wrapper_libtt.cpp
36.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
/*
Make the extension with:
python setup.py build_ext --inplace
Test the extension:
python test_libtt.py
*/
#include "wrapper_libtt.h"
// ===================================================================================
// ===================================================================================
// === Tools
// ===================================================================================
// ===================================================================================
/// <summary>
/// Extract argc, **argv from a char* cmd. Use free_argv after using this function.
/// </summary>
/// <param name="cmd">The input string to extract words</param>
/// <param name="pargv">The pointer of **argv</param>
/// <returns>argc</returns>
/// <example>
/// int argc;
/// char **argv = NULL;
/// argc = get_argv(cmd, &argv);
/// </example>
int get_argv(char *cmd, char ***pargv) {
int argc = 0;
char str[1024];
// === Compute argc
strcpy(str, cmd);
char* token = strtok(str, " ");
while (token != NULL) {
token = strtok(NULL, " ");
argc++;
}
// === Alloc argv
char **argv = NULL;
argv = (char **)malloc(argc * sizeof(char));
*pargv = (char **)argv;
argc = 0;
// === Compute argv
strcpy(str, cmd);
token = strtok(str, " ");
while (token != NULL) {
argv[argc] = (char *)malloc((strlen(token)+2) * sizeof(char));
//printf("STEP 220-%d argv = %p\n", argc, argv[argc]);
strcpy(argv[argc], token);
token = strtok(NULL, " ");
argc++;
}
return argc;
}
/// <summary>
/// Free memory of the **argv array.
/// </summary>
/// <param name="argc">The number of elements of pargv</param>
/// <param name="pargv">The pointer of **argv</param>
/// <example>
/// free_argv(argc, &argv);
/// </example>
void free_argv(int argc, char ***pargv) {
char **argv;
argv = *pargv;
for (int k=0 ; k<argc ; k++) {
//printf("===> argv[%d] = %s\n", k, argv[k]);
free(argv[k]);
}
free(argv);
}
PyObject *set_np_array2d(int nd, int w, int h, int typenum, void *p) {
npy_intp dims[2];
dims[0] = w;
dims[1] = h;
return PyArray_SimpleNewFromData(nd, dims, typenum, p);
}
int npy_tool_npytype_2_datatype(int type) {
int datatype = -1;
if (type == NPY_NOTYPE) datatype = -1;
else if (type == NPY_BOOL) datatype = TLOGICAL;
//else if (type == NPY_BYTE) datatype = ;
//else if (type == NPY_UBYTE) datatype = ;
else if (type == NPY_SHORT) datatype = TSHORT;
else if (type == NPY_USHORT) datatype = TUSHORT;
else if (type == NPY_INT32) datatype = TLONG;
else if (type == NPY_UINT32) datatype = TULONG;
else if (type == NPY_FLOAT) datatype = TFLOAT;
else if (type == NPY_DOUBLE) datatype = TDOUBLE;
return datatype;
}
int npy_tool_datatype_2_npytype(int type) {
int npytype = -1;
if (type == NPY_NOTYPE) npytype = -1;
else if (type == TLOGICAL) npytype = NPY_BOOL;
//else if (type == NPY_BYTE) datatype = ;
//else if (type == NPY_UBYTE) datatype = ;
else if (type == TSHORT) npytype = NPY_SHORT;
else if (type == TUSHORT) npytype = NPY_USHORT;
else if (type == TLONG) npytype = NPY_INT32;
else if (type == TULONG) npytype = NPY_UINT32;
else if (type == TFLOAT) npytype = NPY_FLOAT;
else if (type == TDOUBLE) npytype = NPY_DOUBLE;
return npytype;
}
/// <summary>
/// Return the numpy array element type.
/// </summary>
/// <param name="nparray">The numpy array to evaluate</param>
/// <returns>
/// Returns the NPY _* type of the array elements.
/// Returns -2 if the the nparray is not a numpy.ndarray.
/// Returns -1 if the element type is not int, float or double.
