = mount_astromecca.axis[Mountaxis.POLAR]
# --- simulation or not
mount_astromecca_axisb.real = False
mount_astromecca_axisb.ratio_wheel_puley = 6.132857; # 6.27819 ; # 6.32721 ; # D=208.0 ; d=32.5 ; f=1.5 ; (D+f/2)/(d+f/2)
mount_astromecca_axisb.inc_per_motor_rev = 1540 # DPR for -490000 to +490000
mount_astromecca_axisb.senseinc = 1
mount_astromecca_axisp.real = False
mount_astromecca_axisp.ratio_wheel_puley = 6.75 ; # 6.75 ; # 6.7462935 ; # D=208.0 ; d=30.0 ; f=1.5 ; (D+f/2)/(d+f/2)
mount_astromecca_axisp.inc_per_motor_rev = 1421
mount_astromecca_axisp.senseinc = -1
# --- Initial ha,dec for encoders
#mount_astromecca_axisb.update_inc0(10750,-90,mount_astromecca_axisb.PIERSIDE_POS1)
mount_astromecca.set_param("CONFIGURATION","Fork")
if mount_astromecca.get_param("CONFIGURATION")=="German":
# --- German mount
mount_astromecca.set_param("LABEL_REGULAR","Tube West") ; # Tube west = PIERSIDE_POS1
mount_astromecca.set_param("LABEL_FLIPED","Tube East")
mount_astromecca.set_param("CAN_REVERSE",True)
mount_astromecca.set_param("LIME_REVERSE",+30) ; # Tube west = PIERSIDE_POS1 = [-180 : lim_side_east]
mount_astromecca.set_param("LIMW_REVERSE",-30) ; # Tube east = PIERSIDE_POS2 = [lim_side_west : +180]
mount_astromecca_axisb.update_inc0(0,-90,mount_astromecca_axisb.PIERSIDE_POS1)
mount_astromecca_axisp.update_inc0(0,90,mount_astromecca_axisp.PIERSIDE_POS1)
if mount_astromecca_axisb.real == True:
mount_astromecca_axisb.update_inc0(62500,-90,mount_astromecca_axisb.PIERSIDE_POS1)
if mount_astromecca_axisp.real == True:
mount_astromecca_axisp.update_inc0(6500,90,mount_astromecca_axisp.PIERSIDE_POS1)
mount_astromecca.park_ha = 270
mount_astromecca.park_dec = 90
mount_astromecca.park_side = mount_astromecca_axisb.PIERSIDE_POS1
elif mount_astromecca.get_param("CONFIGURATION")=="Fork":
# --- Fork mount. Tube always "west" in "auto"
mount_astromecca.set_param("LABEL_REGULAR","Regular") ; # Regular = PIERSIDE_POS1
mount_astromecca.set_param("LABEL_FLIPED","Fliped")
mount_astromecca.set_param("CAN_REVERSE",False)
mount_astromecca.set_param("LIME_REVERSE",+90) ; # Tube west = PIERSIDE_POS1 = [-180 : lim_side_east]
mount_astromecca.set_param("LIMW_REVERSE",-90) ; # Tube east = PIERSIDE_POS2 = [lim_side_west : +180]
mount_astromecca_axisb.update_inc0(0,0,mount_astromecca_axisb.PIERSIDE_POS1)
mount_astromecca_axisp.update_inc0(0,90,mount_astromecca_axisp.PIERSIDE_POS1)
if mount_astromecca_axisb.real == True:
mount_astromecca_axisb.update_inc0(62500,0,mount_astromecca_axisb.PIERSIDE_POS1)
if mount_astromecca_axisp.real == True:
mount_astromecca_axisp.update_inc0(6500,90,mount_astromecca_axisp.PIERSIDE_POS1)
else:
mount_astromecca_axisp._incsimu = -239793.8
mount_astromecca.park_ha = 0
mount_astromecca.park_dec = 0
mount_astromecca.park_side = mount_astromecca_axisb.PIERSIDE_POS1
# --- first read of encoders (zero values the first time)
incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]
mount_astromecca.enc2cel(incsimus, save=mount_astromecca.SAVE_ALL)
# --- second read of encoders (valid values)
time.sleep(0.05)
mount_astromecca.enc2cel(incsimus, save=mount_astromecca.SAVE_ALL)
# --- Init the simulation values according the real ones
mount_astromecca_axisb.synchro_real2simu()
# --- Get the initial position
res = mount_astromecca.hadec_coord()
mount_astromecca.log.print("Initial position = {}".format(res))
