wrapper_flipro.cpp
52.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
/*
Make the extension with:
python setup.py build_ext --inplace
Test the extension:
python test_wrapper_flipro.py
*/
#include "wrapper_flipro.h"
// ===================================================================================
// ===================================================================================
// === all devices
// ===================================================================================
// ===================================================================================
/// <summary>
/// Extract argc, **argv from a char* cmd. Use free_argv after using this function.
/// </summary>
/// <param name="cmd">The input string to extract words</param>
/// <param name="pargv">The pointer of **argv</param>
/// <returns>argc</returns>
/// <example>
/// int argc;
/// char **argv = NULL;
/// argc = get_argv(cmd, &argv);
/// </example>
int get_argv(char *cmd, char ***pargv) {
int argc = 0;
char str[1024];
// === Compute argc
strcpy(str, cmd);
char* token = strtok(str, " ");
while (token != NULL) {
token = strtok(NULL, " ");
argc++;
}
// === Alloc argv
char **argv = NULL;
argv = (char **)malloc(argc * sizeof(char));
*pargv = (char **)argv;
argc = 0;
// === Compute argv
strcpy(str, cmd);
token = strtok(str, " ");
while (token != NULL) {
argv[argc] = (char *)malloc((strlen(token)+2) * sizeof(char));
//printf("STEP 220-%d argv = %p\n", argc, argv[argc]);
strcpy(argv[argc], token);
token = strtok(NULL, " ");
argc++;
}
return argc;
}
/// <summary>
/// Free memory of the **argv array.
/// </summary>
/// <param name="argc">The number of elements of pargv</param>
/// <param name="pargv">The pointer of **argv</param>
/// <example>
/// free_argv(argc, &argv);
/// </example>
void free_argv(int argc, char ***pargv) {
char **argv;
argv = *pargv;
for (int k=0 ; k<argc ; k++) {
//printf("===> argv[%d] = %s\n", k, argv[k]);
free(argv[k]);
}
free(argv);
}
PyObject *set_np_array2d(int nd, int w, int h, int typenum, void *p) {
npy_intp dims[2];
dims[0] = w;
dims[1] = h;
return PyArray_SimpleNewFromData(nd, dims, typenum, p);
}
float *calloc_pf(size_t nmemb, size_t size) {
if (pf != NULL) {
free(pf);
pf = NULL;
}
pf = (float*)calloc(nmemb, size);
if (pf == NULL) {
PyErr_SetString(exampleException, "Pointer pf not allocated");
return NULL;
}
return pf;
}
void dict_append_d(PyObject* dico, const char* key, int value, const char* comment) {
PyObject *mylist;
mylist = PyList_New(2);
PyList_SetItem(mylist, 0, Py_BuildValue("i", value));
PyList_SetItem(mylist, 1, Py_BuildValue("s", comment));
PyDict_SetItemString(dico, key, mylist);
Py_DECREF(mylist);
}
void dict_append_s(PyObject* dico, const char* key, wchar_t *value, const char* comment) {
int nline = 10000;
char line[10000];
wcstombs(line, value, nline);
PyObject *mylist;
mylist = PyList_New(2);
PyList_SetItem(mylist, 0, Py_BuildValue("s", line));
PyList_SetItem(mylist, 1, Py_BuildValue("s", comment));
PyDict_SetItemString(dico, key, mylist);
Py_DECREF(mylist);
}
// ===================================================================================
// ===================================================================================
// === camera devices
// ===================================================================================
// ===================================================================================
void* malloc_camheaders(void) {
// on appelle cam_specific_header pour completer eventuellement le header par des infos propres a cette camera.
if (cam.camheaders==NULL) {
cam.nheadercard = 50;
cam.camheaders = (struct CamHeader*)malloc(cam.nheadercard*sizeof(struct CamHeader));
for (int kkey=0; kkey<cam.nheadercard; kkey++) {
strcpy(cam.camheaders[kkey].key,"");
strcpy(cam.camheaders[kkey].value,"");
strcpy(cam.camheaders[kkey].type_value,"");
strcpy(cam.camheaders[kkey].comment,"");
strcpy(cam.camheaders[kkey].unit,"");
}
}
return &cam.camheaders;
}
PyObject* fill_camheaders(void) {
PyObject *pyheadert=NULL, *pyheaders;
pyheaders = PyList_New(0);
if (cam.camheaders==NULL) {
return pyheaders;
}
// --- Fill the C structure
cam_specific_header(&cam);
// --- Convert C into PyObject
for (int kkey=0; kkey<cam.nheadercard; kkey++) {
if (strcmp(cam.camheaders[kkey].key,"")==0) {
continue;
}
if (strcmp(cam.camheaders[kkey].type_value,"int")==0) {
int val = atoi(cam.camheaders[kkey].value);
pyheadert = Py_BuildValue("(sisss)", cam.camheaders[kkey].key, val, cam.camheaders[kkey].type_value, cam.camheaders[kkey].comment, cam.camheaders[kkey].unit);
} else if (strcmp(cam.camheaders[kkey].type_value,"float")==0) {
float val = (float)atof(cam.camheaders[kkey].value);
pyheadert = Py_BuildValue("(sfsss)", cam.camheaders[kkey].key, val, cam.camheaders[kkey].type_value, cam.camheaders[kkey].comment, cam.camheaders[kkey].unit);
} else if (strcmp(cam.camheaders[kkey].type_value,"double")==0) {
double val = atof(cam.camheaders[kkey].value);
pyheadert = Py_BuildValue("(sdsss)", cam.camheaders[kkey].key, val, cam.camheaders[kkey].type_value, cam.camheaders[kkey].comment, cam.camheaders[kkey].unit);
} else {
pyheadert = Py_BuildValue("(sssss)", cam.camheaders[kkey].key, cam.camheaders[kkey].value, cam.camheaders[kkey].type_value, cam.camheaders[kkey].comment, cam.camheaders[kkey].unit);
}
PyList_Append(pyheaders, pyheadert);
}
Py_XDECREF(pyheadert);
return pyheaders;
}
void free_camheaders(void) {
if (cam.camheaders!=NULL) {
free(cam.camheaders);
}
cam.camheaders=NULL;
}
PyObject* append_camheaders(const char* key, void *val, const char *type_value, const char *comment, const char *unit) {
PyObject *pyheader;
// --- Convert C into PyObject
if (strcmp(type_value,"int")==0) {
int *value = (int*)val;
pyheader = Py_BuildValue("(sisss)", key, *value, type_value, comment, unit);
