etc.py
65.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
# -*- coding: utf-8 -*-
from typing import Any
import math
import numpy as np
try:
from .splinefit import Splinefit
except:
from splinefit import Splinefit
try:
from .guitastrotools import GuitastroTools, GuitastroException
except:
from guitastrotools import GuitastroTools, GuitastroException
# #####################################################################
# #####################################################################
# #####################################################################
# Class ExposureTimeCalculator
# #####################################################################
# #####################################################################
# Dictionaries:
# self._optics : D F/D Topt Fwhm_psf_opt proce
# self._cameras :
# self._etc["param"]["optic"]["D"] = [0.3 ,"Optic diameter (m)"]
#
#
# #####################################################################
class ExposureTimeCalculatorException(GuitastroException):
"""Exception raised for errors in the ExposureTimeCalculator class.
"""
KEY_NOT_FOUND = 0
CAMERA_NOT_FOUND = 1
OPTIC_NOT_FOUND = 2
errors = [""]*3
errors[KEY_NOT_FOUND] = "Key not found"
errors[CAMERA_NOT_FOUND] = "Camera not found"
errors[OPTIC_NOT_FOUND] = "Optic not found"
class ExposureTimeCalculator(ExposureTimeCalculatorException, GuitastroTools):
"""Exposure Time Calculator.
The Exposure Time Calculator (ETC) take input parameters defining an observatory (optics, camera, sky)
and compute limiting magnitude or other useful values to simulate images.
First, init the ETC. For example, we choose a camera "ProLine 16803" and an optical tube "Takahashi_180ED":
::
etc = ExposureTimeCalculator()
camera = "ProLine 16803"
etc.camera(camera)
optic = "Takahashi_180ED"
etc.optics("Takahashi_180ED")
Second, the Full Width at Half Maximum (FWHM) of the Point Spread Function (PSF) is 15 micro-meters.
We choice no filter and a local seeing of 2.5 arcsec.
::
etc.params("Fwhm_psf_opt", 15e-6)
etc.params("band","C")
etc.params("seeing", 2.5)
For a given exposure time of 100 seconds,
a Signal to Noise Ratio (SNR) of 5, we compute the magnitude:
::
etc.inputs("t", 100)
etc.inputs("snr", 5)
m = etc.snr2m_computations()
The m variable contains the computed magnitude.
You can print all the detailed computation:
::
etc
ETC have three important methods according known inputs:
* **snr2m_computations**: To compute apparent magnitude to reach a given signal to noise ratio and an exposure time.
* **snr2t_computations**: To compute exposure time to reach a given signal to noise ratio and an apparent magnitude.
* **t2snr_computations**: To compute signal to noise ration according an exposure time and an apparent magnitude.
Before using these methods, you have to set the input parameters using method params as showed in the next examples:
::
etc.inputs("t", 100)
etc.inputs("snr", 5)
m = etc.snr2m_computations()
::
etc.inputs("m", 18)
etc.inputs("snr", 5)
m = etc.snr2t_computations()
::
etc.inputs("m", 18)
etc.inputs("t", 100)
m = etc.t2snr_computations()
Note that t is the time exposure expressed in seconds
The parameters to simulate an image of this star by a Gaussiuan is:
::
print(etc.simu_star_params())
To get the list of supported cameras:
::
etc = ExposureTimeCalculator()
cameras = etc.camera()
Of course one can define its own camera setup using the method set_params.
To get the list of supported optics:
::
etc = ExposureTimeCalculator()
optics = etc.optics()
Of course one can define its own optics setup using the method set_params.
"""
def __init__(self):
self.init()
def __repr__(self):
return str(self)
def _set_array_optics(self):
#
# D : Optic diameter (m)
# F/D : Focal diameter ratio
# Topt : Transmission of the optics in the photometric band (Reflec=0.8, Refrac=0.95)
# Fwhm_psf_opt : Fwhm of the point spread function in the image plane (m)
#
self.OPT_DIAM = 0 # m
self.OPT_FOND = 1
self.OPT_TRANSMISSION = 2
self.OPT_FWHM_PSF = 3 # m
self.OPT_FULL_DIAM = 4 # (m) Full light diameter at focus plane
self.OPT_PRICE = 5 # (euros)
self._optics = {}
# ---
# expr pow(0.8,1)*pow(0.95,2)*(1-pow(0.58,2))
self._optics["TAROT"] = [0.250, 3.40, 0.48, 10e-6, 40e-3, 15000]
# expr pow(0.8,1)*pow(0.95,3)*(1-pow(0.45,2))
self._optics["Takahashi_180ED"] = [0.180, 2.80, 0.55, 5e-6, 44e-3, 5900]
# expr pow(0.8,1)*pow(0.95,2)*(1-pow(0.5,2))
self._optics["ASA_200mm_Newton"] = [0.200, 2.80, 0.54, 5e-6, 52e-3, 9000]
# expr pow(0.8,1)*pow(0.95,2)*(1-pow(0.4,2))
self._optics["ASA_250mm_Newton"] = [0.250, 3.60, 0.61, 5e-6, 50e-3, 9000]
self._optics["ASA_H400mm"] = [0.400, 2.40, 0.61, 5e-6, 70e-3, 44000]
# expr pow(0.8,1)*pow(0.95,2)*(1-pow(0.57,2))
self._optics["OS_RiFast_300"] = [0.300, 3.80, 0.48, 5e-6, 60e-3, 17500]
# expr pow(0.8,1)*pow(0.95,2)*(1-pow(0.55,2))
self._optics["OS_RiFast_400"] = [0.400, 3.80, 0.50, 5e-6, 70e-3, 36000]
self._optics["OS_RiFast_500"] = [0.500, 3.80, 0.50, 5e-6, 80e-3, 62000]
# expr pow(0.8,1)*pow(0.95,3)*(1-pow(0.55,2))
self._optics["OS_RH320_AT"] = [0.320, 2.20, 0.47, 5e-6, 52e-3, 40000]
self._optics["OS_RH350_AT"] = [0.350, 2.80, 0.47, 5e-6, 60e-3, 40000]
self._optics["OS_RH350_AT_x0.8"] = [0.350, 2.24, 0.47, 5e-6, 40e-3, 43000]
# expr pow(0.8,1)*pow(0.95,2)*(1-pow(0.32,2))
self._optics["HTP-400"] = [0.400, 3.00, 0.65, 5e-6, 60e-3, 20250]
self._optics["HTP-500"] = [0.500, 3.00, 0.65, 5e-6, 60e-3, 30450]
# expr pow(0.8,1)*pow(0.95,4)*(1-pow(0.42,2))
self._optics["Celestron_RASA_11"] = [0.280, 2.20, 0.54, 5e-6, 70e-3, 4400]
#
self._optics["GB-400A"] = [0.400, 3.00, 0.53, 10e-6, 52e-3, 80000]
self._optics["GB-400B"] = [0.400, 2.90, 0.52, 20e-6, 90e-3, 80000]
def optics(self, typeopt=""):
"""Get/Set the list of supported optics
::
etc = ExposureTimeCalculator()
optics = etc.optics()
To print the initialized parameters, see the section "param optic" of:
::
etc
"""
self._set_array_optics()
if typeopt == "":
return self._optics.keys()
if typeopt in self._optics.keys():