# ======= Controller
mount_astromecca.speedslew(10.0,10.0)
t0 = time.time()
mount_astromecca.disp()
dt = time.time()-t0
if True:
try:
mount_astromecca.pad_create("pad_dev1")
except (KeyboardInterrupt, SystemExit):
pass
except:
raise
if example == 2:
"""
EQMOD exploration
"""
home = celme.Home("GPS 2.25 E 43.567 148")
site = celme.Site(home)
# === SCX11 connection
mount_astromecca = Mountastro_Astromecca("HADEC", name="Oriental Motor", manufacturer="Astro MECCA", model="TM350", serial_number="beta001", site=site, CONTROLLER_BASE_ID=1, CONTROLLER_POLAR_ID=2)
mount_astromecca.set_channel_params("SERIAL", port=port_serial_scx11, baud_rate=115200, delay_init_chan=0.1, end_of_command_to_send="\r\n".encode('utf8'), end_of_command_to_receive="\r\n".encode('utf8'), delay_put_read=0.06)
mount_astromecca.verbose_chan = False
# --- shortcuts
mount_astromecca_axisb = mount_astromecca.axis[Mountaxis.BASE]
mount_astromecca_axisp = mount_astromecca.axis[Mountaxis.POLAR]
# --- simulation or not
mount_astromecca_axisb.real = True
mount_astromecca_axisb.ratio_wheel_puley = 6.2
mount_astromecca_axisb.inc_per_motor_rev = 1900
mount_astromecca_axisb.senseinc = -1
mount_astromecca_axisp.real = False
mount_astromecca_axisp.ratio_wheel_puley = 5.25
mount_astromecca_axisp.inc_per_motor_rev = 1900
mount_astromecca_axisp.senseinc = -1
# --- Initial ha,dec for encoders
mount_astromecca_axisb.update_inc0(0,-90,mount_astromecca.axisb.PIERSIDE_POS1)
mount_astromecca_axisp.update_inc0(0,90,mount_astromecca.axisp.PIERSIDE_POS1)
# --- first read of encoders (zero values the first time)
incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]
mount_astromecca.enc2cel(incsimus, save=mount_astromecca.SAVE_ALL)
# --- second read of encoders (valid values)
time.sleep(0.05)
mount_astromecca.enc2cel(incsimus, save=mount_astromecca.SAVE_ALL)
# --- Init the simulation values according the real ones
mount_astromecca_axisb.synchro_real2simu()
# --- Get the initial position
res = mount_astromecca.hadec_coord()
mount_astromecca.log.print("Initial position = {}".format(res))
mount_astromecca.disp()
# === EQMOD simulator
mount_eqmod = Mountastro("HADEC", name="EQMOD", manufacturer="EQMOD", model="EQ 6", site=site)
# --- shortcuts
mount_eqmod_axisb = mount_eqmod.axis[Mountaxis.BASE]
mount_eqmod_axisp = mount_eqmod.axis[Mountaxis.POLAR]
# --- default values to simulate a EQ6 mount
a = 9024000 ; # microsteps / 360° : Number of microsteps for one turn over the sky
b = 64935 ; # (microsteps2 / sec) : Velocity parameter (i) = (1|g) * (b) / speedtrack(deg/s) / ((a)/360)
d = 8388608 ; # (microsteps) : initial position (j) when the mount is just switched on
s = 50133 ; # (microsteps) : Microsteps to a complete turnover of worm
inc_per_sky_rev = a
ratio_puley_motor = 1
inc_per_motor_rev = s
ratio_wheel_puley = inc_per_sky_rev/(ratio_puley_motor*inc_per_motor_rev)
# ---
mount_eqmod_axisb.ratio_wheel_puley = ratio_wheel_puley
mount_eqmod_axisb.ratio_puley_motor = ratio_puley_motor
mount_eqmod_axisb.inc_per_motor_rev = inc_per_motor_rev
mount_eqmod_axisb.update_inc0(d,-90,mount_eqmod_axisb.PIERSIDE_POS1)
# ---
mount_eqmod_axisp.ratio_wheel_puley = ratio_wheel_puley
mount_eqmod_axisp.ratio_puley_motor = ratio_puley_motor
mount_eqmod_axisp.inc_per_motor_rev = inc_per_motor_rev
mount_eqmod_axisp.update_inc0(d+a/4,90,mount_eqmod_axisp.PIERSIDE_POS1)