/// </returns>
/// <example>
/// npy_tool_get_type_array(my_np_array);
/// </example>
int npy_tool_get_type_array(PyObject *nparray) {
// --- Get the numpy array dtype ---
const char *array_type = Py_TYPE(nparray)->tp_name;
//printf("array_type = %s\n", array_type); // response should be "numpy.ndarray"
int type_inp = -2;
if (strcmp(array_type, "numpy.ndarray") == 0) {
// --- Get the type of the array elements
PyObject *py_dtype = PyObject_GetAttrString(nparray, "dtype");
PyObject *repr = PyObject_Repr(py_dtype);
PyObject *str = PyUnicode_AsEncodedString(repr, "utf-8", "~E~");
const char *char_dtype = PyBytes_AS_STRING(str); // response should e.g. "dtype('float32')"
Py_DECREF(py_dtype);
Py_DECREF(repr);
Py_DECREF(str);
// --- Compute only char_dtype_small = 'float32'
char char_dtype_small[MSG];
int k1=-1, k2=-1, k;
int n = (int)strlen(char_dtype);
for (k = 0 ; k < n ; k++) {
if (k1 >= 0) {
char_dtype_small[k-k1-1] = char_dtype[k];
}
if ((k1 == -1) && (char_dtype[k] == '(')) {
k1 = k;
}
if ((k2 == -1) && (char_dtype[k] == ')')) {
char_dtype_small[k-k1-1] = '\0';
break;
}
}
//printf("char_dtype_small=%s\n",char_dtype_small); // response should e.g. "float32" 5 6 7 8 9 10
//printf("NPY_ = %d %d %d %d %d %d\n",NPY_INT, NPY_UINT, NPY_INT32, NPY_UINT32, NPY_INT64, NPY_UINT64);
// --- Set the input type
type_inp = NPY_NOTYPE;
if (strcmp(char_dtype_small, "'bool'") == 0) { type_inp = NPY_BOOL; } // 0 = NPY_BOOL
else if (strcmp(char_dtype_small, "'int8'") == 0) { type_inp = NPY_INT8; } // 1 = NPY_BYTE
else if (strcmp(char_dtype_small, "'byte'") == 0) { type_inp = NPY_INT8; } // 1
else if (strcmp(char_dtype_small, "'uint8'") == 0) { type_inp = NPY_UINT8; } // 2 = NPY_UBYTE
else if (strcmp(char_dtype_small, "'ubyte'") == 0) { type_inp = NPY_UINT8; } // 2
else if (strcmp(char_dtype_small, "'int16'") == 0) { type_inp = NPY_INT16; } // 3 = NPY_SHORT
else if (strcmp(char_dtype_small, "'short'") == 0) { type_inp = NPY_INT16; } // 3
else if (strcmp(char_dtype_small, "'uint16'") == 0) { type_inp = NPY_UINT16; } // 4 = NPY_USHORT
else if (strcmp(char_dtype_small, "'ushort'") == 0) { type_inp = NPY_UINT16; } // 4
//else if (strcmp(char_dtype_small, "'?'") == 0) { type_inp = NPY_INT; } // 5 = NPY_INT
//else if (strcmp(char_dtype_small, "'?'") == 0) { type_inp = NPY_UINT; } // 6 = NPY_UINT
else if (strcmp(char_dtype_small, "'int32'") == 0) { type_inp = NPY_INT32; } // 7 = NPY_INT32
else if (strcmp(char_dtype_small, "'uint32'") == 0) { type_inp = NPY_UINT32; } // 8 = NPY_UINT32
else if (strcmp(char_dtype_small, "'uint'") == 0) { type_inp = NPY_UINT32; } // 8
else if (strcmp(char_dtype_small, "'int64'") == 0) { type_inp = NPY_INT64; } // 9 = NPY_INT64
else if (strcmp(char_dtype_small, "'uint64'") == 0) { type_inp = NPY_UINT64; } // 10 = NPY_ULONGLONG
else if (strcmp(char_dtype_small, "'float32'") == 0) { type_inp = NPY_FLOAT32; } // 11 = NPY_FLOAT
else if (strcmp(char_dtype_small, "'float'") == 0) { type_inp = NPY_FLOAT32; } // 11
else if (strcmp(char_dtype_small, "'float64'") == 0) { type_inp = NPY_FLOAT64; } // 12 = NPY_DOUBLE
else if (strcmp(char_dtype_small, "'double'") == 0) { type_inp = NPY_FLOAT64; } // 12
}
return type_inp;
}
char *char_type_pg(int type) {
static char msg[PG_MSG_ERR];
if (type == NPY_NOTYPE) strcpy(msg, "unknown");
else if (type == NPY_BOOL) strcpy(msg, "bool");
else if (type == NPY_BYTE) strcpy(msg, "byte");
else if (type == NPY_UBYTE) strcpy(msg, "ubyte");
else if (type == NPY_SHORT) strcpy(msg, "short");
else if (type == NPY_USHORT) strcpy(msg, "ushort");
else if (type == NPY_INT32) strcpy(msg, "int32");
else if (type == NPY_UINT32) strcpy(msg, "uint32");
else if (type == NPY_ULONGLONG) strcpy(msg, "uint64");
else if (type == NPY_FLOAT) strcpy(msg, "float");
else if (type == NPY_DOUBLE) strcpy(msg, "double");
else sprintf(msg, "type #%d not recognized", type);
return msg;
}
/// <summary>
/// Manage memory of the global array for image pointer.
/// This pointer must be global to exchange data safely with a numpy array.