} else if (strcmp(type_value,"float")==0) {
float *value = (float*)val;
pyheader = Py_BuildValue("(sfsss)", key, *value, type_value, comment, unit);
} else if (strcmp(type_value,"double")==0) {
double *value = (double*)val;
pyheader = Py_BuildValue("(sdsss)", key, *value, type_value, comment, unit);
} else {
pyheader = Py_BuildValue("(sssss)", key, val, type_value, comment, unit);
}
return pyheader;
}
// =====================================================================
// =====================================================================
// Internal functions
// =====================================================================
// =====================================================================
void isotime(char *iso)
{
char iso0[BUFFER_TIME_SIZE];
struct timespec now;
timespec_get( &now, TIME_UTC );
strftime( iso0, BUFFER_TIME_SIZE, "%FT%T", gmtime( &now.tv_sec ) );
sprintf(iso, "%s.%09ld", iso0, now.tv_nsec);
iso[23] = '\0'; // ms
}
PyObject* ExplainMode(int ii)
{
int32_t iResult = 0;
uint32_t uiModeCount;
FPROSENSMODE modeInfo;
uint32_t i,i1,i2;
// Get the numer of available modes and the current mode setting (index)
uiModeCount = cam_get_total_mode(&cam);
if (uiModeCount < 0) {
PyErr_SetString(exampleException, "FPROSensor_GetModeCount result is negative; check camera is functional");
return NULL;
}
if (ii >= 0) {
i1 = (uint32_t)(ii);
i2 = (uint32_t)(ii+1);
}
else {
i1 = (uint32_t)(0);
i2 = (uint32_t)(uiModeCount);
}
PyObject *mylists;
mylists = PyList_New(0);
PyObject *dico;
dico = PyDict_New();
PyObject *mylist;
mylist = PyList_New(2);
for (i = i1 ; (i < i2) && (iResult >= 0) ; ++i)
{
iResult = FPROSensor_GetMode(cam.s_iDeviceHandle, i, &modeInfo);
//
PyList_SetItem(mylist, 0, Py_BuildValue("i", modeInfo.uiModeIndex));
PyList_SetItem(mylist, 1, Py_BuildValue("s", "The corresponding index of the mode name"));
PyDict_SetItemString(dico, "uiModeIndex", mylist);
//
PyList_SetItem(mylist, 0, Py_BuildValue("s", modeInfo.wcModeName));
PyList_SetItem(mylist, 1, Py_BuildValue("s", "A descriptive human readable name for the mode suitable for a user interface"));
PyDict_SetItemString(dico, "wcModeName", mylist);
PyList_Append(mylists, mylist);
}
Py_DECREF(dico);
Py_DECREF(mylist);
return Py_BuildValue("O", mylists);
}
// =====================================================================
// =====================================================================
// Python extension - Common functions
// =====================================================================
// =====================================================================
static PyObject* init(PyObject* self, PyObject* args) {
char cmd[1024];
strcpy(cmd, "");
int argc = (int)PyTuple_GET_SIZE(args);
if (argc > 1) {
// TODO
}
char **argv;
argc = get_argv(cmd, &argv);
int res = cam_init(&cam, argc, (const char **)argv);
if (res != 0) {
PyErr_SetString(exampleException, cam.msg);
return NULL;
}
free_argv(argc, &argv);
pycam_state = PYCAM_IDLE;
timer = -1;
pf = NULL;
return PyLong_FromLong( res );
}
static PyObject* close(PyObject* self, PyObject* args) {
int res = cam_close(&cam);
pycam_state = PYCAM_UNCONNECTED;
return PyLong_FromLong( res );
}
static PyObject* update_window(PyObject* self, PyObject* args) {
int x1, y1, x2, y2;
if (PyTuple_GET_SIZE(args) >= 4) {
if ( ! PyArg_ParseTuple(args, "iiii", &x1, &y1, &x2, &y2) ) return NULL;
cam.x1 = x1;
cam.y1 = y1;
cam.x2 = x2;
cam.y2 = y2;
cam_update_window(&cam);
}
return Py_BuildValue("iiii", &cam.x1, &cam.y1, &cam.x2, &cam.y2);
}
static PyObject* bin(PyObject* self, PyObject* args) {
int binx, biny;
if (PyTuple_GET_SIZE(args) > 1) {
if ( ! PyArg_ParseTuple(args, "ii", &binx, &biny) ) return NULL;
cam_set_binning(binx, biny, &cam);
}
return Py_BuildValue("(ii)", cam.binx, cam.biny);
}
static PyObject* exptime(PyObject* self, PyObject* args) {
double exptime = cam.exptime;
if (PyTuple_GET_SIZE(args) > 0) {
if ( ! PyArg_ParseTuple(args, "d", &exptime) ) return NULL;
cam.exptime = (float)exptime;
}
return Py_BuildValue("d", cam.exptime);
}
static PyObject* stop_exp(PyObject* self, PyObject* args) {
if (pycam_state == PYCAM_ACQ) {
cam_stop_exp(&cam);
timer = -1;
pycam_state = PYCAM_STOPED;
}
return Py_BuildValue("s", NULL );
}
static PyObject* start_exp(PyObject* self, PyObject* args) {
if (pycam_state == PYCAM_IDLE) {
cam_start_exp(&cam, "off");
pycam_state = PYCAM_ACQ;
isotime(cam.date_obs);
timer = cam.exptime;
//clock_t0 = clock();
timespec_get( &clock_t0, TIME_UTC );
}
return Py_BuildValue("s", NULL );
}
static PyObject* Date(PyObject* self, PyObject* args) {
char iso[BUFFER_TIME_SIZE];
isotime(iso);
return Py_BuildValue("s", iso);
}
static PyObject* Timer(PyObject* self, PyObject* args) {
if (timer >=0) {
//clock_t clock_tt = clock();
//printf("clock_tt=%ld clock_t0=%ld CLOCKS_PER_SEC=%lu dt=%f\n",clock_tt,clock_t0, CLOCKS_PER_SEC, (double)(clock_tt - clock_t0) / CLOCKS_PER_SEC);
//timer = cam.exptime - (double)(clock_tt - clock_t0) / CLOCKS_PER_SEC;
struct timespec clock_t;
timespec_get( &clock_t, TIME_UTC );
double dt = (double)(clock_t.tv_sec-clock_t0.tv_sec) + (double)(clock_t.tv_nsec-clock_t0.tv_nsec)/1e9;
timer = cam.exptime - dt;
if (timer < 0) {
timer = -1;
}
}
return Py_BuildValue("d", timer );
}
static PyObject* read_ccd(PyObject* self, PyObject* args) {
pycam_state = PYCAM_READ;
calloc_pf(cam.h*cam.w, sizeof(float));
// --- call the read
cam_read_ccd(&cam, pf);
// --- fill the header
malloc_camheaders();
PyObject *pyheaders;
pyheaders = fill_camheaders();
free_camheaders();
// --- C pointer pf -> numpy.array
PyObject *aout = set_np_array2d(2, cam.w, cam.h, NPY_FLOAT, pf);
// --- Add header cards
PyObject *pyheader;
int vali;
vali = 2 ; pyheader = append_camheaders("NAXIS", &vali, "int", "Number of axes", ""); PyList_Append(pyheaders, pyheader);