opt = self._optics[typeopt]
D, FonD, Topt, Fwhm_psf_opt, diamFull, optPrice = opt
self._etc["param"]["optic"]["D"][0] = D
self._etc["param"]["optic"]["FonD"][0] = FonD
self._etc["param"]["optic"]["Topt"][0] = Topt
self._etc["param"]["optic"]["Fwhm_psf_opt"][0] = Fwhm_psf_opt
self._etc["param"]["optic"]["diamFull"][0] = diamFull
self._etc["param"]["optic"]["optPrice"][0] = optPrice
else:
msg = f"The asked {typeopt} is not found amongst {self._optics.keys()}"
raise ExposureTimeCalculatorException(ExposureTimeCalculatorException.OPTIC_NOT_FOUND, msg)
def _set_array_cameras(self):
#---------------------------------------------------------
# [list camName {nbcell1 nbcell2 photocell1 photocell2 C_th G N_ro eta Em}]
# - nbcell1 == Number of pixels on axis1
# - nbcell2 == Number of pixels on axis2
# - photocell1 == Pixel size (m)
# - photocell2 == Pixel size (m)
# - C_th == Thermic coefficient (electrons/sec/photocell)
# - G == CCD gain (electrons/ADU)
# - N_ro == Readout noise (electrons)
# - eta == CCD Quantum efficiency in the photometric band (electron/photon)
# - Em == Electron multiplier (>1 if EMCCD, else =1)
self.CAM_NAXIS1 = 0 # Number of pixels on axis1
self.CAM_NAXIS2 = 1 # Number of pixels on axis2
self.CAM_PHOTOCELL1 = 2 # Pixel size (m)
self.CAM_PHOTOCELL2 = 3 # Pixel size (m)
self.CAM_THERM_COEF = 4 # Thermic coefficient (electrons/sec/photocell)
self.CAM_GAIN = 5 # CCD gain (electrons/ADU)
self.CAM_READOUT_NOISE = 6 # Readout noise (electrons)
self.CAM_QUANTUM_EFF = 7 # Quantum efficiency in the photometric band (electron/photon)
self.CAM_ELECTRON_AMP = 8 # Electron multiplier (>1 if EMCCD, else =1)
self.CAM_PRICE = 9 # Camera price (euros)
self._cameras = {}
# --- QHYCCD
# nax1 nax2 cell1 cell2 Th G Noise RQE Em
self._cameras["QHY 163M"] = [4656, 3522, 3.8e-6, 3.8e-6, 0.01, 1., 1.8, 0.6, 1, 1600]
self._cameras["QHY 411"] = [14192, 10640, 3.76e-6, 3.76e-6, 0.005, 0.5, 3.7, 0.95, 1, 200000]
self._cameras["QHY 42"] = [2048, 2048, 11e-6, 11e-6, 0.05, 1, 1.7, 0.95, 1, 11000]
self._cameras["QHY 600U3G20M"] = [9576, 6388, 3.76e-6, 3.76e-6, 0.005, 0.5, 3.7, 0.95, 1, 5000]
self._cameras["QHY 45GX"] = [2084, 2085, 24e-6, 24e-6, 0.3, 1, 25, 0.73, 1, 40000]
self._cameras["QHY 50GX"] = [8176, 6132, 6e-6, 6e-6, 0.003, 1.5, 11.5, 0.2, 1, 20000]
# --- ZWO ASI 6200MM
# nax1 nax2 cell1 cell2 Th G Noise RQE Em
self._cameras["ZWO 6200MM"] = [9576, 6388, 3.76e-6, 3.76e-6, 0.005, 0.5, 3.7, 0.95, 1, 5000]
# --- Andor
self._cameras["Andor DW436"] = [2048, 2048, 13.5e-6, 13.5e-6, 0.045, 2.8, 9.2, 0.85, 1, 50000] ; # measured on TAROT at 1MHz
self._cameras["Andor Neo sCMOS"] = [2560, 2160, 6.5e-6, 6.5e-6, 0.07, 4., 1.4, 0.57, 1, 30000]
self._cameras["Andor Lucas R DL-604"] = [1004, 1002, 8.0e-6, 8.0e-6, 0.07, 3., 18, 0.65, 1, 30000]
self._cameras["Andor iKon-L 936 Z-BV"] = [2048, 2048, 13.5e-6, 13.5e-6, 0.00013, 2.8, 2.9, 0.9, 1, 65000] ; # 20s redout time
self._cameras["Andor DW936 BV"] = [2048, 2048, 13.5e-6, 13.5e-6, 0.045, 1.8, 6.8, 0.85, 1, 65000] ; # measured on Zadko at 1 MHz
self._cameras["Andor Marana sCMOS"] = [2048, 2048, 11.0e-6, 11.0e-6, 0.2, 1.5, 1.6, 0.95, 1, 50000]
self._cameras["Andor Balor sCMOS"] = [4129, 4104, 12.0e-6, 12.0e-6, 0.08, 1.5, 3.0, 0.61, 1, 200000]
# --- Audine
self._cameras["Audine Kaf401ME"] = [ 768, 512, 9e-6, 9e-6, 0.2, 2.1, 12, 0.5, 1, 1000]
self._cameras["Audine Kaf1600"] = [1536, 1024, 9e-6, 9e-6, 0.2, 2.1, 12, 0.5, 1, 2000]
# --- SBig
self._cameras["ST-402ME"] = [765, 510, 9e-6, 9e-6, 0.1, 1.5, 13.8, 0.75, 1, 1000]
self._cameras["ST-1603ME"] = [1530, 1020, 9e-6, 9e-6, 0.1, 1.7, 18.0, 0.75, 1, 2000]
self._cameras["ST-3200ME"] = [2184, 1472, 6.8e-6, 6.8e-6, 0.1, 1.0, 10.0, 0.75, 1, 3000]
#
self._cameras["STF-8300M"] = [3326, 2504, 5.4e-6, 5.4e-6, 0.05, 1.0, 15.0, 0.45, 1, 2000]
self._cameras["STT-8300M"] = [3326, 2504, 5.4e-6, 5.4e-6, 0.02, 0.37, 9.3, 0.45, 1, 2000]
self._cameras["STT-1603ME"] = [1536, 1024, 9e-6, 9e-6, 0.1, 2.3, 15.0, 0.75, 1, 3000]
self._cameras["STT-3200ME"] = [2184, 1472, 6.8e-6, 6.8e-6, 0.06, 1.0, 10.0, 0.75, 1, 4000]
#
self._cameras["STXL-11002"] = [4008, 2672, 9e-6, 9e-6, 0.07, 0.80, 12.0, 0.45, 1, 11000] ; # measured Les Makes bin1x1 -20°C
self._cameras["STXL-6303E"] = [3072, 2048, 9e-6, 9e-6, 0.3, 1.47, 11, 0.65, 1, 9000]
#
self._cameras["STX-16803"] = [4096, 4096, 9e-6, 9e-6, 0.02, 1.27, 10, 0.6, 1, 12000]
#
self._cameras["ST-2000XM"] = [1600, 1200, 7.4e-6, 7.4e-6, 0.1, 0.6, 7.9, 0.35, 1, 2000]
# --- Princeton
self._cameras["Peregrine 486"] = [4096, 4096, 15e-6, 15e-6, 0.01, 1.8, 10, 0.9, 1, 130000]
# --- Apogee
self._cameras["Alta F230"] = [2048, 2048, 15e-6, 15e-6, 0.4, 1.5, 12, 0.85, 1, 60000]
self._cameras["Alta F42"] = [2048, 2048, 13.5e-6, 13.5e-6, 1, 1.5, 9, 0.85, 1, 50000]
#
self._cameras["Alta F16M"] = [4096, 4096, 9e-6, 9e-6, 0.2, 1.5, 9, 0.6, 1, 13000]
self._cameras["Alta F9000"] = [3056, 3056, 12e-6, 12e-6, 0.6, 1.29, 11, 0.6, 1, 12000] ; # measured. readout time 1MHz -35°C
self._cameras["Alta F4320"] = [2048, 2048, 24e-6, 24e-6, 2, 1.5, 12, 0.6, 1, 30000]
self._cameras["Alta F6"] = [1024, 1024, 24e-6, 24e-6, 0.5, 1.5, 8, 0.6, 1, 20000]
#
self._cameras["Alta F16000"] = [4872, 3248, 7.4e-6, 7.4e-6, 0.01, 1.5, 9, 0.4, 1, 20000]
self._cameras["Alta F29050"] = [6576, 4384, 5.5e-6, 5.5e-6, 0.15, 1.5, 6, 0.4, 1, 20000]
# --- FLI
self._cameras["ProLine PL09000"] = [3056, 3056, 12e-6, 12e-6, 0.1, 1.5, 10, 0.65, 1, 12000]
self._cameras["ProLine 16801"] = [4096, 4096, 9e-6, 9e-6, 0.08, 1.5, 9, 0.6, 1, 13000] ; # readout time 8 MHz -35°C
self._cameras["ProLine 16803"] = [4096, 4096, 9e-6, 9e-6, 0.005, 1.5, 10, 0.6, 1, 13000]
self._cameras["ProLine 4301"] = [2084, 2084, 24e-6, 24e-6, 0.4, 1.5, 8, 0.6, 1, 20000]
#
self._cameras["ProLine 230 Midband"] = [2048, 2048, 15e-6, 15e-6, 0.4, 1.5, 9.5, 0.85, 1, 50000]
self._cameras["ProLine 3041 Broadband"] = [2048, 2048, 15e-6, 15e-6, 0.3, 1.5, 8, 0.85, 1, 50000]
self._cameras["ProLine 4240 Midband"] = [2048, 2048, 13.5e-6, 13.5e-6, 0.2, 1.5, 8, 0.85, 1, 45000]