/// </summary>
/// <param name="nelem">The number of elements of pg</param>
/// <param name="type">Integer corresponding to the type pointer pg.</param>
/// <example>
/// calloc_pg(12345, NPY_FLOAT);
/// </example>
void *calloc_pg(size_t nelem, int type) {
// --- Free the current already allocated memory
//printf("STEP 100 pg_type=%d pg=%p pgi=%p pgf=%p pgd=%p type=%d\n", pg_type, pg, pgi, pgf, pgd, type);
if (pg_type == NPY_INT32) {
if (pgi != NULL) free(pgi);
pgi = NULL;
pg = NULL;
} else if (pg_type == NPY_UINT32) {
if (pgui != NULL) free(pgui);
pgui = NULL;
pg = NULL;
} else if (pg_type == NPY_SHORT) {
if (pgs != NULL) free(pgs);
pgs = NULL;
pg = NULL;
} else if (pg_type == NPY_USHORT) {
if (pgus != NULL) free(pgus);
pgus = NULL;
pg = NULL;
} else if (pg_type == NPY_FLOAT) {
if (pgf != NULL) free(pgf);
pgf = NULL;
pg = NULL;
} else if (pg_type == NPY_DOUBLE) {
if (pgd != NULL) free(pgd);
pgd = NULL;
pg = NULL;
}
//printf("STEP 200 pg_type=%d pg=%p pgi=%p pgf=%p pgd=%p type=%d nelem=%zd\n", pg_type, pg, pgi, pgf, pgd, type, nelem);
if (pg == NULL) {
if (type == NPY_INT32) {
pgi = (int*)calloc(nelem, sizeof(int));
pg = (void*)pgi;
} else if (type == NPY_UINT32) {
pgui = (unsigned int*)calloc(nelem, sizeof(unsigned int));
pg = (void*)pgui;
} else if (type == NPY_SHORT) {
pgs = (short*)calloc(nelem, sizeof(short));
pg = (void*)pgs;
} else if (type == NPY_USHORT) {
pgus = (unsigned short*)calloc(nelem, sizeof(unsigned short));
pg = (void*)pgus;
} else if (type == NPY_FLOAT) {
pgf = (float*)calloc(nelem, sizeof(float));
pg = (void*)pgf;
} else if (type == NPY_DOUBLE) {
pgd = (double*)calloc(nelem, sizeof(double));
pg = (void*)pgd;
}
}
if (pg == NULL) {
char msg[PG_MSG_ERR];
sprintf(msg,"Pointer pg of type %s not allocated (NULL)", char_type_pg(pg_type));
PyErr_SetString(exampleException, msg);
return NULL;
}
pg_type = type;
//printf("STEP 300 pg_type=%d pg=%p pgi=%p pgf=%p pgd=%p type=%d nelem=%zd\n", pg_type, pg, pgi, pgf, pgd, type, nelem);
return pg;
}
/// <summary>
/// Copy all pointer values (pointer p) in the global array (pointer pg) for image pointer.
/// The values of the input pointer p are not changed.
/// If 'force_pg' is false, the use of copy_p_to_pg must be applied after calloc_pg. The parameter nelem must be the same.
/// If 'force_pg' is true, the use of copy_p_to_pg calls calloc_pg with the same type and nelem parameters.
/// </summary>
/// <param name="p">Input pointer to copy values in the pointer pg.</param>
/// <param name="nelem">The number of elements of p</param>
/// <param name="p_type">Integer corresponding to the type pointer p.</param>
/// <param name="force_pg">Boolean false true to force pg to have the same type than p</param>
/// <example>
/// copy_p_to_pg(data, 12345, NPY_DOUBLE, true);
/// </example>
void *copy_p_to_pg(void *p, size_t nelem, int p_type, bool force_pg) {
char msg[PG_MSG_ERR];
short *ps;
unsigned short *pus;
int *pi;
unsigned int *pui;
float *pf;
double *pd;
//printf("STEP 310\n");
if (p == NULL) {
strcpy(msg,"Pointer p is not allocated (NULL)");
PyErr_SetString(exampleException, msg);
return NULL;
}
//printf("STEP 330\n");
if (force_pg) {
// case of a copy p to pg with alloc of pg with the parameters of p
calloc_pg(nelem, p_type);
}
//printf("STEP 350\n");
if (pg == NULL) {
strcpy(msg,"Pointer pg is not allocated (NULL)");
PyErr_SetString(exampleException, msg);
return NULL;
}
if ((p_type < NPY_SHORT) || (p_type > NPY_DOUBLE)) {
sprintf(msg,"Type of Pointer p not allowed. p_type=%d (%s)", p_type, char_type_pg(p_type));
PyErr_SetString(exampleException, msg);
return NULL;
}
if ((pg_type < NPY_SHORT) || (pg_type > NPY_DOUBLE)) {
sprintf(msg,"Type of Pointer pg not allowed. pg_type=%d (%s)", pg_type, char_type_pg(pg_type));
PyErr_SetString(exampleException, msg);
return NULL;
}
// copy values
//printf("STEP 400 pg_type=%d pg=%p pgi=%p pgf=%p pgd=%p p_type=%d nelem=%zd\n", pg_type, pg, pgi, pgf, pgd, p_type, nelem);
if (p_type == NPY_INT32) {
pi = (int*)p;
if (pg_type == NPY_INT32) { PG_LOOP {pgi[k] = (int)pi[k];} }
else if (pg_type == NPY_UINT32) { PG_LOOP {pgui[k] = (unsigned int)pi[k];} }