vali = cam.w ; pyheader = append_camheaders("NAXIS1", &vali, "int", "Number of pixels along axis 1", ""); PyList_Append(pyheaders, pyheader);
vali = cam.h ; pyheader = append_camheaders("NAXIS2", &vali, "int", "Number of pixels along axis 2", ""); PyList_Append(pyheaders, pyheader);
vali = 16 ; pyheader = append_camheaders("BITPIX", &vali, "int", "Bits for a pixel", ""); PyList_Append(pyheaders, pyheader);
pyheader = append_camheaders("DATE-PC", cam.date_obs, "string", "DATE-OBS of computer (NTP)", "ISO8601"); PyList_Append(pyheaders, pyheader);
Py_XDECREF(pyheader);
// --- Return the numpy.array
PyObject* res = Py_BuildValue("OO",aout, pyheaders);
Py_XDECREF(aout);
Py_XDECREF(pyheaders);
pycam_state = PYCAM_IDLE;
return res;
}
static PyObject* shutter(PyObject* self, PyObject* args) {
if (PyTuple_GET_SIZE(args) >= 1) {
const char *state;
if ( ! PyArg_ParseTuple(args, "s", &state) ) return NULL;
if (strcmp(state, cam_shutters[0])==0) {
cam_shutter_off(&cam);
cam.shutterindex = 0;
}
else if (strcmp(state, cam_shutters[1])==0) {
cam_shutter_synchro(&cam);
cam.shutterindex = 1;
}
else if (strcmp(state, cam_shutters[2])==0) {
cam_shutter_on(&cam);
cam.shutterindex = 2;
}
}
return Py_BuildValue("s", cam_shutters[cam.shutterindex]);
}
static PyObject* measure_temperature(PyObject* self, PyObject* args) {
cam_measure_temperature(&cam);
return Py_BuildValue("f", cam.temperature);
}
static PyObject* cooler(PyObject* self, PyObject* args) {
const char *state;
if (PyTuple_GET_SIZE(args) == 1) {
if ( ! PyArg_ParseTuple(args, "s", &state) ) return NULL;
if (strcmp(state, cam_coolers[0])==0) {
cam_cooler_off(&cam);
}
else if (strcmp(state, cam_coolers[1])==0) {
cam_cooler_on(&cam);
}
else if (strcmp(state, cam_coolers[2])==0) {
cam_cooler_check(&cam);
return Py_BuildValue("d", cam.check_temperature);
}
}
else if (PyTuple_GET_SIZE(args) == 2) {
double check_temperature;
if ( ! PyArg_ParseTuple(args, "sd", &state, &check_temperature) ) return NULL;
if (strcmp(state, cam_coolers[2])==0) {
cam.check_temperature = check_temperature;
cam_cooler_check(&cam);
return Py_BuildValue("d", cam.check_temperature);
}
}
return Py_BuildValue("s", cam_shutters[cam.shutterindex]);
}
// =====================================================================
// =====================================================================
// Python extension - Specific functions
// =====================================================================
// =====================================================================
#if LIB == 2
static PyObject* FingerlakesProCapabilities(PyObject* self, PyObject* args) {
PyObject* dico = PyDict_New();
dict_append_d(dico, "uiSize", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_NUM-1], "Size of this structure (including uiSize)");
dict_append_d(dico, "uiCapVersion", LIB, "Version of this structure");
dict_append_d(dico, "uiDeviceType", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_DEVICE_TYPE], "General device type- see documentation");
dict_append_d(dico, "uiMaxPixelImageWidth", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_MAX_PIXEL_WIDTH], "Max allowed image width in pixels");
dict_append_d(dico, "uiMaxPixelImageHeight", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_MAX_PIXEL_HEIGHT], "Max allowed image height in pixels");
dict_append_d(dico, "uiAvailablePixelDepths", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_PIXEL_BIT_DEPTHS], "Bit is set if pixel depth allowed (lsb= pixel depth 1)");
dict_append_d(dico, "uiBinningsTableSize", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_BINNING_TABLE_SIZE], "0= 1:1 binning only");
dict_append_d(dico, "uiBlackLevelMax", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_BLACK_LEVEL_MAX], "Max Value Allowed");
dict_append_d(dico, "uiBlackSunMax", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_BLACK_SUN_MAX], "Max Value Allowed");
dict_append_d(dico, "uiLowGain", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_LOW_GAIN_TABLE_SIZE], "Number of Gain Values (Low Gain channel for low gain frame in HDR Modes)");
dict_append_d(dico, "uiHighGain", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_HIGH_GAIN_TABLE_SIZE], "Number Of Gain Values (High Gain channel for LDR Modes)");
dict_append_d(dico, "uiMerge", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_MERGE_REFERENCE_FRAMES_SUPPORTED], "Support of merge reference frames (0= not supported, otherwise supported)");
dict_append_d(dico, "uiRowScanTime", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_ROW_SCAN_TIME], "Row Scan Time in nano secs (LDR)");
dict_append_d(dico, "uiDummyPixelNum", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_ROW_REFERENCE_PIXELS], "Number of Pre and Post Row Dummy Pixels when enabled");
dict_append_d(dico, "bScanInvertable", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_IMAGE_INVERTABLE], "False= Normal scan direction only, True= Inverse Scan Available");
dict_append_d(dico, "uiNVStorageAvailable", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_NV_STORAGE_AVAILABLE], "Number of bytes of Non-Volatile Storage available on the camera");
dict_append_d(dico, "uiPostFrameReferenceRows", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_FRAME_REFERENCE_ROWS], "Number of Post-Frame Reference rows available");
dict_append_d(dico, "uiMetaDataSize", cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_META_DATA_SIZE], "Number of bytes used for the pre-frame image meta data");
return dico;
}
#elif LIB == 1
static PyObject* FingerlakesProCapabilities(PyObject* self, PyObject* args) {
FPROCAP s_camCapabilities = cam.s_camCapabilities;
PyObject* dico = PyDict_New();
dict_append_d(dico, "uiSize", s_camCapabilities.uiSize, "Size of this structure (including uiSize)");
dict_append_d(dico, "uiCapVersion", s_camCapabilities.uiCapVersion, "Version of this structure");