# ---
eqmod_chan = Mountchannel("SERIAL", port=port_serial_eqmod, baud_rate=9600, delay_init_chan=0.1, end_of_command_to_send="\r".encode('utf8'), end_of_command_to_receive="\r".encode('utf8'), delay_put_read=0.06)
mount_eqmod.verbose_chan = False
# --- A useful class for EQMOD
eqmod = Mountutils_eqmod()
# --- A useful def for interactions between SCX11 and EQMOD
def eqmod_update_coord():
res = mount_astromecca.hadec_coord()
ha, dec, pierside = res
res = mount_eqmod.hadec_hadec2enc(ha, dec, pierside, output_format=mount_eqmod.OUTPUT_LONG, save=mount_eqmod.SAVE_AS_SIMU)
return res
# --- update the EQMOD coord
eqmod_update_coord()
mount_eqmod.disp()
# ======= EQMOD
a1 = a
a2 = a
b1 = b
b2 = b
d1 = d
d2 = d
j1max = 16777216
j2max = j1max
s1 = s
s2 = s
# --- prepare the loop
lastG1 = "00"
lastG2 = "00"
lastI1 = 0
lastI2 = 0
lastH1 = 0
lastH2 = 0
lastM1 = 0
lastM2 = 0
#
motion_type1, motion_sense1 = eqmod.decode_G(lastG1)
motion_type2, motion_sense2 = eqmod.decode_G(lastG2)
if mount_astromecca.axisb.real == True:
current_motion1 = eqmod.MOTION_JOG_FAST_POSITIVE
else:
current_motion1 = eqmod.MOTION_STOPPED_POSITIVE
if mount_astromecca.axisp.real == True:
current_motion2 = eqmod.MOTION_JOG_FAST_POSITIVE
else:
current_motion2 = eqmod.MOTION_STOPPED_POSITIVE
current_motor1 = eqmod.MOTOR_ON
current_motor2 = eqmod.MOTOR_ON
# ---
E1_e1_target = -1
try:
mount_eqmod.pad_create("pad_dev1")
# --- loop to be a server
t0 = time.time()
mount_astromecca.log.print("Enter in the loop")
while True:
# --- update from SCX11
ha_sigmove = 0
dec_sigmove = 0
if mount_astromecca_axisb.real == True:
err, ha_sigmove = mount_astromecca.putread(Mountaxis.BASE,"SIGMOVE",1,False)
ha_sigmove = int(ha_sigmove)
else:
if mount_astromecca_axisb._simu_signal_move==0:
ha_sigmove = 0
else:
ha_sigmove = 1
if mount_astromecca_axisp.real == True:
err, dec_sigmove = mount_astromecca.putread(Mountaxis.POLAR,"SIGMOVE",1,False)
dec_sigmove = int(dec_sigmove)
else:
if mount_astromecca_axisp._simu_signal_move==0:
dec_sigmove = 0
else:
dec_sigmove = 1
# --- Update the current motion and moving status
if ha_sigmove==0:
current_moving1 = eqmod.MOTION_STOPPED
if current_motion1==eqmod.MOTION_JOG_FAST_POSITIVE or current_motion1==eqmod.MOTION_JOG_SLOW_POSITIVE:
current_motion1 = eqmod.MOTION_STOPPED_POSITIVE
elif current_motion1==eqmod.MOTION_JOG_FAST_NEGATIVE or current_motion1==eqmod.MOTION_JOG_SLOW_NEGATIVE:
current_motion1 = eqmod.MOTION_STOPPED_NEGATIVE
if dec_sigmove==0:
current_moving2 = eqmod.MOTION_STOPPED
if current_motion2==eqmod.MOTION_JOG_FAST_POSITIVE or current_motion2==eqmod.MOTION_JOG_SLOW_POSITIVE:
current_motion2 = eqmod.MOTION_STOPPED_POSITIVE
elif current_motion2==eqmod.MOTION_JOG_FAST_NEGATIVE or current_motion2==eqmod.MOTION_JOG_SLOW_NEGATIVE:
current_motion2 = eqmod.MOTION_STOPPED_NEGATIVE
#print("SIGMOVE motion_type1={} current_motion1={} current_moving1={} current_motor1={}".format(motion_type1,current_motion1,current_moving1,current_motor1))
#print("SIGMOVE motion_type2={} current_motion2={} current_moving2={} current_motor2={}".format(motion_type2,current_motion2,current_moving2,current_motor2))
# --- update f1 and f2
f1 = eqmod.encode_f(motion_type1,current_motion1,current_moving1,current_motor1)
f2 = eqmod.encode_f(motion_type2,current_motion2,current_moving2,current_motor2)