else if (pg_type == NPY_SHORT) { PG_LOOP {pgs[k] = (short)pi[k];} }
else if (pg_type == NPY_USHORT) { PG_LOOP {pgus[k] = (unsigned short)pi[k];} }
else if (pg_type == NPY_FLOAT) { PG_LOOP {pgf[k] = (float)pi[k];} }
else if (pg_type == NPY_DOUBLE) { PG_LOOP {pgd[k] = (double)pi[k];} }
}
else if (p_type == NPY_UINT32) {
pui = (unsigned int*)p;
if (pg_type == NPY_INT32) { PG_LOOP {pgi[k] = (int)pui[k];} }
else if (pg_type == NPY_UINT32) { PG_LOOP {pgui[k] = (unsigned int)pui[k];} }
else if (pg_type == NPY_SHORT) { PG_LOOP {pgs[k] = (short)pui[k];} }
else if (pg_type == NPY_USHORT) { PG_LOOP {pgus[k] = (unsigned short)pui[k];} }
else if (pg_type == NPY_FLOAT) { PG_LOOP {pgf[k] = (float)pui[k];} }
else if (pg_type == NPY_DOUBLE) { PG_LOOP {pgd[k] = (double)pui[k];} }
}
else if (p_type == NPY_SHORT) {
ps = (short*)p;
if (pg_type == NPY_INT32) { PG_LOOP {pgi[k] = (int)ps[k];} }
else if (pg_type == NPY_UINT32) { PG_LOOP {pgui[k] = (unsigned int)ps[k];} }
else if (pg_type == NPY_SHORT) { PG_LOOP {pgs[k] = (short)ps[k];} }
else if (pg_type == NPY_USHORT) { PG_LOOP {pgus[k] = (unsigned short)ps[k];} }
else if (pg_type == NPY_FLOAT) { PG_LOOP {pgf[k] = (float)ps[k];} }
else if (pg_type == NPY_DOUBLE) { PG_LOOP {pgd[k] = (double)ps[k];} }
}
else if (p_type == NPY_USHORT) {
pus = (unsigned short*)p;
if (pg_type == NPY_INT32) { PG_LOOP {pgi[k] = (int)pus[k];} }
else if (pg_type == NPY_UINT32) { PG_LOOP {pgui[k] = (unsigned int)pus[k];} }
else if (pg_type == NPY_SHORT) { PG_LOOP {pgs[k] = (short)pus[k];} }
else if (pg_type == NPY_USHORT) { PG_LOOP {pgus[k] = (unsigned short)pus[k];} }
else if (pg_type == NPY_FLOAT) { PG_LOOP {pgf[k] = (float)pus[k];} }
else if (pg_type == NPY_DOUBLE) { PG_LOOP {pgd[k] = (double)pus[k];} }
}
else if (p_type == NPY_FLOAT) {
pf = (float*)p;
if (pg_type == NPY_INT32) { PG_LOOP {pgi[k] = (int)pf[k];} }
else if (pg_type == NPY_UINT32) { PG_LOOP {pgui[k] = (unsigned int)pf[k];} }
else if (pg_type == NPY_SHORT) { PG_LOOP {pgs[k] = (short)pf[k];} }
else if (pg_type == NPY_USHORT) { PG_LOOP {pgus[k] = (unsigned short)pf[k];} }
else if (pg_type == NPY_FLOAT) { PG_LOOP {pgf[k] = (float)pf[k];} }
else if (pg_type == NPY_DOUBLE) { PG_LOOP {pgd[k] = (double)pf[k];} }
}
else if (p_type == NPY_DOUBLE) {
pd = (double*)p;
if (pg_type == NPY_INT32) { PG_LOOP {pgi[k] = (int)pd[k];} }
else if (pg_type == NPY_UINT32) { PG_LOOP {pgui[k] = (unsigned int)pd[k];} }
else if (pg_type == NPY_SHORT) { PG_LOOP {pgs[k] = (short)pd[k];} }
else if (pg_type == NPY_USHORT) { PG_LOOP {pgus[k] = (unsigned short)pd[k];} }
else if (pg_type == NPY_FLOAT) { PG_LOOP {pgf[k] = (float)pd[k];} }
else if (pg_type == NPY_DOUBLE) { PG_LOOP {pgd[k] = (double)pd[k];} }
}
//printf("STEP 700 pg_type=%d pg=%p pgi=%p pgf=%p pgd=%p p_type=%d nelem=%zd\n", pg_type, pg, pgi, pgf, pgd, p_type, nelem);
return pg;
}
void *copy_pyarray_to_pg(PyArrayObject *py_array, size_t nelem, bool force_pg) {
// --- Fill the global pointer pg (=pointer p_in) by the input array (=pointer p)
PyArray_Descr *descr = PyArray_DESCR(py_array);
int type_num = descr->type_num;
//printf("STEP 301 type_num=%d\n",type_num);
if (type_num == NPY_INT32) {
int *p = (int *)PyArray_DATA(py_array);
return copy_p_to_pg(p, nelem, NPY_INT32, force_pg);
}
else if (type_num == NPY_UINT32) {
unsigned int *p = (unsigned int *)PyArray_DATA(py_array);
return copy_p_to_pg(p, nelem, NPY_UINT32, force_pg);
}
else if (type_num == NPY_SHORT) {
short *p = (short *)PyArray_DATA(py_array);
return copy_p_to_pg(p, nelem, NPY_SHORT, force_pg);
}
else if (type_num == NPY_USHORT) {
unsigned short *p = (unsigned short *)PyArray_DATA(py_array);
return copy_p_to_pg(p, nelem, NPY_USHORT, force_pg);
}
else if (type_num == NPY_FLOAT) {
float *p = (float *)PyArray_DATA(py_array);
return copy_p_to_pg(p, nelem, NPY_FLOAT, force_pg);
}
else if (type_num == NPY_DOUBLE) {
double *p = (double *)PyArray_DATA(py_array);
return copy_p_to_pg(p, nelem, NPY_DOUBLE, force_pg);
}
return NULL;
}
void dict_append_d(PyObject* dico, const char* key, int value, const char* comment) {