dict_append_d(dico, "uiDeviceType", s_camCapabilities.uiDeviceType, "General device type- see documentation");
dict_append_d(dico, "uiMaxPixelImageWidth", s_camCapabilities.uiMaxPixelImageWidth, "Max allowed image width in pixels");
dict_append_d(dico, "uiMaxPixelImageHeight", s_camCapabilities.uiMaxPixelImageHeight, "Max allowed image height in pixels");
dict_append_d(dico, "uiAvailablePixelDepths", s_camCapabilities.uiAvailablePixelDepths, "Bit is set if pixel depth allowed (lsb= pixel depth 1)");
dict_append_d(dico, "uiBinningsTableSize", s_camCapabilities.uiBinningsTableSize, "0= 1:1 binning only");
dict_append_d(dico, "uiBlackLevelMax", s_camCapabilities.uiBlackLevelMax, "Max Value Allowed");
dict_append_d(dico, "uiBlackSunMax", s_camCapabilities.uiBlackSunMax, "Max Value Allowed");
dict_append_d(dico, "uiLowGain", s_camCapabilities.uiLowGain, "Number of Gain Values (Low Gain channel for low gain frame in HDR Modes)");
dict_append_d(dico, "uiHighGain", s_camCapabilities.uiHighGain, "Number Of Gain Values (High Gain channel for LDR Modes)");
dict_append_d(dico, "uiReserved", s_camCapabilities.uiReserved, "Reserved");
dict_append_d(dico, "uiRowScanTime", s_camCapabilities.uiRowScanTime, "Row Scan Time in nano secs (LDR)");
dict_append_d(dico, "uiDummyPixelNum", s_camCapabilities.uiDummyPixelNum, "Number of Pre and Post Row Dummy Pixels when enabled");
dict_append_d(dico, "bHorizontalScanInvertable", s_camCapabilities.bHorizontalScanInvertable, "False= Normal scan direction only, True= Inverse Scan Available");
dict_append_d(dico, "bVerticalScanInvertable", s_camCapabilities.bVerticalScanInvertable, "False= Normal scan direction only, True= Inverse Scan Available");
dict_append_d(dico, "bScanInvertable", s_camCapabilities.bVerticalScanInvertable, "False= Normal scan direction only, True= Inverse Scan Available");
dict_append_d(dico, "uiNVStorageAvailable", s_camCapabilities.uiNVStorageAvailable, "Number of bytes of Non-Volatile Storage available on the camera");
dict_append_d(dico, "uiPostFrameReferenceRows", s_camCapabilities.uiPostFrameReferenceRows, "Number of Post-Frame Reference rows available");
dict_append_d(dico, "uiMetaDataSize", s_camCapabilities.uiMetaDataSize, "Number of bytes used for the pre-frame image meta data");
return dico;
}
#endif
#if LIB == 2
static PyObject* FingerlakesProDeviceInfo(PyObject* self, PyObject* args) {
wchar_t value[DIM_WS];
FPRODEVICEINFO s_camDeviceInfo_selected = cam.s_camDeviceInfo_selected;
FPRODEVICEVERS device_version_info = cam.device_version_info;
PyObject* dico = PyDict_New();
dict_append_s(dico, "cFriendlyName", s_camDeviceInfo_selected.cFriendlyName, "Human readable friendly name of the USB device. This string along with the cSerialNo field provide a unique name for your device suitable for a user interface");
dict_append_s(dico, "cSerialNo", s_camDeviceInfo_selected.cSerialNo, "The manufacturing serial number of the device");
dict_append_d(dico, "uiVendorId", s_camDeviceInfo_selected.conInfo.uiVendorId, "The USB vendor ID. This field is applicable only when the eCOnnType is USB");
dict_append_d(dico, "uiProdId", s_camDeviceInfo_selected.conInfo.uiProdId, "The USB Product ID. This field is applicable only when the eCOnnType is USB");
if (s_camDeviceInfo_selected.conInfo.eConnType == FPROCONNECTION::FPRO_CONNECTION_USB) {
wcscpy(value, L"USB");
} else if (s_camDeviceInfo_selected.conInfo.eConnType == FPROCONNECTION::FPRO_CONNECTION_FIBRE) {
wcscpy(value, L"FIBRE");
} else {
wcscpy(value, L"UNKNOWN");
}
dict_append_s(dico, "eConnType", value, "The physical connection type");
dict_append_s(dico, "cFirmwareVersion", device_version_info.cFirmwareVersion, "Firmware version");
dict_append_s(dico, "cFPGAVersion", device_version_info.cFPGAVersion, "FPGA version");
dict_append_s(dico, "cControllerVersion", device_version_info.cControllerVersion, "Controller version");
dict_append_s(dico, "cHostHardwareVersion", device_version_info.cHostHardwareVersion, "Host Hardware version");
return dico;
}
#elif LIB == 1
static PyObject* FingerlakesProDeviceInfo(PyObject* self, PyObject* args) {
char line[DIM_S];
FPRODEVICEINFO s_camDeviceInfo_selected = cam.s_camDeviceInfo_selected;
FPRODEVICEVERS device_version_info = cam.device_version_info;
PyObject* dico = PyDict_New();
dict_append_s(dico, "cFriendlyName", s_camDeviceInfo_selected.cFriendlyName, "Human readable friendly name of the USB device. This string along with the cSerialNo field provide a unique name for your device suitable for a user interface");
dict_append_s(dico, "cSerialNo", s_camDeviceInfo_selected.cSerialNo, "The manufacturing serial number of the device");
dict_append_d(dico, "uiVendorId", s_camDeviceInfo_selected.uiVendorId, "The USB vendor ID. This field is applicable only when the eCOnnType is USB");
dict_append_d(dico, "uiProdId", s_camDeviceInfo_selected.uiProdId, "The USB Product ID. This field is applicable only when the eCOnnType is USB");
if (s_camDeviceInfo_selected.eConnType == FPRO_CONNECTION_USB) {
dict_append_s(dico, "eConnType", L"USB", "The physical connection type");
strcpy(line, "The USB connection speed of the device. This field is applicable only when the eCOnnType is FPRO_CONNECTION_USB. FLI Cameras require a FPRO_USB_SUPERSPEED USB connection in order to transfer image data reliably");
if (s_camDeviceInfo_selected.eUSBSpeed == FPRO_USB_FULLSPEED) {
dict_append_s(dico, "eUSBSpeed", L"FULLSPEED", line);
} else if (s_camDeviceInfo_selected.eUSBSpeed == FPRO_USB_HIGHSPEED) {
dict_append_s(dico, "eUSBSpeed", L"HIGHSPEED", line);
} else if (s_camDeviceInfo_selected.eUSBSpeed == FPRO_USB_SUPERSPEED) {
dict_append_s(dico, "eUSBSpeed", L"SUPERSPEED", line);
}
} else if (s_camDeviceInfo_selected.eConnType == FPRO_CONNECTION_FIBRE) {
dict_append_s(dico, "eConnType", L"FIBRE", "The physical connection type");
}