# (none) Fast tracking speed multiplier (set with :Gm3...)
g1 = "10"
g2 = "10"
# --- update EQMOD from the current position of SCX11
eqmod_update_coord()
incb = mount_astromecca_axisb.inc
incp = mount_astromecca_axisp.inc
j1 = mount_eqmod_axisb.incsimu
j2 = mount_eqmod_axisp.incsimu
# --- read the EQMOD commands
lignes = ""
try:
err, lignes = eqmod_chan.read_chan()
lignes = str(lignes[0])
except:
pass
if err==eqmod_chan.NO_ERROR and lignes != "":
msg = "!"
dec = ""
if lignes==':e1' or lignes==':e2':
msg = "=020400"
elif lignes==':a1':
hexa = eqmod.int2hexa(a1)
msg = "="+hexa
elif lignes==':a2':
hexa = eqmod.int2hexa(a2)
msg = "="+hexa
elif lignes==':b1':
hexa = eqmod.int2hexa(b1)
msg = "="+hexa
elif lignes==':b2':
hexa = eqmod.int2hexa(b2)
msg = "="+hexa
elif lignes==':g1':
msg = "="+g1
elif lignes==':g2':
msg = "="+g2
elif lignes==':s1':
hexa = eqmod.int2hexa(s1)
msg = "="+hexa
elif lignes==':s2':
hexa = eqmod.int2hexa(s2)
msg = "="+hexa
elif lignes==':V200':
msg = "="
elif lignes==':q1010000':
msg = "!0"
elif lignes==':O10':
msg = "!0"
elif lignes==':V27D':
msg = "="
elif lignes==':j1':
hexa = eqmod.int2hexa(j1)
msg = "="+hexa
elif lignes==':j2':
hexa = eqmod.int2hexa(j2)
msg = "="+hexa
elif lignes==':f1':
msg = "="+f1
elif lignes==':f2':
msg = "="+f2
if lignes.startswith(":K")==True:
axis = int(lignes[2])
if axis==1:
mount_astromecca.putread(Mountaxis.BASE,"SSTOP",1)
mount_astromecca_axisb.simu_motion_stop()
lastH1 = 0
lastM1 = 0
else:
mount_astromecca.putread(Mountaxis.POLAR,"SSTOP",1)
mount_astromecca_axisp.simu_motion_stop()
lastH2 = 0
lastM2 = 0
msg = "="
if lignes.startswith(":P")==True:
msg = "="
if lignes.startswith(":F")==True:
# set the motor power
msg = "="
if lignes.startswith(":E")==True:
# update inc0
axis = int(lignes[2])
hexa = lignes[3:9]
deci = eqmod.hexa2int(hexa)
if axis==1:
E1_e1_target = j1 + deci
else:
j1_target = E1_e1_target
j2_target = j2 + deci
# --- get the new HA,Dec
incsimus = ["" for kaxis in range(Mountaxis.AXIS_MAX)]
incsimus[Mountaxis.BASE] = j1_target
incsimus[Mountaxis.POLAR] = j2_target
celb, celp, pierside = mount_eqmod.enc2cel(incsimus, output_format=mount_eqmod.OUTPUT_SHORT, save=mount_eqmod.SAVE_NONE)
ha, dec = mount_eqmod.cel2hadec(celb, celp, "deg", "deg")
print("incb={} ha={:.4f} pierside={}".format(incb, ha, pierside))
print("incp={} dec={:.4f} pierside={}".format(incp, dec, pierside))
print("j1_target={} ha={:.4f} pierside={}".format(j1_target, ha, pierside))
print("j2_target={} dec={:.4f} pierside={}".format(j2_target, dec, pierside))
mount_astromecca_axisb.update_inc0(incb, ha, pierside)
mount_astromecca_axisp.update_inc0(incp, dec, pierside)
mount_eqmod_axisb.update_inc0(j1_target, ha, pierside)
mount_eqmod_axisp.update_inc0(j2_target, dec, pierside)
msg = "="
if lignes.startswith(":G")==True:
axis = int(lignes[2])
digits = lignes[3:5]
if axis==1:
lastG1 = digits
else:
lastG2 = digits
msg = "="
if lignes.startswith(":I")==True:
axis = int(lignes[2])
hexa = lignes[3:9]