PyObject *mylist;
mylist = PyList_New(2);
PyList_SetItem(mylist, 0, Py_BuildValue("i", value));
PyList_SetItem(mylist, 1, Py_BuildValue("s", comment));
PyDict_SetItemString(dico, key, mylist);
Py_DECREF(mylist);
}
void dict_append_f(PyObject* dico, const char* key, double value, const char* comment) {
PyObject *mylist;
mylist = PyList_New(2);
PyList_SetItem(mylist, 0, Py_BuildValue("d", value));
PyList_SetItem(mylist, 1, Py_BuildValue("s", comment));
PyDict_SetItemString(dico, key, mylist);
Py_DECREF(mylist);
}
void dict_append_w(PyObject* dico, const char* key, wchar_t *value, const char* comment) {
int nline = 10000;
char line[10000];
wcstombs(line, value, nline);
PyObject *mylist;
mylist = PyList_New(2);
PyList_SetItem(mylist, 0, Py_BuildValue("s", line));
PyList_SetItem(mylist, 1, Py_BuildValue("s", comment));
PyDict_SetItemString(dico, key, mylist);
Py_DECREF(mylist);
}
void dict_append_s(PyObject* dico, const char* key, char *value, const char* comment) {
PyObject *mylist;
mylist = PyList_New(2);
PyList_SetItem(mylist, 0, Py_BuildValue("s", value));
PyList_SetItem(mylist, 1, Py_BuildValue("s", comment));
PyDict_SetItemString(dico, key, mylist);
Py_DECREF(mylist);
}
// =====================================================================
// =====================================================================
// Internal functions
// =====================================================================
// =====================================================================
void isotime(char *iso)
{
char iso0[BUFFER_TIME_SIZE];
struct timespec now;
timespec_get( &now, TIME_UTC );
strftime( iso0, BUFFER_TIME_SIZE, "%FT%T", gmtime( &now.tv_sec ) );
sprintf(iso, "%s.%09ld", iso0, now.tv_nsec);
iso[23] = '\0'; // ms
}
// =====================================================================
// =====================================================================
// Python extension - Common functions
// =====================================================================
// =====================================================================
static PyObject* imaseries(PyObject* self, PyObject* args) {
//char **argv;
//argc = get_argv(cmd, &argv);
//int res = 0;
//int res = cam_init(&cam, argc, (const char **)argv);
//if (res != 0) {
// PyErr_SetString(exampleException, cam.msg);
// return NULL;
//}
//free_argv(argc, &argv);
// --- Decode input parameters
int msg=3;
const char *imaseries_command;
int argc = (int)PyTuple_GET_SIZE(args);
if (argc >= 1) {
if ( ! PyArg_ParseTuple(args, "s", &imaseries_command) ) return NULL;
}
if (strcmp(imaseries_command, "toto") == 0) {
printf("YES\n");
}
printf("imaseries_command=%s\n",imaseries_command);
#if defined WITH_LIBTT
msg=libtt_main(TT_SCRIPT_2,1,imaseries_command);
#endif
if (msg !=0 ) {
printf("ERROR TT_SCRIPT_2 %d\n",msg);
}
PyObject *res = Py_BuildValue("s", imaseries_command);
return res;
}
static PyObject* pimaseries(PyObject* self, PyObject* args) {
// libtt.pimaseries(ima, "OFFSET offset=1000")
// PyObject *add_module = PyImport_ImportModule("add_module")
//
// https://stuff.mit.edu/afs/sipb/project/python/src/python-numeric-22.0/doc/www.pfdubois.com/numpy/html2/numpy-13.html
char msg[MSG];
// --- libtt allocation of the header ---
int datatype,bitpix;
int nbkeys;
#if defined WITH_LIBTT
int errcode;
int *datatypes;
char **keynames,**values,**comments,**units;
#endif
// --- Decode input parameters
const char *imaseries_command;
int argc = (int)PyTuple_GET_SIZE(args);
PyObject *ima = NULL;
if (argc > 1) {
if ( ! PyArg_ParseTuple(args, "Os", &ima, &imaseries_command) ) return NULL;
}
// --- Get the numpy array from the Ima object ---
PyObject *np_array_in = NULL;
np_array_in = PyObject_GetAttrString(ima, "_array");
printf("np_array_in=%p\n",np_array_in);
// --- Check if the np_array_in id a type of numpy.ndarray ---
// If true, returns the NPY_* type of the elements
// If false, returns -1
int type_inp = npy_tool_get_type_array(np_array_in);
//printf("np_array_in=%p type=%d\n",np_array_in, type_inp);
if (type_inp == -2) {
sprintf(msg,"1st parameter if not a numpy.ndarray");