self._cameras["ProLine 4720"] = [1024, 1024, 13e-6, 13e-6, 0.02, 1.5, 10, 0.85, 1, 30000]
self._cameras["ProLine 4710 Deep D."] = [1024, 1024, 13e-6, 13e-6, 7, 1.5, 10, 0.9, 1, 30000]
#
self._cameras["MicroLine 50100"] = [8176, 6132, 6e-6, 6e-6, 0.003, 1.5, 11.5, 0.2, 1, 24000]
#
self._cameras["Kepler 400"] = [2048, 2048, 11e-6, 11e-6, 0.6, 1.5, 1.6, 0.95, 1, 26000] ; # + GPS
self._cameras["Kepler 4040"] = [4096, 4096, 9e-6, 9e-6, 0.15, 1.0, 3.7, 0.74, 1, 20500] ; # + GPS
self._cameras["Kepler 6060 BSI"] = [6144, 6200, 10e-6, 10e-6, 0.6, 1.5, 3.0, 0.95, 1, 134000] ; # grade 2 (189000 € for grade 1)
self._cameras["Kepler 6060 FSI"] = [6144, 6200, 10e-6, 10e-6, 0.6, 1.5, 4.6, 0.72, 1, 56000] ; # grade 1 (107000 € for grade 0)
# --- Atik
self._cameras["Atik Titan"] = [659, 494, 7.4e-6, 7.4e-6, 0.2, 1.5, 5, 0.6, 1, 635]
self._cameras["Atik 314EX"] = [1392, 1040, 4.65e-6, 4.65e-6, 0.2, 1.5, 3, 0.6, 1, 1429]
self._cameras["Atik 320E"] = [1620, 1220, 4.40e-6, 4.40e-6, 0.2, 1.5, 3, 0.6, 1, 1040]
self._cameras["Atik 314L+"] = [1392, 1040, 6.45e-6, 6.45e-6, 5e-4, 0.267, 3.7, 0.6, 1, 1347] ; # T=0°C http://www.dangl.at/ausruest/atik_314/atik_314_e.htm
self._cameras["Atik 383L+"] = [3362, 2504, 5.40e-6, 5.40e-6, 0.2, 1.5, 7, 0.6, 1, 1999]
self._cameras["Atik 420"] = [1620, 1220, 4.40e-6, 4.40e-6, 0.1, 1.5, 4, 0.6, 1, 1045]
self._cameras["Atik 450"] = [2448, 2050, 3.45e-6, 3.45e-6, 0.1, 1.5, 5, 0.6, 1, 2356]
self._cameras["Atik 428EX"] = [1932, 1452, 4.54e-6, 4.54e-6, 0.1, 1.5, 5, 0.6, 1, 1771]
self._cameras["Atik 460EX"] = [2750, 2200, 4.54e-6, 4.54e-6, 0.1, 1.5, 5, 0.6, 1, 2356]
self._cameras["Atik 490EX"] = [3380, 2704, 3.69e-6, 3.69e-6, 0.1, 1.5, 5, 0.6, 1, 2630]
self._cameras["Atik 4000LE"] = [2048, 2048, 7.4e-6, 7.4e-6, 0.01, 1.5, 11, 0.6, 1, 4026]
self._cameras["Atik 11000"] = [4008, 2672, 9e-6, 9e-6, 0.03, 1.5, 13, 0.6, 1, 5483]
# --- Raptor Photonics
self._cameras["OWL VIS-SWIR 320 0deg"] = [320, 256, 30e-6, 30e-6, 264000, 6.55, 131, 0.8, 1, 15000] ; # T=0°C
self._cameras["OWL VIS-SWIR 320 -40deg"] = [320, 256, 30e-6, 30e-6, 131, 6.55, 131, 0.8, 1, 15000] ; # T=-40°C
self._cameras["OWL SWIR 640 0deg"] = [640, 512, 15e-6, 15e-6, 264000/4., 6.55, 131/4., 0.75, 1, 60000] ; # T=0°C
self._cameras["OWL SWIR 640 -40deg"] = [640, 512, 15e-6, 15e-6, 131/4., 6.55, 131/4., 0.75, 1, 60000] ; # T=-40°C
#-- Point Grey U3->USB3 Capteurs CCD Sony
self._cameras["GS-U3-28S4M ICX687"] = [1928, 1448, 3.69e-6, 3.69e-6, 0.79, 0.16, 11.01, 0.71, 1, 4000] ; # WellDepth=9387 e-
self._cameras["GS-U3-28S5M ICX674"] = [1920, 1440, 4.54e-6, 4.54e-6, 1.27, 0.24, 9.39, 0.67, 1, 4000] ; # WellDepth=14693 e-
self._cameras["GS-U3-60S6M ICX694"] = [2736, 2192, 4.54e-6, 4.54e-6, 0.82, 0.23, 10.54, 0.73, 1, 4000] ; # WellDepth=14446 e-
self._cameras["GS-U3-91S6M ICX814"] = [3376, 2704, 3.69e-6, 3.69e-6, 0.42, 0.16, 9.43, 0.75, 1, 4000] ; # WellDepth=9996 e-
# --- Spectral instruments
self._cameras["Spectral Instruments 230-84 500KHz"] = [4112, 4096, 15e-6, 15e-6, 0.01, 1.5, 7.0, 0.92, 1, 130000]
self._cameras["Spectral Instruments 230-84 2MHz"] = [4112, 4096, 15e-6, 15e-6, 0.01, 1.5, 14.7, 0.92, 1, 130000]
self._cameras["Spectral Instruments 231-84 100KHz"] = [4112, 4096, 15e-6, 15e-6, 0.0003, 1.5, 2.1, 0.92, 1, 130000]
self._cameras["Spectral Instruments 231-84 1.5MHz"] = [4112, 4096, 15e-6, 15e-6, 0.0003, 1.5, 9.7, 0.92, 1, 130000]
# --- Watec
self._cameras["Watec 120N+"] = [720, 576, 8.6e-6, 8.3e-6, 10, 5, 30, 0.7, 1, 250]
# --- https://lytid.com/case-study/astrophysical-observations-with-siris/ Lytid SIRIS
self._cameras["Lytid SIRIS"] = [640, 480, 15e-6, 15e-6, 1.0, 6.0, 10.0, 0.9, 1, 110000]
def camera(self, typecam=""):
"""Get/Set the list of supported cameras
::
etc = ExposureTimeCalculator()
cameras = etc.camera()
To print the initialized parameters, see the section "param ccd" of:
::
etc
"""
self._set_array_cameras()
if typecam == "":
return self._cameras.keys()
if typecam in self._cameras.keys():
cam = self._cameras[typecam]
nbcell1, nbcell2, photocell1, photocell2, C_th, G, N_ro, eta, Em, camPrice = cam
self._etc["param"]["ccd"]["nbcell1"][0] = nbcell1
self._etc["param"]["ccd"]["nbcell2"][0] = nbcell2
self._etc["param"]["ccd"]["photocell1"][0] = photocell1
self._etc["param"]["ccd"]["photocell2"][0] = photocell2
self._etc["param"]["ccd"]["eta"][0] = eta
self._etc["param"]["ccd"]["N_ro"][0] = N_ro
self._etc["param"]["ccd"]["C_th"][0] = C_th
self._etc["param"]["ccd"]["G"][0] = G
self._etc["param"]["ccd"]["Em"][0] = Em
self._etc["param"]["ccd"]["camPrice"][0] = camPrice
else:
msg = f"The asked {typecam} is not found amongst {self._cameras.keys()}"
raise ExposureTimeCalculatorException(ExposureTimeCalculatorException.CAMERA_NOT_FOUND, msg)
def _params_defaults(self, band="V", moon_age=0.0):
#---------------------------------------------------------
# brief set default input parameters
# remark called by init
# param band (default) V
# param moon_age (default) 0
# private
#
self._etc["param"] = {}
self._etc["param"]["local"] = {}
self._etc["param"]["object"] = {}
self._etc["param"]["optic"] = {}
self._etc["param"]["ccd"] = {}
self._etc["param"]["filter"] = {}
self._etc["param"]["local"]["moon_age"] = [moon_age , "Age of the Moon (day)", "MOON_AGE"]
self._etc["param"]["object"]["band"] = [band , "Photometric system symbol", "PHOTBAND"]
self._modify_band()
Tatm0 = self._params_Tatm0(300, 0.10)
self._etc["param"]["local"]["Tatm0"] = [Tatm0 , "Zenith transmission of the atmosphere in the photometric band", "ZENTRANS"]
self._etc["param"]["local"]["Elev"] = [65 , "Elevation above horizon (deg)", "ELEV"]
self._etc["param"]["local"]["seeing"] = [3.0 , "Fwhm of the seeing (arcsec)", "SEEING"]
self._etc["param"]["optic"]["D"] = [0.3 ,"Optic diameter (m)", "TELDIAM"]
self._etc["param"]["optic"]["FonD"] = [4.0 ,"Focal diameter ratio", "FOND"]
self._etc["param"]["optic"]["Topt"] = [0.8*0.8*0.95*0.95 ,"Transmission of the optics in the photometric band (Reflec=0.8, Refrac=0.95)", "OPTTRANS"]