deci = eqmod.hexa2int(hexa)
if axis==1:
lastI1 = deci
else:
lastI2 = deci
msg = "="
if lignes.startswith(":H")==True:
axis = int(lignes[2])
hexa = lignes[3:9]
deci = eqmod.hexa2int(hexa)
if axis==1:
lastH1 = deci
else:
lastH2 = deci
print("H={} deci={}".format(hexa,deci))
msg = "="
if lignes.startswith(":M")==True:
axis = int(lignes[2])
hexa = lignes[3:9]
deci = eqmod.hexa2int(hexa)
if axis==1:
lastM1 = deci
else:
lastM2 = deci
print("M={} deci={}".format(hexa,deci))
msg = "="
if lignes.startswith(":J")==True:
# --- select axis
axis = int(lignes[2])
if axis==1:
lastG = lastG1
lastH = lastH1
lastI = lastI1
multg = int(g1)
else:
lastG = lastG2
lastH = lastH2
lastI = lastI2
multg = int(g2)
# ---
motion_type, motion_sense = eqmod.decode_G(lastG)
if axis==1:
motion_type1 = motion_type
motion_sense1 = motion_sense
else:
motion_type2 = motion_type
motion_sense2 = motion_sense
# --- choice according the motion type (GOTO=OFFSET or MOVE=CONTINUOUS)
if motion_type == eqmod.G_OFFSET_FAST or motion_type == eqmod.G_OFFSET_SLOW:
mount_astromecca.log.print("GOTO")
# --- GOTO
if motion_type == eqmod.G_OFFSET_FAST:
# --- fast GOTO
deg_per_sec = 10.0
if motion_type == eqmod.G_OFFSET_SLOW:
# --- slow GOTO
deg_per_sec = 1.0
if axis==1:
# --- Convert velocity in inc/sec
inc_per_sec_slew = abs(deg_per_sec * mount_astromecca.axisb.inc_per_deg)
# --- Compute the target position in EQMOD inc
j1_target = j1 + lastH1
if j1_target >= j1:
motion_sense1 = eqmod.G_SENSE_POSITIVE
if motion_type == eqmod.G_OFFSET_FAST:
current_motion1 = eqmod.MOTION_JOG_FAST_POSITIVE
else:
current_motion1 = eqmod.MOTION_JOG_SLOW_POSITIVE
else:
motion_sense1 = eqmod.G_SENSE_NEGATIVE
if motion_type == eqmod.G_OFFSET_FAST:
current_motion1 = eqmod.MOTION_JOG_FAST_NEGATIVE
else:
current_motion1 = eqmod.MOTION_JOG_SLOW_NEGATIVE
# --- get the corresponding EQMOD rot
rot, pierside = mount_eqmod_axisb.inc2rot(j1_target)
# --- get the corresponding SCX11 inc
inc = mount_astromecca.axisb.rot2inc(rot)
# --- get the corresponding SCX11 inc
mount_astromecca.inc_goto(Mountaxis.BASE, inc, inc_per_sec_slew)
motion_type1 = motion_type
current_moving1 = eqmod.MOTION_MOVING
#print("GOTO motion_type1={} current_motion1={} current_moving1={} current_motor1={}".format(motion_type1,current_motion1,current_moving1,current_motor1))
if axis==2:
# --- Convert velocity in inc/sec
inc_per_sec_slew = abs(deg_per_sec * mount_astromecca.axisp.inc_per_deg)
# --- Compute the target position in EQMOD inc
j2_target = j2 + lastH2
if j2_target >= j2:
motion_sense2 = eqmod.G_SENSE_POSITIVE
if motion_type == eqmod.G_OFFSET_FAST:
current_motion2 = eqmod.MOTION_JOG_FAST_POSITIVE
else:
current_motion2 = eqmod.MOTION_JOG_SLOW_POSITIVE
else:
motion_sense2 = eqmod.G_SENSE_NEGATIVE
if motion_type == eqmod.G_OFFSET_FAST:
current_motion2 = eqmod.MOTION_JOG_FAST_NEGATIVE
else:
current_motion2 = eqmod.MOTION_JOG_SLOW_NEGATIVE
# --- get the corresponding EQMOD rot
rot, pierside = mount_eqmod_axisp.inc2rot(j2_target)