dict_append_s(dico, "cFirmwareVersion", device_version_info.cFirmwareVersion, "Firmware version");
dict_append_s(dico, "cFPGAVersion", device_version_info.cFPGAVersion, "FPGA version");
dict_append_s(dico, "cControllerVersion", device_version_info.cControllerVersion, "Controller version");
dict_append_s(dico, "cHostHardwareVersion", device_version_info.cHostHardwareVersion, "Host Hardware version");
return dico;
}
#endif
#if LIB == 2
static PyObject* SelectGain(PyObject* self, PyObject* args) {
uint32_t gain_low, gain_high;
//int32_t s_iDeviceHandle;
//s_iDeviceHandle = cam.s_iDeviceHandle;
if (PyTuple_GET_SIZE(args) >= 2) {
if ( ! PyArg_ParseTuple(args, "ii", &gain_low, &gain_high) ) return NULL;
if (gain_low < 0) {
gain_low = 0;
}
if (gain_low >= cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_LOW_GAIN_TABLE_SIZE]) {
gain_low = cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_LOW_GAIN_TABLE_SIZE] - 1;
}
if (gain_high < 0) {
gain_high = 0;
}
if (gain_high >= cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_HIGH_GAIN_TABLE_SIZE]) {
gain_high = cam.s_camCapabilities[(uint32_t)FPROCAPS::FPROCAP_HIGH_GAIN_TABLE_SIZE] - 1;
}
dev_set_gain(&cam, gain_low, gain_high);
}
dev_get_gain(&cam, &gain_low, &gain_high);
return Py_BuildValue("ii", gain_low, gain_high);
}
#elif LIB == 1
static PyObject* SelectGain(PyObject* self, PyObject* args) {
uint32_t gain_low, gain_high;
int32_t s_iDeviceHandle;
FPROCAP s_camCapabilities = cam.s_camCapabilities;
s_iDeviceHandle = cam.s_iDeviceHandle;
if (PyTuple_GET_SIZE(args) >= 2) {
if ( ! PyArg_ParseTuple(args, "ii", &gain_low, &gain_high) ) return NULL;
if (gain_low < 0) {
gain_low = 0;
}
if (gain_low >= s_camCapabilities.uiLowGain) {
gain_low = s_camCapabilities.uiLowGain - 1;
}
if (gain_high < 0) {
gain_high = 0;
}
if (gain_high >= s_camCapabilities.uiHighGain) {
gain_high = s_camCapabilities.uiHighGain - 1;
}
FPROSensor_SetGainIndex(s_iDeviceHandle, FPRO_GAIN_TABLE_LOW_CHANNEL, gain_low);
FPROSensor_SetGainIndex(s_iDeviceHandle, FPRO_GAIN_TABLE_HIGH_CHANNEL, gain_high);
}
FPROSensor_GetGainIndex(s_iDeviceHandle, FPRO_GAIN_TABLE_LOW_CHANNEL, &gain_low);
FPROSensor_GetGainIndex(s_iDeviceHandle, FPRO_GAIN_TABLE_HIGH_CHANNEL, &gain_high);
dev_get_gain(&cam, &gain_low, &gain_high);
return Py_BuildValue("ii", gain_low, gain_high);
}
#endif
#if LIB == 2
static PyObject* GPSStatus(PyObject* self, PyObject* args) {
char ligne[DIM_S];
int32_t s_iDeviceHandle;
uint32_t pOption;
FPROGPSSTATE pState;
s_iDeviceHandle = cam.s_iDeviceHandle;
FPROCtrl_GetGPSState(s_iDeviceHandle, &pState, &pOption);
if (pState == FPROGPSSTATE::FPRO_GPS_NOT_DETECTED) {
sprintf(ligne, "%d {GPS unit has not been detected by the camera}", (int)pState);
}
if (pState == FPROGPSSTATE::FPRO_GPS_DETECTED_NO_SAT_LOCK) {
sprintf(ligne, "%d {GPS unit has been detected by the camera but the satellite lock has not been made}", (int)pState);
}
if (pState == FPROGPSSTATE::FPRO_GPS_DETECTED_AND_SAT_LOCK) {
sprintf(ligne, "%d {GPS unit has been detected by the camera and the satellite lock has been made. This is the only value that will provide accurate results in the Meta Data}", (int)pState);
}
return Py_BuildValue("s", ligne);
}
#elif LIB == 1
static PyObject* GPSStatus(PyObject* self, PyObject* args) {
char ligne[DIM_S];
int32_t s_iDeviceHandle;
FPROGPSSTATE pState;
s_iDeviceHandle = cam.s_iDeviceHandle;
FPROCtrl_GetGPSState(s_iDeviceHandle, &pState);
if (pState == FPRO_GPS_NOT_DETECTED) {
sprintf(ligne, "%d {GPS unit has not been detected by the camera}", pState);
}
if (pState == FPRO_GPS_DETECTED_NO_SAT_LOCK) {
sprintf(ligne, "%d {GPS unit has been detected by the camera but the satellite lock has not been made}", pState);
}
if (pState == FPRO_GPS_DETECTED_AND_SAT_LOCK) {
sprintf(ligne, "%d {GPS unit has been detected by the camera and the satellite lock has been made. This is the only value that will provide accurate results in the Meta Data}", pState);
}
return Py_BuildValue("s", ligne);
}
#endif
static PyObject* FingerlakesProListModes(PyObject* self, PyObject* args) {
#if LIB == 1
return ExplainMode(-1);
#else
return Py_BuildValue("s", NULL);
#endif
}
static PyObject* FingerlakesProSetMode(PyObject* self, PyObject* args) {
int retour = 0;
#if LIB == 1
int32_t iResult;
int ii = -1;
if (PyTuple_GET_SIZE(args) >= 1) {
if ( ! PyArg_ParseTuple(args, "i", &ii) ) return NULL;
} else {
ii = cam_get_current_mode(&cam);
}
iResult = cam_set_mode(&cam, ii);
if (iResult == -1) cam_set_mode(&cam, 0);
if (iResult == -1) {
strcpy(cam.msg, "cam_set_mode problem");
PyErr_SetString(exampleException, cam.msg);
return NULL;
}
if (iResult == -3) {
strcpy(cam.msg, "cam_set_mode strong problem");
PyErr_SetString(exampleException, cam.msg);
return NULL;
}
return ExplainMode(ii);
#endif
return Py_BuildValue("d", retour);
}
static PyObject* SelectImage(PyObject* self, PyObject* args) {
char ligne[DIM_S];
const char *select;
if (PyTuple_GET_SIZE(args) >= 1) {
if ( ! PyArg_ParseTuple(args, "s", &select) ) return NULL;
if (strcmp(select, "low") == 0) {
io_buffer_change_mode(&cam, 0);
}
if (strcmp(select, "high") == 0) {
io_buffer_change_mode(&cam, 1);
}
if (strcmp(select, "merge") == 0) {
io_buffer_change_mode(&cam, 2);
}
if (strcmp(select, "all") == 0) {
io_buffer_change_mode(&cam, 3);
}
}
if (cam.selectedimage == 0) {
strcpy(ligne, "low");
}
if (cam.selectedimage == 1) {
strcpy(ligne, "high");
}
if (cam.selectedimage == 2) {
strcpy(ligne, "merge");
}
if (cam.selectedimage == 3) {
strcpy(ligne, "all");
}
return Py_BuildValue("s", ligne);
}
static PyObject* SelectShutter(PyObject* self, PyObject* args) {
int iOpen, iOverride; // 0=false 1=true
bool bOpen, bOverride; // 0=false 1=true
int32_t s_iDeviceHandle;
s_iDeviceHandle = cam.s_iDeviceHandle;
if (PyTuple_GET_SIZE(args) >= 2) {
if ( ! PyArg_ParseTuple(args, "ii", &iOpen, &iOverride) ) return NULL;