self._etc["param"]["optic"]["Fwhm_psf_opt"] = [15e-6 ,"Fwhm of the point spread function in the image plane (m)", "OPTFWHM"]
self._etc["param"]["optic"]["diamFull"] = [40e-3 ,"Full light diameter at image plane (m)", "FULLDIAM"]
self._etc["param"]["optic"]["optPrice"] = [10000 ,"Optical price (euro)", "OPTPRICE"]
self._etc["param"]["ccd"]["nbcell1"] = [2048 ,"Number of photocells on an axis1", "NBCELL1"]
self._etc["param"]["ccd"]["nbcell2"] = [2048 ,"Number of photocells on an axis2", "NBCELL2"]
self._etc["param"]["ccd"]["photocell1"] = [13.5e-6 ,"Photocell size on axis1 (m)", "CELLDIM1"]
self._etc["param"]["ccd"]["photocell2"] = [13.5e-6 ,"Photocell size on axis2 (m)", "CELLDIM2"]
self._etc["param"]["ccd"]["bin1"] = [1 ,"Binning on axis1 (photocells/pixel)", "BIN1"]
self._etc["param"]["ccd"]["bin2"] = [1 ,"Binning on axis2 (photocells/pixel)", "BIN2"]
self._etc["param"]["ccd"]["eta"] = [0.9 ,"CCD Quantum efficiency in the photometric band (electron/photon)", "CCD_ETA"]
self._etc["param"]["ccd"]["N_ro"] = [8.5, "Readout noise (electrons/pixel)", "CCD_RON"]
self._etc["param"]["ccd"]["C_th"] = [0.002, "Thermic coefficient (electrons/sec/photocell)", "CCD_TRM"]
self._etc["param"]["ccd"]["G"] = [1.8, "CCD gain (electrons/ADU)", "CCD_GAIN"]
self._etc["param"]["ccd"]["Em"] = [1.0, "Electron multiplier (>1 if EMCCD, else =1)", "CCD_EM"]
self._etc["param"]["ccd"]["camPrice"] = [3000, "Camera price (euro)", "CAMPRICE"]
def _params_Tatm0(self, altitude_m=300, Aerosol_Optical_Depth=0.10):
#---------------------------------------------------------
# brief set zenith transmission of the atmosphere in the photometric band
# param altitude altitude (m) 300 par défaut
# param Aerosol_Optical_Depth 0.10 par défaut
# return Tatm0 value
#
z = 1.
h = altitude_m*1e-3
AOD = Aerosol_Optical_Depth ; # 0.07=hiver 0.21=ete : Aerosol Optical Depth (AOD)
wvl = self._etc["param"]["filter"]["l"][0]
convert_unit = 1.
lmu = 1.*wvl*convert_unit
n1n1 = 0.23465+(1.076e2/(146-1/lmu/lmu))+(0.93161/(41-1/lmu/lmu))
Ar = 9.4977e-3*math.pow(lmu,-4)*n1n1*n1n1*math.exp(-h/7.996)
Tz = math.exp(-2*0.0168*math.exp(-15*abs(lmu-0.59)))
Ao = -2.5*math.log10(Tz)
Ao0 = 1.5*math.exp(-math.pow((lmu-0.300)/0.012,2))
Ao1 = 0.03/(1+math.pow((lmu-0.59)/0.07,2))
Ao2 = 0.011/(1+math.pow((lmu-0.576)/0.006,2))
Ao3 = 0.009/(1+math.pow((lmu-0.604)/0.01,2))
Ao4 = 0.01/(1+math.pow((lmu-0.630)/0.013,2))
Ao5 = 0.0048/(1+math.pow((lmu-0.531)/0.006,2))
Ao6 = 0.003/(1+math.pow((lmu-0.545)/0.009,2))
Ao7 = 0.003/(1+math.pow((lmu-0.564)/0.01,2))
Ao8 = 0.004/(1+math.pow((lmu-0.572)/0.01,2))
Ao9 = 0.003/(1+math.pow((lmu-0.506)/0.003,2))
Ao10 = 0.004/(1+math.pow((lmu-0.477)/0.0025,2))
Ao = Ao0+Ao1+Ao2+Ao3+Ao4+Ao5+Ao6+Ao7+Ao8+Ao9+Ao10
Aa = 2.5*math.log10( math.exp(AOD*math.pow(lmu/0.55,-1.3)))
AA = Ar+Ao+Aa
TT = pow(10,-0.4*AA*z)
return TT
def _params_msky(self, band="V", moon_age=0):
#---------------------------------------------------------
# brief set msky parameter from band and moon_age
# code _params_msky 20
# endcode
# param band (default) V
# param moon_age (default) 0
#
value = 20.0
if moon_age<=1.5:
if band=="U":
value = 22.0
if band=="B":
value = 22.7
if (band=="V") or (band=="g"):
value = 21.8
if band=="C":
value = 21.4
if (band=="R") or (band=="r"):
value = 20.9
if (band=="I") or (band=="i"):
value = 19.9
elif moon_age<=5:
if band=="U":
value = 21.5
if band=="B":
value = 22.4
if (band=="V") or (band=="g"):
value = 21.7
if band=="C":
value = 21.3
if (band=="R") or (band=="r"):
value = 20.8
if (band=="I") or (band=="i"):
value = 19.9
elif moon_age<=8.5:
if band=="U":
value = 19.9
if band=="B":
value = 21.6
if (band=="V") or (band=="g"):
value = 21.4
if band=="C":
value = 21.0
if (band=="R") or (band=="r"):
value = 20.6
if (band=="I") or (band=="i"):
value = 19.7
elif moon_age<=12:
if band=="U":
value = 18.5
if band=="B":
value = 20.7
if (band=="V") or (band=="g"):
value = 20.7
if band=="C":
value = 20.5
if (band=="R") or (band=="r"):
value = 20.3
if (band=="I") or (band=="i"):
value = 19.5
else:
if band=="U":
value = 17.0
if band=="B":
value = 19.5
if (band=="V") or (band=="g"):
value = 20.0
if band=="C":
value = 19.9
if (band=="R") or (band=="r"):
value = 19.9
if (band=="I") or (band=="i"):
value = 19.2
if band=="z":
value = 17.0
if band=="J":
value = 15.7
if band=="H":
value = 14.1
if band=="K":
value = 13.0
self._etc["param"]["local"]["msky"] = [value, "Sky brightness in the $band band at moon age $moon_age day (mag/arcsec2)", "SKYMAG"]
return ""
def _params_filter(self, band="V"):
#---------------------------------------------------------
# brief set a filter from band
# remark called by _modify_band
# param band (default) V
# private
#
valid = True
if band=="C":
l = 0.6
Dl = 0.3
Fm0 = 3100
elif band=="U":
l = 0.36
Dl = 0.15*l
Fm0 = 1810
elif band=="B":
l = 0.44
Dl = 0.22*l
Fm0 = 4260
elif band=="V":
l = 0.55
Dl = 0.16*l
Fm0 = 3640
elif band=="R":
l = 0.64
Dl = 0.23*l
Fm0 = 3080
elif band=="I":
l = 0.79
Dl = 0.19*l
Fm0 = 2550
elif band=="J":
l = 1.26
Dl = 0.16*l
Fm0 = 1600
elif band=="H":
l = 1.60
Dl = 0.23*l
Fm0 = 1080
elif band=="K":
l = 2.22
Dl = 0.23*l
Fm0 = 670
elif band=="g":
l = 0.52
Dl = 0.14*l
Fm0 = 3730
elif band=="r":
l = 0.67
Dl = 0.14*l
Fm0 = 4490
elif band=="i":
l = 0.79
Dl = 0.16*l
Fm0 = 4760
elif band=="z":
l = 0.91
Dl = 0.13*l
Fm0 = 4810
elif band=="CAB":
lmin = 380e-9
lmax = 860e-9
fmin = 3e8/lmax
fmax = 3e8/lmin
fmean = math.sqrt(fmin*fmax)
lmean = 3e8/fmean
dl = lmax-lmin
l = lmean
Dl = dl
Fm0 = 3631
band = "C"
else:
valid = False
#error "Filter $band not found"
if valid == True:
l_comment = "Central wavelength of the filter (micrometers)"
Dl_comment = "Wavelength bandpass of the filter (micrometers)"
Fm0_comment = "Flux for magnitude zero for the filter (Jy)"
self._etc["param"]["filter"]["l"] = [l, l_comment, "FILT_WV"]
self._etc["param"]["filter"]["Dl"] = [Dl, Dl_comment, "FILT_DWV"]
self._etc["param"]["filter"]["Fm0"] = [Fm0, Fm0_comment, "FILT_JY0"]
def inputs(self, key: str="", val: Any="?") -> Any:
"""Get/Set an input according its key.