# --- get the corresponding SCX11 inc
inc = mount_astromecca.axisp.rot2inc(rot)
# --- get the corresponding SCX11 inc
mount_astromecca.inc_goto(Mountaxis.POLAR, inc, inc_per_sec_slew)
motion_type2 = motion_type
current_moving2 = eqmod.MOTION_MOVING
#print("GOTO motion_type2={} current_motion2={} current_moving2={} current_motor2={}".format(motion_type2,current_motion2,current_moving2,current_motor2))
if motion_type == eqmod.G_CONTINUOUS_FAST or motion_type == eqmod.G_CONTINUOUS_SLOW:
# --- MOVE
mount_astromecca.log.print("MOVE")
if motion_type == eqmod.G_CONTINUOUS_FAST:
# --- fast MOVE
mult = multg
if motion_type == eqmod.G_CONTINUOUS_SLOW:
# --- slow MOVE
mult = 1.0
if motion_sense == eqmod.G_SENSE_NEGATIVE:
sense = -1
else:
sense = 1
# --- velocity
if axis==1:
ha_drift_deg_per_sec = b1/lastI1/a1*360*mult*sense
dec_drift_deg_per_sec = 0
motion_sense1 = motion_sense
if motion_sense == eqmod.G_SENSE_POSITIVE:
if motion_type == eqmod.G_CONTINUOUS_FAST:
current_motion1 = eqmod.MOTION_JOG_FAST_POSITIVE
else:
current_motion1 = eqmod.MOTION_JOG_SLOW_POSITIVE
else:
if motion_type == eqmod.G_CONTINUOUS_FAST:
current_motion1 = eqmod.MOTION_JOG_FAST_NEGATIVE
else:
current_motion1 = eqmod.MOTION_JOG_SLOW_NEGATIVE
current_moving1 = eqmod.MOTION_MOVING
else:
ha_drift_deg_per_sec = 0
dec_drift_deg_per_sec = b2/lastI2/a2*360*mult*sense
motion_sense2 = motion_sense
if motion_sense == eqmod.G_SENSE_POSITIVE:
if motion_type == eqmod.G_CONTINUOUS_FAST:
current_motion2 = eqmod.MOTION_JOG_FAST_POSITIVE
else:
current_motion2 = eqmod.MOTION_JOG_SLOW_POSITIVE
else:
if motion_type == eqmod.G_CONTINUOUS_FAST:
current_motion2 = eqmod.MOTION_JOG_FAST_NEGATIVE
else:
current_motion2 = eqmod.MOTION_JOG_SLOW_NEGATIVE
current_moving2 = eqmod.MOTION_MOVING
mount_astromecca.hadec_move( ha_drift_deg_per_sec, dec_drift_deg_per_sec)
time.sleep(0.2)
msg = "="
# --- send the response to the client
deci = 0
if msg !="":
if len(msg)==7:
deci = eqmod.hexa2int(msg[1:])
eqmod_chan.put_chan(msg)
if lignes.startswith(":j")==True:
display = 0
else:
display = 1
if display==1:
mount_eqmod.log.print("recu={} envoyé={} decimal={}".format(lignes, msg, deci))
elif display==2:
mount_eqmod.log.print("recu={} envoyé={} decimal={} incb={} incp={}".format(lignes, msg, deci, incb, incp))
#dt00 = time.time()-t00
#print("recu={} envoyé={} decimal={:.1f} dt00={:.2f}".format(lignes, msg, deci,dt00))
time.sleep(0.01)
#time.sleep(1)
#print("lignes={}".format(lignes))
except (KeyboardInterrupt, SystemExit):
mount_eqmod.pad_delete()
except:
raise
if example == 3:
port_serial_ascom='/dev/ttyUSB0' # loop between ASCOM(PC=COM10) -> PC=COM1
import serial
try:
fid.close()
except:
pass
fid = serial.Serial(
port=port_serial_ascom,
baudrate = 9600,
parity = serial.PARITY_NONE,
stopbits = serial.STOPBITS_ONE,
bytesize = serial.EIGHTBITS,
timeout = 0
)
while True:
# --- read the ASCOM commands
lignes = ""
try:
lignes = fid.readlines()
if lignes != []:
print("lignes = {}".format(lignes))
except:
pass