if (iOpen == 0) {
bOpen = false;
} else {
bOpen = true;
}
if (iOverride == 0) {
bOverride = false;
} else {
bOverride = true;
}
FPROCtrl_SetShutterOverride(s_iDeviceHandle, bOverride);
FPROCtrl_SetShutterOpen(s_iDeviceHandle, bOpen);
}
FPROCtrl_GetShutterOverride(s_iDeviceHandle, &bOverride);
FPROCtrl_GetShutterOpen(s_iDeviceHandle, &bOpen);
return Py_BuildValue("ii", (int)bOpen, (int)bOverride);
}
static PyObject* measure_temperatures(PyObject* self, PyObject* args) {
cam_measure_temperature(&cam);
return Py_BuildValue("fff", cam.temperature, cam.ambient_temp, cam.base_temp);
}
static PyObject* DewPower(PyObject* self, PyObject* args) {
const char *select;
char ligne[DIM_S];
int32_t iResult;
if (PyTuple_GET_SIZE(args) >= 1) {
if ( ! PyArg_ParseTuple(args, "i", &select) ) return NULL;
if (strcmp(select, "?") == 0) {
iResult = dev_get_dewpower(&cam);
cam.antidew_power = iResult;
} else {
if (strcmp(select, "off") == 0) cam.antidew_power = 0;
if (strcmp(select, "low") == 0) cam.antidew_power = 33;
if (strcmp(select, "high") == 0) cam.antidew_power = 66;
if (strcmp(select, "full") == 0) cam.antidew_power = 100;
iResult = dev_set_dewpower(&cam);
}
snprintf(ligne, DIM_S, "FLIDewPower return %d", iResult);
if (iResult < 0) {
strcpy(cam.msg, "Dew power problem");
PyErr_SetString(exampleException, cam.msg);
return NULL;
}
return Py_BuildValue("s", ligne);
}
return Py_BuildValue("s", NULL);
}
static PyObject* ListGain(PyObject* self, PyObject* args) {
wchar_t wline[DIM_WS];
char line[DIM_S];
dev_get_gaintable(&cam, wline);
wcstombs(line, wline, DIM_S);
return Py_BuildValue("s", line);
}
static PyObject* Merge(PyObject* self, PyObject* args) {
/*
Merging calibration
1) Compute the bias for the given binning. Shutter closed
cam1 bin {1 1}
cam1 merge lin makebias
acq 0 1
2) Compute the (a,b) factors. Adapt the exposure time to obtain a mean level of 3000
cam1 merge lin compute_ab 3800
cam1 selectimage high
cam1 shutter opened
acq 0.002 1
cam1 merge lin
3) Search for the offset with the Moon
cam1 selectimage merge
cam1 merge lin applybias 3800 -3500 1 0 0
acq 0.002 1
Other functions
A1) Clear the bias effect
cam1 merge lin clearbias
A2) Return to the FLi merger algorithm
cam1 merge fli
proc makebias_kepler { {n 10} {bins 12} } {
set bias_path "C:/Data/darkflat"
set mirrorh [cam1 mirrorh]
set mirrorv [cam1 mirrorv]
set shutter [cam1 shutter]
cam1 mirrorh 0
cam1 mirrorv 0
cam1 shutter closed
set configs { {1 low} {1 high} {2 low} {2 high} }
if {$bins==1} {
set configs { {1 low} {1 high} }
} elseif {$bins==2} {
set configs { {2 low} {2 high} }
}
foreach config $configs {
lassign $config bin gain
cam1 selectimage $gain
set name bias_bin${bin}_${gain}
for {set k 1} {$k<=$n} {incr k} {
console::affiche_resultat "Acq ${name}-${k}\n"
acq 0 $bin
saveima ${name}-${k}
}
console::affiche_resultat "Pile kappa sigma ${name}\n"
ssk ${name}- ${name} $n 3
loadima ${name}
saveima ${bias_path}/${name}
console::affiche_resultat "Bias final: ${bias_path}/${name}\n"
}
cam1 mirrorh $mirrorh
cam1 mirrorv $mirrorv
cam1 shutter $shutter
loadbias_kepler
console::affiche_resultat "Bias terminés\n"
}
proc loadbias_kepler { } {
if {[cam1 name]=="Kepler-4040"} {
set bias_path "C:/Data/darkflat"
cam1 merge lin loadbias $bias_path
#cam1 merge lin apply
cam1 merge lin apply 3800 0 1 20.62 0
cam1 selectimage merge
}
}
*/
const char *algo;
char path[DIM_S];
char method[DIM_S];
char ligne[DIM_S];
// args
PyObject* obj1=NULL;
PyObject* obj2=NULL;
PyObject* obj3=NULL;
PyObject* obj4=NULL;
PyObject* obj5=NULL;
PyObject* obj6=NULL;
PyObject* obj7=NULL;
PyObject* obj8=NULL;
PyObject* obj9=NULL;
strcpy(path, ".");
if (PyTuple_GET_SIZE(args) == 0) {
strcpy(cam.msg, "Usage : merge algo(fli|lin) ?params?");
PyErr_SetString(exampleException, cam.msg);
return NULL;
}
if (PyTuple_GET_SIZE(args) >= 1) {
if ( ! PyArg_ParseTuple(args, "s|OO", &algo, obj1, obj2) ) return NULL;
// algo
if (strcmp(algo, "fli") == 0) {
cam.merge_algo = MERGE_ALGO_FLI;
}
if (strcmp(algo, "lin") == 0) {
cam.merge_algo = MERGE_ALGO_LIN;
}
}
if (cam.merge_algo == MERGE_ALGO_FLI) {
// algo=fli
snprintf(ligne, DIM_S, "{algo fli}");
} else if (cam.merge_algo == MERGE_ALGO_LIN) {
// algo=lin
if (obj1 != NULL) {
PyArg_ParseTuple(obj1, "s", method);
if (strcmp(method, "makebias") == 0) {
cam.merge_lin_mode = MERGE_LIN_MODE_MAKEBIAS;
io_buffer_change_mode(&cam, 2);
}
else if (strcmp(method, "loadbias") == 0) {
PyArg_ParseTuple(obj2, "s", path);
char filename[DIM_S];
int naxis1, naxis2;
// --- bin1_low
sprintf(filename, "%s/bias_bin1_low.fit", path);
img_loadfits(filename, &naxis1, &naxis2, cam.bias_low_bin1);
if (naxis1 == 0) {
snprintf(ligne, DIM_S, "Usage : merge lin loadbias. The file %s does not exists.", filename);
PyErr_SetString(exampleException, ligne);
return NULL;
}
// --- bin1_high
sprintf(filename, "%s/bias_bin1_high.fit", path);
img_loadfits(filename, &naxis1, &naxis2, cam.bias_high_bin1);
if (naxis1 == 0) {
snprintf(ligne, DIM_S, "Usage : merge lin loadbias. The file %s does not exists.", filename);
PyErr_SetString(exampleException, ligne);
return NULL;
}
// --- bin2_low
sprintf(filename, "%s/bias_bin2_low.fit", path);
img_loadfits(filename, &naxis1, &naxis2, cam.bias_low_bin2);
if (naxis1 == 0) {
snprintf(ligne, DIM_S, "Usage : merge lin loadbias. The file %s does not exists.", filename);
PyErr_SetString(exampleException, ligne);
return NULL;
}
// --- bin2_high
sprintf(filename, "%s/bias_bin2_high.fit", path);
img_loadfits(filename, &naxis1, &naxis2, cam.bias_high_bin2);
if (naxis1 == 0) {
snprintf(ligne, DIM_S, "Usage : merge lin loadbias. The file %s does not exists.", filename);
PyErr_SetString(exampleException, ligne);
return NULL;
}
}
else if (strcmp(method, "compute_ab") == 0) {
cam.merge_lin_mode = MERGE_LIN_MODE_COMPUTEAB;
io_buffer_change_mode(&cam, 2);
}