Settings of the ETC are "parameters" and "inputs".
**Parameters** are settings of hardware and siteobs conditions (diameter of the optics, seeing, etc.).
**Inputs** are settings related to the target or to observing conditions (exposure time, distance of the source, signal to noise ration, etc.)
Args:
key: Key of the input. If key is not given (or equal "") it returns the list of available keys
Returns:
Value of the input or list available keys if key is not given (or equal "").
::
etc = ExposureTimeCalculator()
key_list = etc.inputs()
"""
#---------------------------------------------------------
## @brief get input list
# @code Exemples :
# - inputs m=12.5
# - inputs t=120
# @endcode
# @param args list of {key value}
#
keyfound = False
allkeys = []
jkeys = self._etc["input"].keys()
for jkey in jkeys:
ikeys = self._etc["input"][jkey].keys()
allkeys.extend(ikeys)
if key in ikeys:
#print(f"INPUT {jkey}/{key} val={val}")
if val == "?":
return self._etc["input"][jkey][key]
keyfound = True
if jkey=="object":
self._etc["input"][jkey][key][0] = val
delta = 5.0 * math.log10( self._etc["input"][jkey]["DL_pc"][0] / 10.)
if key == "M":
self._etc["input"][jkey]["m"][0] = self._etc["input"][jkey]["M"][0] + delta
elif key == "m":
self._etc["input"][jkey]["M"][0] = self._etc["input"][jkey]["m"][0] - delta
elif key == "DL_pc":
self._etc["input"][jkey]["m"][0] = self._etc["input"][jkey]["M"][0] + delta
else:
self._etc["input"][jkey][key][0] = val
res = self._etc["input"][jkey][key]
if keyfound == False:
if key=="":
return allkeys
msg = f"The asked key {key} is not found amongst {allkeys}"
raise ExposureTimeCalculatorException(ExposureTimeCalculatorException.KEY_NOT_FOUND, msg)
return res
def _inputs_defaults(self):
#---------------------------------------------------------
# brief set default parameters
# remark called by init
# private
#
band = self._etc["param"]["object"]["band"][0]
self._etc["input"] = {}
self._etc["input"]["object"] = {}
self._etc["input"]["ccd"] = {}
self._etc["input"]["constraint"] = {}
self._etc["input"]["object"]["M"] = [-21, f"Absolute stellar magnitude in the {band} band", "MAG_ABS"]
self._etc["input"]["object"]["DL_pc"] = [40e6, "Distance luminosity (pc)", "DIST_PC"]
m = self._etc["input"]["object"]["M"][0] + 5. * math.log10 (self._etc["input"]["object"]["DL_pc"][0] / 10.)
self._etc["input"]["object"]["m"] = [m, f"Apparent stellar magnitude in the {band} band", "MAG_APP"]
self._etc["input"]["ccd"]["t"] = [30, "Exposure time (sec)", "EXPTIME"]
self._etc["input"]["constraint"]["snr"] = [5, "SNR constrained", "ETC_SNR"]
def params(self, key: str="", val: Any="?") -> Any:
"""Get/Set a parameter according its key.
Settings of the ETC are "parameters" and "inputs".
**Parameters** are settings of hardware and siteobs conditions (diameter of the optics, seeing, etc.).
**Inputs** are settings related to the target or to observing conditions (exposure time, distance of the source, signal to noise ration, etc.)
Args:
key: Key of the parameter. If key is not given (or equal "") it returns the list of available keys
Returns:
Value of the parameter or list available keys if key is not given (or equal "").
::
etc = ExposureTimeCalculator()
key_list = etc.params()
"""
band = self._etc["param"]["object"]["band"][0]
keyfound = False
allkeys = []
jkeys = self._etc["param"].keys()
for jkey in jkeys:
ikeys = self._etc["param"][jkey].keys()
allkeys.extend(ikeys)
if key in ikeys:
#print(f"PARAMS {jkey}/{key} val={val}")
if val == "?":
return self._etc["param"][jkey][key]
keyfound = True
if jkey=="object" or jkey=="local":
self._etc["param"][jkey][key][0] = val
if key == "moon_age":
self._etc["param"][jkey][key][0] = val
self._params_msky(band, val)
elif key == "band":
bands = ["B", "C", "H", "I", "J", "K", "R", "U", "V", "g", "r", "i", "z", "CAB"]
if val in bands:
self._etc["param"][jkey][key][0] = val
self._modify_band(val)
else:
self._etc["param"][jkey][key][0] = val
res = self._etc["param"][jkey][key]
if keyfound == False:
if key=="":
return allkeys
msg = f"The asked key {key} is not found amongst {allkeys}"
raise ExposureTimeCalculatorException(ExposureTimeCalculatorException.KEY_NOT_FOUND, msg)
return res
def _modify_band(self, band: str="V"):
"""Modify the band pass (filter) of the optics.
Args:
band: Symbol of the filter.
"""
#--- calcul des cofficients L, Dl et Fm0
self._params_filter(band)
#--- calcul de Tatm0
Tatm0 = self._params_Tatm0(300, 0.10)
self._etc["param"]["local"]["Tatm0"] = [Tatm0 , "Elevation above horizon (deg)", "ELEV"]
#--- calcul de msky
self._params_msky(band, self._etc["param"]["local"]["moon_age"][0])
#--- modification des commentaires
try:
self._etc["input"]["object"]["M"][1] = f"Absolute stellar magnitude in the {band} band"
self._etc["input"]["object"]["m"][1] = f"Apparent stellar magnitude in the {band} band"
except:
pass
def _spec(self, xy, **kwargs):