PyErr_SetString(exampleException, msg);
return NULL;
}
if (type_inp == NPY_NOTYPE) {
sprintf(msg,"1st parameter is a numpy.ndarray but element type is not valid");
PyErr_SetString(exampleException, msg);
return NULL;
}
// --- Convert numpy array from PyObject into PyArrayObject ---
PyArrayObject *py_array = NULL;
py_array = (PyArrayObject *)PyArray_ContiguousFromAny(np_array_in, type_inp, 0, 2);
// --- Check if the py_array has two dimensions ---
int nd = PyArray_NDIM(py_array);
if (nd != 2) {
sprintf(msg,"The numpy.ndarray has %d dimensions (must be 2)", nd);
PyErr_SetString(exampleException, msg);
return NULL;
}
// --- Get the dimensions of the array
npy_intp *dimensions = PyArray_DIMS(py_array);
int naxis1,naxis2;
naxis1 = (int)dimensions[1];
naxis2 = (int)dimensions[0];
int nelem = naxis1*naxis2;
// --- Alloc the global pointer pg to type float
void *p_in;
/*
if (type_inp == NPY_DOUBLE) {
p_in = calloc_pg(nelem, NPY_DOUBLE);
datatype = npy_tool_npytype_2_datatype(NPY_DOUBLE);
} else {
p_in = calloc_pg(nelem, NPY_FLOAT);
datatype = npy_tool_npytype_2_datatype(NPY_FLOAT);
}
*/
p_in = calloc_pg(nelem, type_inp);
datatype = npy_tool_npytype_2_datatype(type_inp);
// --- Fill the global pointer pg (=pointer p_in) by the input py_array
copy_pyarray_to_pg(py_array, nelem, false); // false because we ever made a calloc_pg before
//printf("p_in=%p type_inp=%d\n", p_in, type_inp);
// --- convert Ima cards into the PyObject py_list_cards ---
PyObject *py_list_cards = NULL;
PyObject *ima_method = PyObject_GetAttrString(ima, "cards");
PyObject *ima_args = PyTuple_New(0);
PyObject *ima_kwargs = PyDict_New();
// return a list of header (key, val, comment)
py_list_cards = PyObject_Call(ima_method, ima_args, ima_kwargs);
//Py_DECREF(ima_method); // ??? Do not dereference ima_method else it kills the method itself
Py_DECREF(ima_args);
Py_DECREF(ima_kwargs);
printf("py_list_cards=%p\n", py_list_cards);
//Py_DECREF(ima); // Do not dereference py_array else it kills the object ima itself
// --- libtt allocation of the header keys ---
nbkeys = (int)PyObject_Length(py_list_cards);
printf("nbkeys=%d\n",nbkeys);
#if defined WITH_LIBTT
errcode = libtt_main(TT_PTR_ALLOKEYS,6,&nbkeys,&keynames,&values,&comments,&units,&datatypes);
#endif
// --- libtt assignation of the header keys from header cards ---
const char *pl = Py_TYPE(py_list_cards)->tp_name;
printf("Object type pl = %s\n", pl);
PyObject *it = PyObject_GetIter(py_list_cards);
PyObject *item;
int kcard = -1;
if (it) {
while ((item = PyIter_Next(it))) {
//printf("PyList_Check(item) = %d\n", PyList_Check(item));
//printf("PyTuple_Check(item) = %d\n", PyTuple_Check(item));
//const char *pp = Py_TYPE(item)->tp_name;
//printf("Object type = %s\n", pp);
//printf("PyObject_size() = %d\n", (int)PyObject_Size(item));
//printf("PyTuple_Size(item) = %d\n", (int)PyTuple_Size(item));
if (PyTuple_Size(item) >=3) {
// convert item into (key, val, comment)
const char *keyname;
PyObject *py_val;
const char *comment;
if ( ! PyArg_ParseTuple(item, "sOs", &keyname, &py_val, &comment) ) return NULL;
kcard++;
// assign keynames, comments, units
#if defined WITH_LIBTT
strcpy(keynames[kcard],keyname);
strcpy(comments[kcard],comment);
strcpy(units[kcard],"");
#endif
// assign values, datatypes
if (PyBool_Check(py_val)) {
int val_int = (int)(PyLong_AsLong(py_val));
#if defined WITH_LIBTT
sprintf(values[kcard],"%d", val_int);
datatypes[kcard]=TLOGICAL;
#endif
} else if (PyLong_Check(py_val)) {
int val_int = (int)(PyLong_AsLong(py_val));
#if defined WITH_LIBTT
sprintf(values[kcard],"%d", val_int);
datatypes[kcard]=TINT;
#endif
if (strcmp(keyname, "BITPIX")==0) { bitpix = val_int; }
} else if (PyFloat_Check(py_val)) {
#if defined WITH_LIBTT
sprintf(values[kcard],"%f",(float)PyFloat_AsDouble(py_val));
datatypes[kcard]=TFLOAT;
#endif
// TBD double
} else {
#if defined WITH_LIBTT
sprintf(values[kcard], "%s", PyBytes_AsString(py_val));
datatypes[kcard]=TSTRING;
#endif
}
#if defined WITH_LIBTT
printf("card %d : %s %s %d (%s)\n",kcard, keynames[kcard], values[kcard], datatypes[kcard], comments[kcard]);