else if (strcmp(method, "clearbias") == 0) {
int h = cam.h;
int w = cam.w;
switch (cam.binx) {
case 1:
delete[] cam.bias_low_bin1;
cam.bias_low_bin1 = new uint16_t[h * w];
delete[] cam.bias_high_bin1;
cam.bias_high_bin1 = new uint16_t[h * w];
break;
case 2:
delete[] cam.bias_low_bin2;
cam.bias_low_bin2 = new uint16_t[h * w / 4];
delete[] cam.bias_high_bin2;
cam.bias_high_bin2 = new uint16_t[h * w / 4];
}
}
else {
// strcmp(method, "applybias")
cam.merge_lin_mode = MERGE_LIN_MODE_APPLYBIAS;
double val;
if (obj2 != NULL) { PyArg_ParseTuple(obj2, "d", &val); cam.merge_lin_threshold = val; }
if (obj3 != NULL) { PyArg_ParseTuple(obj3, "d", &val); cam.merge_lin_offset_bin1 = val; }
if (obj4 != NULL) { PyArg_ParseTuple(obj4, "d", &val); cam.merge_lin_a_bin1 = val; }
if (obj5 != NULL) { PyArg_ParseTuple(obj5, "d", &val); cam.merge_lin_b_bin1 = val; }
if (obj6 != NULL) { PyArg_ParseTuple(obj6, "d", &val); cam.merge_lin_offset_bin2 = val; }
if (obj7 != NULL) { PyArg_ParseTuple(obj7, "d", &val); cam.merge_lin_alpha_bin2 = val; }
if (obj8 != NULL) { PyArg_ParseTuple(obj8, "d", &val); cam.merge_lin_a_bin2 = val; }
if (obj9 != NULL) { PyArg_ParseTuple(obj9, "d", &val); cam.merge_lin_b_bin2 = val; }
}
}
PyObject* dico = PyDict_New();
PyDict_SetItemString(dico, "algo", Py_BuildValue("s", "lin"));
PyDict_SetItemString(dico, "threshhold", Py_BuildValue("d", cam.merge_lin_threshold));
PyDict_SetItemString(dico, "offset_bin1", Py_BuildValue("d", cam.merge_lin_offset_bin1));
PyDict_SetItemString(dico, "alpha_bin1", Py_BuildValue("d", cam.merge_lin_alpha_bin1));
PyDict_SetItemString(dico, "a_bin1", Py_BuildValue("d", cam.merge_lin_a_bin1));
PyDict_SetItemString(dico, "b_bin1", Py_BuildValue("d", cam.merge_lin_b_bin1));
PyDict_SetItemString(dico, "offset_bin2", Py_BuildValue("d", cam.merge_lin_offset_bin2));
PyDict_SetItemString(dico, "alpha_bin2", Py_BuildValue("d", cam.merge_lin_alpha_bin2));
PyDict_SetItemString(dico, "a_bin2", Py_BuildValue("d", cam.merge_lin_a_bin2));
PyDict_SetItemString(dico, "b_bin2", Py_BuildValue("d", cam.merge_lin_b_bin2));
return Py_BuildValue("O", dico);
}
return NULL;
}
static PyObject* Stream(PyObject* self, PyObject* args) {
char ligne[DIM_S];
int32_t iResult;
uint32_t uiFrameSizeBytes;
wchar_t pRootPath[STREAMER_PATH_MAX];
wchar_t pFilePrefix[STREAMER_PATH_MAX];
uint32_t uiFrameCount;
uint64_t uiFrameIntervalMS;
FPROSTREAMSTATS streamStats;
/* pStats:
uint32_t uiNumFramesReceived;
uint64_t uiTotalBytesReceived;
uint64_t uiDiskFramesWritten;
double dblDiskAvgMBPerSec;
double dblDiskPeakMBPerSec;
double dblOverallFramesPerSec;
double dblOverallMBPerSec;
*/
swprintf(pRootPath, STREAMER_PATH_MAX, L"C:\\Data");
swprintf(pFilePrefix, STREAMER_PATH_MAX, L"streamfli");
uiFrameSizeBytes = FPROFrame_ComputeFrameSize(cam.s_iDeviceHandle); // Size of the frames that will be streamed.
uiFrameCount = 10 ; // Number of frames to stream.Zero(0) == infinite
uiFrameIntervalMS = 10; // The frame interval in milliseconds() (exposure time + delay).
iResult = FPROFrame_StreamInitialize(cam.s_iDeviceHandle, uiFrameSizeBytes, pRootPath, pFilePrefix);
if (iResult >= 0) {
iResult = FPROFrame_StreamStart(cam.s_iDeviceHandle, uiFrameCount, uiFrameIntervalMS);
if (iResult >= 0) {
iResult = FPROFrame_StreamGetStatistics(cam.s_iDeviceHandle, &streamStats);
while ((iResult >= 0) &&
(!((streamStats.iStatus == FPROSTREAMERSTATUS::FPRO_STREAMER_STOPPED) && (streamStats.uiDiskFramesWritten == uiFrameCount)) || (streamStats.iStatus == FPROSTREAMERSTATUS::FPRO_STREAMER_STOPPED_ERROR))) {
// Check the stats again- you can check as often as you like
libcam_sleep(1000);
iResult = FPROFrame_StreamGetStatistics(cam.s_iDeviceHandle, &streamStats);
}
// check the reasons for leaving the loop
if ((iResult < 0) || (streamStats.iStatus == FPROSTREAMERSTATUS::FPRO_STREAMER_STOPPED_ERROR))
{
snprintf(ligne, DIM_S, "Stream Error");
PyErr_SetString(exampleException, ligne);
return NULL;
}
iResult = FPROFrame_StreamStop(cam.s_iDeviceHandle);
if (iResult >= 0) {
iResult = FPROFrame_StreamDeinitialize(cam.s_iDeviceHandle);
}
}
}
return Py_BuildValue("O", NULL);
}
static PyObject* Reconnect(PyObject* self, PyObject* args) {
char ligne[DIM_S];
dev_reconnect(&cam);
snprintf(ligne, DIM_S, "%s", cam.msg);
return Py_BuildValue("s", ligne);
};
static PyObject* Led(PyObject* self, PyObject* args) {
uint32_t led_state;
//int32_t s_iDeviceHandle;
//s_iDeviceHandle = cam.s_iDeviceHandle;
if (PyTuple_GET_SIZE(args) >= 1) {
if ( ! PyArg_ParseTuple(args, "i", &led_state) ) return NULL;
if (led_state <= 0) {
led_state = (int32_t)dev_set_led(&cam, false);
}
if (led_state >= 1) {
led_state = (int32_t)dev_set_led(&cam, true);
}
}
else {
led_state = (int32_t)dev_get_led(&cam);
}
return Py_BuildValue("i", led_state);
}
static PyObject* LedDuration(PyObject* self, PyObject* args) {
// milliseconds
const char *duration;
char ligne[DIM_S];
uint32_t led_duration;
//int32_t s_iDeviceHandle;
//s_iDeviceHandle = cam.s_iDeviceHandle;
if (PyTuple_GET_SIZE(args) >= 1) {
if ( ! PyArg_ParseTuple(args, "s", &duration) ) return NULL;
if (strcmp(duration, "infinite") == 0) {
led_duration = 0xFFFFFFFF;
}
else {
led_duration = atoi(duration);
}
led_duration = (int32_t)dev_set_led_duration(&cam, led_duration);
}
else {
led_duration = (int32_t)dev_get_led_duration(&cam);
}
if (led_duration == 0xFFFFFFFF) {
strcpy(ligne, "infinite");
return Py_BuildValue("s", ligne);
}
return Py_BuildValue("i", led_duration);
}
static PyObject* Preflash(PyObject* self, PyObject* args) {
uint32_t preflash;
//int32_t s_iDeviceHandle;
//s_iDeviceHandle = cam.s_iDeviceHandle;
if (PyTuple_GET_SIZE(args) >= 1) {
if ( ! PyArg_ParseTuple(args, "i", &preflash) ) return NULL;
if (preflash <= 0) {
preflash = 0;
}
if (preflash >= 1) {
preflash = 1;
}
cam.preflash = preflash;
}
return Py_BuildValue("i", cam.preflash);
}