# x, y = etc._spec([[400, 407, 550, 900, 935], [0, 20, 95, 30, 0]], method="splinefit", dy=5, s=0.1, limits = [0,100])
# input
# y
# [ [x1, y1], [x2, y2], ...]
# [ [x1, x2, ...], [y1, y2, ...]]
# output
config = {}
config["method"] = "lininterp" # "splinefit"
config["limits"] = [] # [0, 1]
config["dy"] = 0 # len(xs)
config["s"] = 0 # len(xs)
lambd1= 350 ; lambd2= 3000; dlamb = 10 ; n = 1+int((lambd2-lambd1)/dlamb)
config["xx"] = np.linspace(lambd1, lambd2, n)
for key, val in kwargs.items():
if key in config.keys():
config[key] = val
xxs = config["xx"]
# ---
if isinstance(xy, (int,float)) == True:
yys = xxs*0 + xy
else:
xya = np.array(xy)
s = xya.shape
ns = len(s)
if ns==1:
yys = xxs*0 + xy[0]
return xxs, yys
n1 = s[0]
n2 = s[1]
if n1 == 2:
# xy = [ [1, 2, 3], [5, 4, 6] ] => x = [1, 2, 3] y = [5, 4, 6]
pass
elif n2 == 2:
# xy = [ [1, 5], [2, 4], [3, 6] ] => x = [1, 2, 3] y = [5, 4, 6]
xya = xya.T
xs = xya[0]
ys = xya[1]
k = 0
for x, y in zip(xs, ys):
if k == 0:
mini = [x, y]
maxi = [x, y]
else:
if x < mini[0]:
mini = [x, y]
if y < maxi[0]:
maxi = [x, y]
k += 1
xx_mini = np.min(xxs)
xx_maxi = np.max(xxs)
if mini[0] < xx_mini :
xs = np.append(xs,mini[0])
ys = np.append(xs,mini[1])
if mini[0] > xx_maxi :
xs = np.append(xs,maxi[0])
ys = np.append(xs,maxi[1])
# ---
inds = np.argsort(xs)
xs = np.array([xs[i] for i in inds])
ys = np.array([ys[i] for i in inds])
# ---
n = len(xs)
nn = len(xxs)
yys = np.zeros(nn)
if config["method"] == "lininterp":
kk = -1
kfast = 0
for xx in xxs:
kk += 1
for k in range(kfast, n-1):
x1 = xs[k]
x2 = xs[k+1]
if xx >= x1 and xx <= x2:
y1 = ys[k]
y2 = ys[k+1]
dy = y2-y1
dx = x2-x1
if dy == 0 or dx == 0:
yy = y1
else:
yy = y1 + dy * (xx-x1)/dx
yys[kk] = yy
kfast = k
break
elif config["method"] == "splinefit":
fiter = Splinefit()
dy = config["dy"]
s = config["s"]
if s==0:
s = 1*len(xs)
yys = fiter.fit(xs, ys, dy, s, xxs)
# ---
limits = config["limits"]
nl = len(limits)
if nl==2:
y1 = limits[0]
y2 = limits[1]
for k in range(nn):
yy = yys[k]
if yy < y1:
yys[k] = y1
if yy > y2:
yys[k] = y2
return xxs, yys
def _preliminary_computations (self):
"""Preliminary common computations before resolving equations for SNR, exposure time or magnitude.
This method is called automatically when needed.
"""
self._etc["comp1"] = {}
# --- Optics
FonD = self._etc["param"]["optic"]["FonD"][0]
D = self._etc["param"]["optic"]["D"][0]
Foclen = FonD * D
self._etc["comp1"]["Foclen"] = [Foclen, "Focal length (m)", "FOCLEN"]
photocell1 = self._etc["param"]["ccd"]["photocell1"][0]
bin1 = self._etc["param"]["ccd"]["bin1"][0]
pixsize1 = photocell1 * bin1
self._etc["comp1"]["pixsize1"] = [pixsize1, "Pixel length on axis1 (m)", "PIXSIZE1"]
photocell2 = self._etc["param"]["ccd"]["photocell2"][0]
bin2 = self._etc["param"]["ccd"]["bin2"][0]
pixsize2 = photocell2 * bin2
self._etc["comp1"]["pixsize2"] = [pixsize2, "Pixel length on axis2 (m)", "PIXSIZE2"]
photocell1 = self._etc["param"]["ccd"]["photocell1"][0]
bin1 = self._etc["param"]["ccd"]["bin1"][0]
pixsize1 = photocell1 * bin1
self._etc["comp1"]["pixsize1"] = [pixsize1, "Pixel length on axis1 (m)"]
cdelt1 = 2 * math.atan ( pixsize1 / Foclen / 2.) * 180. / math.pi * 3600.
self._etc["comp1"]["cdelt1"] = [cdelt1, "Pixel spatial sampling on axis1 (arcsec/pix)", "CDELT1"]
cdelt2 = 2 * math.atan ( pixsize2 / Foclen / 2.) * 180. / math.pi * 3600.
self._etc["comp1"]["cdelt2"] = [cdelt2, "Pixel spatial sampling on axis2 (arcsec/pix)", "CDELT2"]
W = cdelt1 * cdelt2
self._etc["comp1"]["W"] = [W ,"Pixel solid angle (arcsec2/pix)", "PIX_ANG"]
nbcell1 = self._etc["param"]["ccd"]["nbcell1"][0]
naxis1 = int(nbcell1 / bin1)
self._etc["comp1"]["naxis1"] = [naxis1, "Number of pixels along axis 1", "NAXIS1"]
FoV1 = 2 * math.atan ( nbcell1 * photocell1 / Foclen / 2.) * 180. / math.pi
self._etc["comp1"]["FoV1"] = [FoV1, "Field of view of the CCD image on axis1 (deg)", "FOV1"]
nbcell2 = self._etc["param"]["ccd"]["nbcell2"][0]
naxis2 = int(nbcell2 / bin2)
self._etc["comp1"]["naxis2"] = [naxis2, "Number of pixels along axis 2", "NAXIS2"]
FoV2 = 2 * math.atan ( nbcell2 * photocell2 / Foclen / 2.) * 180. / math.pi
self._etc["comp1"]["FoV2"] = [FoV2, "Field of view of the CCD image on axis2 (deg)", "FOV2"]
seeing = self._etc["param"]["local"]["seeing"][0]
Fwhm_psf_seeing = seeing / 3600. * math.pi / 180 * Foclen
self._etc["comp1"]["Fwhm_psf_seeing"] = [Fwhm_psf_seeing, "Fwhm of the seeing in the image plane (m)", "LSEEING"]
Fwhm_psf_opt = self._etc["param"]["optic"]["Fwhm_psf_opt"][0]
Fwhm_psf = math.sqrt ( Fwhm_psf_opt * Fwhm_psf_opt + Fwhm_psf_seeing * Fwhm_psf_seeing )
self._etc["comp1"]["Fwhm_psf"] = [Fwhm_psf, "Fwhm of the PSF in the image plane (m)", "LPSF"]
# --- Optics : computation of the gaussian fraction covered by the brightest pixel
oversampling = 12 ; # must be even and >10 to ensure a good resolution
if pixsize1 >= pixsize2:
p = pixsize2
P = pixsize1
else:
p = pixsize1
P = pixsize2
dp = p/oversampling
sigma = Fwhm_psf / (2*math.sqrt(2*math.log(2)))
sigma2 = sigma*sigma
a1d = 1 / sigma / math.sqrt(2*math.pi)
a2d = a1d*a1d
x1 = -p/2. ; x2 = x1 + p
y1 = -P/2. ; y2 = y1 + P
som = 0
xs = []
x = x1
while x <= x2:
xs.append(x)
x += dp
ys = []
y = y1
while y <= y2:
ys.append(y)
y += dp
for x in xs:
dx2 = x*x
for y in ys:
dy2 = y*y
d2 = dx2 + dy2
som += math.exp(-0.5*d2/sigma2)
fpix1 = a2d*dp*dp*som
self._etc["comp1"]["fpix1"] = [fpix1, "Flux fraction in the brightest pixel in the favorable case (max flux at the center of the pixel)", "FLUPIX00"]
x1 = 0. ; x2 = x1 + p
y1 = 0. ; y2 = y1 + P
som = 0
xs = []
x = x1
while x <= x2:
xs.append(x)
x += dp
ys = []
y = y1
while y <= y2:
ys.append(y)
y += dp
for x in xs:
dx2 = x*x
for y in ys:
dy2 = y*y
d2 = dx2 + dy2
som += math.exp(-0.5*d2/sigma2)
fpix3 = a2d*dp*dp*som
self._etc["comp1"]["fpix3"] = [fpix3, "Flux fraction in the brightest pixel in the worst case (max flux at the corner of the pixel)", "FLUPIX11"]
x1 = 0. ; x2 = x1 + p
y1 = -P/2. ; y2 = y1 + P
som = 0
xs = []
x = x1
while x <= x2:
xs.append(x)
x += dp
ys = []
y = y1
while y <= y2:
ys.append(y)
y += dp
for x in xs:
dx2 = x*x
for y in ys:
dy2 = y*y
d2 = dx2 + dy2
som += math.exp(-0.5*d2/sigma2)
fpix2 = a2d*dp*dp*som
self._etc["comp1"]["fpix2"] = [fpix2, "Flux fraction in the brightest pixel in the intermediate case", "FLUPIX01"]
# --- Mean value of fraction
fpix = (1.0*fpix1+2.0*fpix2+1.0*fpix3)/4.0
self._etc["comp1"]["fpix"] = [fpix, "Flux fraction in the mean case", "FLUPIX"]
# --- Object
Fm0 = self._etc["param"]["filter"]["Fm0"][0]
m = self._etc["input"]["object"]["m"][0]
F_Jy = Fm0 * math.pow(10,-0.4 * m)
self._etc["comp1"]["F_Jy"] = [F_Jy, "Total flux of the object outside atmosphere (Jy)", "FLUX_JY"]
Dl = self._etc["param"]["filter"]["Dl"][0]
l = self._etc["param"]["filter"]["l"][0]
F_ph = F_Jy * 1.51e7 * Dl/l
self._etc["comp1"]["F_ph"] = [F_ph, "Total flux of the object outside atmosphere (photons / sec /m2)", "FLUX_PH"]
Tatm0 = self._etc["param"]["local"]["Tatm0"][0]
Elev = self._etc["param"]["local"]["Elev"][0]
Tatm = Tatm0 * math.sin(Elev*math.pi/180.)