#else
printf("card %d : %s %d (%s)\n",kcard, keyname, datatype, comment);
#endif
Py_DECREF(py_val);
}
Py_DECREF(item);
}
}
Py_DECREF(it);
// Py_DECREF(py_list_cards); // ??? do not dereference py_list_cards else Python crashes (after few calls of the method)
printf("STEP 1000 datatype=%d naxis1=%d naxis2=%d\n",datatype,naxis1,naxis2);
printf("STEP 1005 type_inp=%d pg_type=%d\n", type_inp, pg_type);
if (type_inp == NPY_DOUBLE) {
printf("STEP 1010 p_in=%p &pgd[0]=%p p_in[%d]=%f\n", p_in, &pgd[0], 0, pgd[0]);
} else if (type_inp == NPY_FLOAT) {
printf("STEP 1010 p_in=%p &pgf[0]=%p p_in[%d]=%f\n", p_in, &pgf[0], 0, pgf[0]);
} else {
printf("STEP 1010 p_in=%p\n", p_in);
}
// --- Call the libtt function 'imaseries_command'
#if defined WITH_LIBTT
errcode=libtt_main(TT_PTR_IMASERIES,13,&p_in,&datatype,&naxis1,&naxis2,&p_in,&datatype,imaseries_command,&nbkeys,&keynames,&values,&comments,&units,&datatypes);
if (errcode !=0 ) {
printf("ERROR TT_PTR_IMASERIES %d\n",errcode);
}
#endif
printf("STEP 2000 datatype=%d naxis1=%d naxis2=%d \n",datatype,naxis1,naxis2);
printf("STEP 2005 type_inp=%d pg_type=%d\n", type_inp, pg_type);
if (type_inp == NPY_DOUBLE) {
printf("STEP 2010 p_in=%p &pgd[0]=%p p_in[%d]=%f\n", p_in, &pgd[0], 0, pgd[0]);
} else if (type_inp == NPY_FLOAT) {
printf("STEP 2010 p_in=%p &pgf[0]=%p p_in[%d]=%f\n", p_in, &pgf[0], 0, pgf[0]);
} else {
printf("STEP 2010 p_in=%p\n", p_in);
}
// --- Convert C pointer p_in -> numpy.array (p_in dimension can be changed)
// Force the output type to be the same as the input
nd = 2;
npy_intp dims[2];
dims[0] = naxis2;
dims[1] = naxis1;
int type_out = npy_tool_datatype_2_npytype(datatype);
printf("STEP 2100 type_out=%d\n", type_out);
PyObject *np_array_out = PyArray_SimpleNewFromData(nd, dims, type_out, p_in);
// --- Prepare the output of the numpy.array
PyObject *res = Py_BuildValue("O", np_array_out);
Py_DECREF(np_array_out);
Py_DECREF(py_array);
#if defined WITH_LIBTT
errcode = libtt_main(TT_PTR_FREEKEYS,5,&keynames,&values,&comments,&units,&datatypes);
#endif
// --- Returns the result
return res;
}
// =====================================================================
// =====================================================================
// Python extension - Test functions
// =====================================================================
// =====================================================================
static PyObject* matrix(PyObject* self, PyObject* args) {
int w, h;
double v;
printf("PyTuple_GET_SIZE(args)=%d\n", (int)PyTuple_GET_SIZE(args));
if (PyTuple_GET_SIZE(args) >=3) {
if ( ! PyArg_ParseTuple(args, "iid", &w, &h, &v) ) return NULL;
}
printf("w=%d h=%d v=%f\n", w, h, v);
// --- C pointer
float * p = (float*)calloc(h*w, sizeof(float));
for (int i=0; i<w*h; i++){
p[i] = (float)v;
}
// --- C pointer -> numpy.array
int nd = 2;
npy_intp dims[2];
dims[0] = w;
dims[1] = h;
int typenum = NPY_FLOAT;
PyObject *aout;
aout = PyArray_SimpleNewFromData(nd, dims, typenum, (void*)p);
// --- Return the numpy.array
PyObject* res = Py_BuildValue("O", aout);
Py_DECREF(aout);
return res;
}
static PyObject* matrixio(PyObject* self, PyObject* args) {
int argc = (int)PyTuple_GET_SIZE(args);
PyObject *np_array_in = NULL;
if (argc > 0) {
if ( ! PyArg_ParseTuple(args, "O", &np_array_in) ) return NULL;
}
char msg[MSG_ERR];
// --- Check if the np_array_in id a type of numpy.ndarray ---
// If true, returns the NPY_* type of the elements
// If false, returns -1
int type_inp = npy_tool_get_type_array(np_array_in);
//printf("np_array_in=%p type=%d\n",np_array_in, type_inp);
if (type_inp == -2) {
sprintf(msg,"1st parameter if not a numpy.ndarray");
PyErr_SetString(exampleException, msg);
return NULL;
}
if (type_inp == NPY_NOTYPE) {
sprintf(msg,"1st parameter is a numpy.ndarray but element type is not valid");
PyErr_SetString(exampleException, msg);
return NULL;
}
// --- Convert numpy array from PyObject into PyArrayObject ---
PyArrayObject *py_array = NULL;
py_array = (PyArrayObject *)PyArray_ContiguousFromAny(np_array_in, type_inp, 0, 2);