static PyObject* Library(PyObject* self, PyObject* args) {
return Py_BuildValue("i", LIB);
}
// =====================================================================
// =====================================================================
// Python extension - Test functions
// =====================================================================
// =====================================================================
static PyObject* matrix(PyObject* self, PyObject* args) {
int w, h;
double v;
printf("PyTuple_GET_SIZE(args)=%d\n", (int)PyTuple_GET_SIZE(args));
if (PyTuple_GET_SIZE(args) >=3) {
if ( ! PyArg_ParseTuple(args, "iid", &w, &h, &v) ) return NULL;
}
printf("w=%d h=%d v=%f\n", w, h, v);
// --- C pointer
calloc_pf(h*w, sizeof(float));
for (int i=0; i<w*h; i++){
pf[i] = (float)v;
}
// --- C pointer -> numpy.array
int nd = 2;
npy_intp dims[2];
dims[0] = w;
dims[1] = h;
int typenum = NPY_FLOAT;
//import_array();
PyObject *aout;
aout = PyArray_SimpleNewFromData(nd, dims, typenum, (void*)pf);
// --- Return the numpy.array
PyObject* res = Py_BuildValue("O", aout);
Py_XDECREF(aout);
return res;
}
static PyObject* example2(PyObject* self, PyObject* args) {
printf( "C/C++ code fire an exception\n" );
// Levée d'une exception Python : elle sera rattrapée en Python.
PyErr_SetString(exampleException, "Exemple de levée d'erreur en C");
// On ne renvoie donc pas de valeur de retour particulière.
return NULL;
}
// =====================================================================
// =====================================================================
// Python extension - Method definitions
// =====================================================================
// =====================================================================
static PyMethodDef functions[] = {
// --- Common for devices
{"init", init, METH_VARARGS, "Init connection of the device"},
{"close", close, METH_VARARGS, "Close the connection of the device"},
{"bin", bin, METH_VARARGS, "Set/get the binning"},
{"exptime", exptime, METH_VARARGS, "Set/get the exposure time (s)"},
{"start_exp", start_exp, METH_VARARGS, "Start an exposure"},
{"read_ccd", read_ccd, METH_VARARGS, "Read the image at the end of the exposure"},
{"window", update_window, METH_VARARGS, "Set/get the window cells"},
{"abort", stop_exp, METH_VARARGS, "Abort the current acquisition"},
{"stop", stop_exp, METH_VARARGS, "Abort the current acquisition"},
{"shutter", shutter, METH_VARARGS, "Set/get the shutter state: 'closed' or 'opened' or 'synchro'"},
{"cooler", cooler, METH_VARARGS, "Set/get the cooler state: 'on' or 'off' or 'check' or 'check temperature'"},
{"temperature", measure_temperature, METH_VARARGS, "Get the camera temperature"},
{"timer", Timer, METH_VARARGS, "Get the remaining time of an acquisition (-1 means no acquisition)"},
{"date", Date, METH_VARARGS, "Get current date ISO format"},
// --- Specific for devices
{"flicapabilities", FingerlakesProCapabilities, METH_VARARGS, "Get the FLI camera capabilities"},
{"deviceinfo", FingerlakesProDeviceInfo, METH_VARARGS, "Get the FLI device informations"},
{"selectgain", SelectGain, METH_VARARGS, "Get/set low and high gains"},
{"GPSstatus", GPSStatus, METH_VARARGS, "Get the GPS status"},
{"flimodes", FingerlakesProListModes, METH_VARARGS, "Get the FLI modes"},
{"flimode", FingerlakesProSetMode, METH_VARARGS, "Set the FLI mode"},
{"selectimage", SelectImage, METH_VARARGS, "Get/set the image selected (low, high, merge, all)"},
{"selectshutter", SelectShutter, METH_VARARGS, "Get/set the shutter selected (low, high, merge, all)"},
{"temperatures", measure_temperatures, METH_VARARGS, "Get the camera temperatures"},
{"dewpower", DewPower, METH_VARARGS, "Usage : FLIDewPower (? off low high full)"},
{"listgain", ListGain, METH_VARARGS, "List gains"},
{"merge", Merge, METH_VARARGS, "Merging methods and parameters"},
{"stream", Stream, METH_VARARGS, "Video stream test"},
{"reconnect", Reconnect, METH_VARARGS, "Reconnection"},
{"led", Led, METH_VARARGS, "Get/set the LED manual state"},
{"ledduration", LedDuration, METH_VARARGS, "Get/set the LED duration (ms)"},
{"preflash", Preflash, METH_VARARGS, "Get/set the preflash state (use also ledduration)"},
{"library", Library, METH_VARARGS, "Get the FLI library version"},
// --- Tests
{"example2", example2, METH_VARARGS, "Une fonction levant une exception"},
{"matrix", matrix, METH_VARARGS, "Create a matrix"},
{NULL, NULL, 0, NULL}
};
// =====================================================================
// =====================================================================
// Python extension - Module definition
// =====================================================================
// =====================================================================
static struct PyModuleDef myModule = {
PyModuleDef_HEAD_INIT,
"wrapper_flipro", /* nom du module */
NULL, /* documentation du module, ou NULL si non proposée */
-1, /* -1 => état du module stocké en global */
functions /* Tableau des fonctions exposées */
};
// =====================================================================
// =====================================================================
// Python extension - Module initialisation
// =====================================================================
// =====================================================================
PyMODINIT_FUNC PyInit_wrapper_flipro(void) {
// Création du module
PyObject * module = PyModule_Create( &myModule );
if ( module == NULL ) return NULL;
// Création d'une instance d'exception
exampleException = PyErr_NewException( "wrapper_flipro.error", NULL, NULL );
Py_INCREF( exampleException );
PyModule_AddObject( module, "error", exampleException );
import_array(); // for numpy
pycam_state = PYCAM_UNCONNECTED;
// On doit renvoyer le module nouvellement créé
return module;
}