self._etc["comp1"]["Tatm"] = [Tatm, "Transmission of the atmosphere at elevation", "TRANSATM"]
Topt = self._etc["param"]["optic"]["Topt"][0]
t = self._etc["input"]["ccd"]["t"][0]
Ftot_ph = F_ph * math.pi * D*D / 4. * Tatm * Topt * t
self._etc["comp1"]["Ftot_ph"] = [Ftot_ph, "Total flux of the object after passed thru the optics (photons / object)", "FTOT_PH"]
eta = self._etc["param"]["ccd"]["eta"][0]
Ftot_el = Ftot_ph * eta
self._etc["comp1"]["Ftot_el"] = [Ftot_el, "Total flux of the object after passed thru the optics (electrons / object)", "FTOT_EL"]
Fpix_el = Ftot_el * fpix
self._etc["comp1"]["Fpix_el"] = [Fpix_el, "Brightest pixel flux of the object after passed thru the optics (electrons / pixel)", "FPIX_EL"]
# --- Sky brightness
msky = self._etc["param"]["local"]["msky"][0]
Sky_Jy = Fm0 * math.pow(10,-0.4 * msky)
self._etc["comp1"]["Sky_Jy"] = [Sky_Jy, "Brightness of the sky (Jy/arsec2)", "BSKY_JY"]
Sky_ph = Sky_Jy * 1.51e7 * Dl/l
self._etc["comp1"]["Sky_ph"] = [Sky_ph, "Brightness of the sky (photons / sec /m2)", "BSKY_PH"]
Skypix_ph = Sky_ph * math.pi * D*D / 4. * W * Topt * t
self._etc["comp1"]["Skypix_ph"] = [Skypix_ph, "Brightness of the sky after passed thru the optics (photons / pixel)", "BPIX_JY"]
Skypix_el = Skypix_ph * eta
self._etc["comp1"]["Skypix_el"] = [Skypix_el, "Brightness of the sky after passed thru the optics (electrons / pixel)", "BPIX_EL"]
# --- EMCCD
Em = self._etc["param"]["ccd"]["Em"][0]
fex = 1. + math.pow( 2./math.pi * math.atan( (Em-1)*3 ) ,3)
self._etc["comp1"]["fex"] = [fex, "EMCCD excess noise factor (empirical formula derived from a figure of a paper)", "CCD_EM"]
def t2snr_computations(self):
"""Compute the Signal to Noise Ratio (SNR) from a given exposure time
Before using t2snr_computations, parameters must be set:
::
etc = ExposureTimeCalculator()
camera = "ProLine 16803"
etc.camera(camera)
optic = "Takahashi_180ED"
etc.optics("Takahashi_180ED")
etc.params("Fwhm_psf_opt", 15e-6)
etc.params("band","C")
etc.params("seeing", 2.5)
t = 100
etc.inputs("t", t)
m = 16.5
etc.inputs("m", m)
snr = etc.t2snr_computations()
"""
#---------------------------------------------------------
## @brief compute SNR from a given time
# @code What is the SNR for t=20s ?
# init
# inputs t 20
# disp
# t2snr_computations
# @endcode
# @return SNR ratio
#
self._preliminary_computations()
C_th = self._etc["param"]["ccd"]["C_th"][0]
bin1 = self._etc["param"]["ccd"]["bin1"][0]
bin2 = self._etc["param"]["ccd"]["bin2"][0]
t = self._etc["input"]["ccd"]["t"][0]
Em = self._etc["param"]["ccd"]["Em"][0]
S_th = C_th * bin1 * bin2 * t * Em
self._etc["compsnr"]["S_th"] = [S_th, "Thermic signal (electrons/pixel)", "S_TH_E"]
Skypix_el = self._etc["comp1"]["Skypix_el"][0]
S_sk = Skypix_el * Em
self._etc["compsnr"]["S_sk"] = [S_sk, "Sky signal (electrons/pixel)", "S_SKY_E"]
Fpix_el = self._etc["comp1"]["Fpix_el"][0]
S_ph = Fpix_el * Em
self._etc["compsnr"]["S_ph"] = [S_ph, "Object signal (electrons/pixel)", "S_OBJ_E"]
fex = self._etc["comp1"]["fex"][0]
N_th = math.sqrt(C_th * bin1 * bin2 * t * fex) * Em
self._etc["compsnr"]["N_th"] = [N_th, "Thermic noise (electrons/pixel)", "N_TH_E"]
N_sk = math.sqrt(Skypix_el * fex) * Em
self._etc["compsnr"]["N_sk"] = [N_sk, "Sky noise (electrons/pixel)", "N_SKY_E"]
N_ph = math.sqrt(Fpix_el * fex) * Em
self._etc["compsnr"]["N_ph"] = [N_ph, "Object noise (electrons/pixel) = shot noise", "N_OBJ_E"]
N_ro = self._etc["param"]["ccd"]["N_ro"][0]
N_tot = math.sqrt ( N_ro*N_ro + N_th*N_th + N_sk*N_sk + N_ph*N_ph )
self._etc["compsnr"]["N_tot"] = [N_tot, "Total noise (electrons/pixels)", "N_TOT_E"]
SNR_obj = S_ph / N_tot
self._etc["compsnr"]["SNR_obj"] = [SNR_obj, "Object signal/noise at the brightest pixel", "SNRPIX00"]
self._etc["compsnr"]["t"][0] = t # ?
G = self._etc["param"]["ccd"]["G"][0]
S_th_adu = S_th / G
self._etc["compsnr"]["S_th_adu"] = [S_th_adu, "Thermic signal (ADU/pixel)", "S_TH_A"]
S_sk_adu = S_sk / G
self._etc["compsnr"]["S_sk_adu"] = [S_sk_adu, "Sky signal (ADU/pixel)", "S_SKY_A"]
S_ph_adu = S_ph / G
self._etc["compsnr"]["S_ph_adu"] = [S_ph_adu, "Object signal (ADU/pixel)", "S_OBJ_A"]
N_th_adu = N_th / G
self._etc["compsnr"]["N_th_adu"] = [N_th_adu, "Thermic noise (ADU/pixel)", "N_TH_A"]
N_sk_adu = N_sk / G
self._etc["compsnr"]["N_sk_adu"] = [N_sk_adu, "Sky noise (ADU/pixel)", "N_SKY_A"]
N_ph_adu = N_ph / G
self._etc["compsnr"]["N_ph_adu"] = [N_ph_adu, "Object noise (ADU/pixel) = shot noise", "N_OBJ_A"]
N_tot_adu = N_tot / G
self._etc["compsnr"]["N_tot_adu"] = [N_tot_adu, "Total noise (ADU/pixels)", "N_TOT_A"]
return SNR_obj
def snr2t_computations(self):
"""compute exposure time from a given Signal to Noise Ratio (SNR)
Before using snr2t_computations, parameters must be set:
::
etc = ExposureTimeCalculator()
camera = "ProLine 16803"
etc.camera(camera)
optic = "Takahashi_180ED"
etc.optics("Takahashi_180ED")
etc.params("Fwhm_psf_opt", 15e-6)
etc.params("band","C")
etc.params("seeing", 2.5)
m = 16.5
etc.inputs("m", m)
snr = 5
etc.inputs("snr", snr)
t = etc.snr2t_computations()
"""