// --- Check if the py_array has two dimensions ---
int nd = PyArray_NDIM(py_array);
if (nd != 2) {
sprintf(msg,"The numpy.ndarray has %d dimensions (must be 2)", nd);
PyErr_SetString(exampleException, msg);
return NULL;
}
// --- Get the dimensions of the array
npy_intp *dimensions = PyArray_DIMS(py_array);
int naxis1,naxis2;
naxis1 = (int)dimensions[1];
naxis2 = (int)dimensions[0];
int nelem = naxis1*naxis2;
// --- Alloc the global pointer pg to type float
void *p_in;
if (type_inp == NPY_DOUBLE) {
p_in = calloc_pg(nelem, NPY_DOUBLE);
} else {
p_in = calloc_pg(nelem, NPY_FLOAT);
}
// --- Fill the global pointer pg (=pointer p_in) by the input py_array
copy_pyarray_to_pg(py_array, nelem, false); // false because we ever made a calloc_pg before
//printf("p_in=%p type_inp=%d\n", p_in, type_inp);
// --- Convert C pointer p_in -> numpy.array (p_in dimension can be changed)
// Force the output type to be the same as the input
nd = 2;
npy_intp dims[2];
dims[0] = naxis2;
dims[1] = naxis1;
int type_out = type_inp;
PyObject *np_array_out = PyArray_SimpleNewFromData(nd, dims, type_out, p_in);
// --- Prepare the output of the numpy.array
PyObject *res = Py_BuildValue("O", np_array_out);
Py_DECREF(np_array_out);
Py_DECREF(py_array);
// --- Returns the result
return res;
}
static PyObject* example2(PyObject* self, PyObject* args) {
printf( "C/C++ code fire an exception\n" );
// Levée d'une exception Python : elle sera rattrapée en Python.
PyErr_SetString(exampleException, "Exemple de levée d'erreur en C");
// On ne renvoie donc pas de valeur de retour particulière.
return NULL;
}
// =====================================================================
// =====================================================================
// Python extension - Method definitions
// =====================================================================
// =====================================================================
static PyMethodDef functions[] = {
// --- Common for devices
{"pimaseries", pimaseries, METH_VARARGS, "Call libtt imaseries for one image"},
{"imaseries", imaseries, METH_VARARGS, "Call libtt imaseries for TT_SCRIPT2"},
// --- Tests
{"example2", example2, METH_VARARGS, "Une fonction levant une exception"},
{"matrix", matrix, METH_VARARGS, "Create a matrix and returns a numpy array"},
{"matrixio", matrixio, METH_VARARGS, "Read a numpy array and returns it"},
{NULL, NULL, 0, NULL}
};
// =====================================================================
// =====================================================================
// Python extension - Module definition
// =====================================================================
// =====================================================================
static struct PyModuleDef myModule = {
PyModuleDef_HEAD_INIT,
"libtt", /* nom du module */
"Image processing library", /* documentation du module, ou NULL si non proposée */
-1, /* -1 => état du module stocké en global */
functions /* Tableau des fonctions exposées */
};
// =====================================================================
// =====================================================================
// Python extension - Module initialisation
// =====================================================================
// =====================================================================
PyMODINIT_FUNC PyInit_libtt(void) {
// Création du module
PyObject * module = PyModule_Create( &myModule );
if ( module == NULL ) return NULL;
// Création d'une instance d'exception
exampleException = PyErr_NewException( "libtt.error", NULL, NULL );
Py_INCREF( exampleException );
PyModule_AddObject( module, "error", exampleException );
numpy = PyImport_ImportModule("numpy");
import_array(); // for numpy
pgs = NULL; // global array of short
pgus = NULL; // global array of unsigned short
pgi = NULL; // global array of int
pgui = NULL; // global array of unsigned int
pgf = NULL; // global array of float
pgd = NULL; // global array of double
pg_type = NPY_NOTYPE;
// On doit renvoyer le module nouvellement créé
return module;
}