#---------------------------------------------------------
## @brief compute time from a given SNR
# @code What is the exposure time for SNR = 5 and magnitude = 18 ?
# init
# inputs snr 5
# inputs m 18
# disp
# snr2t_computations
# @endcode
# @return exposure time
#
self._preliminary_computations()
snr = self._etc["input"]["constraint"]["snr"][0]
N_ro = self._etc["param"]["ccd"]["N_ro"][0]
C_th = self._etc["param"]["ccd"]["C_th"][0]
bin1 = self._etc["param"]["ccd"]["bin1"][0]
bin2 = self._etc["param"]["ccd"]["bin2"][0]
Em = self._etc["param"]["ccd"]["Em"][0]
fex = self._etc["comp1"]["fex"][0]
Sky_ph = self._etc["comp1"]["Sky_ph"][0]
W = self._etc["comp1"]["W"][0]
D = self._etc["param"]["optic"]["D"][0]
Topt = self._etc["param"]["optic"]["Topt"][0]
eta = self._etc["param"]["ccd"]["eta"][0]
F_ph = self._etc["comp1"]["F_ph"][0]
Tatm = self._etc["comp1"]["Tatm"][0]
fpix = self._etc["comp1"]["fpix"][0]
C = snr*snr * N_ro*N_ro
B = snr*snr * ( (C_th * bin1 * bin2 * fex * Em*Em) + (Sky_ph * math.pi * D*D / 4. * W * Topt * eta * fex * Em*Em) + (F_ph * math.pi * D*D / 4. * Tatm * Topt * eta * fpix * fex * Em*Em) )
A = -math.pow( F_ph * math.pi * D*D / 4. * Tatm * Topt * eta *fpix * Em , 2)
# We have A<0, B>0 and C >0. From the equation A*t^2 + B*t + C = 0, we can find the t value:
D = B*B - 4*A*C # (always positive)
t = (-B - math.sqrt(D) ) / (2.*A)
self._etc["compsnr"]["t"] = [t, "Exposure time computer from a SNR value constrained"]
return t
def snr2m_computations(self) -> float:
"""Compute apparent magnitude from a given Signal to Noise Ratio (SNR)
Before using snr2m_computations, parameters must be set:
::
etc = ExposureTimeCalculator()
camera = "ProLine 16803"
etc.camera(camera)
optic = "Takahashi_180ED"
etc.optics("Takahashi_180ED")
etc.params("Fwhm_psf_opt", 15e-6)
etc.params("band","C")
etc.params("seeing", 2.5)
t = 100
etc.inputs("t", t)
snr = 5
etc.inputs("snr", snr)
m = etc.snr2m_computations()
"""
self._preliminary_computations()
snr = self._etc["input"]["constraint"]["snr"][0]
N_ro = self._etc["param"]["ccd"]["N_ro"][0]
C_th = self._etc["param"]["ccd"]["C_th"][0]
bin1 = self._etc["param"]["ccd"]["bin1"][0]
bin2 = self._etc["param"]["ccd"]["bin2"][0]
Em = self._etc["param"]["ccd"]["Em"][0]
fex = self._etc["comp1"]["fex"][0]
Sky_ph = self._etc["comp1"]["Sky_ph"][0]
W = self._etc["comp1"]["W"][0]
D = self._etc["param"]["optic"]["D"][0]
Topt = self._etc["param"]["optic"]["Topt"][0]
eta = self._etc["param"]["ccd"]["eta"][0]
F_ph = self._etc["comp1"]["F_ph"][0]
Tatm = self._etc["comp1"]["Tatm"][0]
fpix = self._etc["comp1"]["fpix"][0]
Dl = self._etc["param"]["filter"]["Dl"][0]
l = self._etc["param"]["filter"]["l"][0]
Fm0 = self._etc["param"]["filter"]["Fm0"][0]
t = self._etc["input"]["ccd"]["t"][0]
C = snr*snr * ( N_ro*N_ro + C_th * bin1 * bin2 * fex * Em*Em*t + Sky_ph * math.pi * D*D / 4. * W * Topt * eta * fex * Em*Em*t)
B = snr*snr * ( math.pi * D*D / 4. * Tatm * Topt * eta * fpix * fex * Em*Em*t)
A = -math.pow(math.pi * D*D / 4. * Tatm * Topt * eta * fpix * Em * t , 2)
# We have A<0, B>0 and C >0. From the equation A*t^2 + B*t + C = 0, we can find the t value:
D = B*B - 4*A*C # (always positive)
F_ph = ( -B - math.sqrt(D) ) / (2.*A)
F_Jy = F_ph / (1.51e7 * Dl/l)
m = -2.5 *math.log10( F_Jy / Fm0)
self._etc["compsnr"]["m"] = [m, "Apparent magnitude computed from a SNR and exposure value constrained"]
return m
def init (self, band="V", moon_age=0):
#---------------------------------------------------------
# brief initializations
# param band (default) V
# param moon_age (devault) 0
#
self._etc = {}
self._etc["compsnr"] = {}
self._etc["compsnr"]["t"] = [1, "Exposure time computer from a SNR value constrained", "EXPTIME"]
self._etc["compsnr"]["m"] = [10, "Apparent magnitude computed from a SNR and exposure value constrained", "MAG_APP"]
self._etc["compsnr"]["SNR_obj"] = [5, "SNR computed from a exposure and a apparent magnitude value constrained", "SNR_OBJ"]
self._params_defaults(band, moon_age)
self._inputs_defaults()
def _superkeys(self):
superkeys = {}
k1s = self._etc.keys()
for k1 in k1s:
k2s = self._etc[k1].keys()
ik2 = 0
for k2 in k2s:
ik2 += 1
if type(self._etc[k1][k2]) is list:
val = self._etc[k1][k2][0]
com = self._etc[k1][k2][1]
superkeys[k2] = [val, com, k1]
else:
k3s = self._etc[k1][k2].keys()
ik3 = 0
for k3 in k3s:
ik3 += 1
val = self._etc[k1][k2][k3][0]
com = self._etc[k1][k2][k3][1]
superkeys[k3] = [val, com, (k1, k2)]
return superkeys
def __str__(self):
msg = ""
k1s = self._etc.keys()
for k1 in k1s:
k2s = self._etc[k1].keys()
ik2 = 0
for k2 in k2s:
ik2 += 1
if type(self._etc[k1][k2]) is list:
tk2 = 0
if ik2 == 1:
msg += f"=== {k1} ===\n"
val = self._etc[k1][k2][0]
com = self._etc[k1][k2][1]
msg += f"{k2} = {val} // {com}\n"
else:
tk2 = 1
k3s = self._etc[k1][k2].keys()
ik3 = 0
for k3 in k3s:
ik3 += 1
if ik3 == 1:
msg += f"=== {k1} {k2} ===\n"
val = self._etc[k1][k2][k3][0]
com = self._etc[k1][k2][k3][1]
msg += f"{k3} = {val} // {com}\n"
msg += "\n"
if tk2 == 0:
msg += "\n"
return msg
def print(self, forkey=""):
superkeys = self._superkeys()
for k, v in superkeys.items():
val, com, prefix = v
if forkey == "" or forkey in prefix:
print(f"{prefix}/{k} = {val} // {com}")
def simu_star_params(self, unit: str="adu") -> dict:
"""Return parameters to simulate a Gaussian image of a star
Args:
unit: Choice for output (unit), "adu" or "electron".
Returns:
Dict of Gaussian parameters. Each key of the dictionary is a list of value, comment. The keys are:
* 'max_sig': Signal in the central pixel (unit)
* 'fwhmx': Full Width at Half Maximum along x axis (pixels)
* 'fwhmy': Full Width at Half Maximum along y axis (pixels)
* 'tot_sig': Integral signal of the star (unit)
* 'sky_sig': Sky signal (unit)
* 'sky_std': Sky standard deviation (unit)
"""
Skypix_el = self._etc["comp1"]["Skypix_el"][0]
G = self._etc["param"]["ccd"]["G"][0] # e/adu
Ftot_el = self._etc["comp1"]["Ftot_el"][0]
fpix = self._etc["comp1"]["fpix"][0]
Fwhm_psf = self._etc["comp1"]["Fwhm_psf"][0] # m
Foclen = self._etc["comp1"]["Foclen"][0] # m
cdelt1 = self._etc["comp1"]["cdelt1"][0] / 3600.0 # deg/pix
cdelt2 = self._etc["comp1"]["cdelt2"][0] / 3600.0 # deg/pix
# --- electrons
sky_sig = Skypix_el
sky_std = math.sqrt(Skypix_el)
tot_sig = Ftot_el # electrons in the integral
max_sig = Ftot_el*fpix # electrons in the central pixel
if unit == "adu":
# --- adu
sky_sig /= G
sky_std /= G
max_sig /= G # adu in the central pixel
tot_sig /= G # adu in the integral
# --- pixels
Fwhm_psf = math.degrees(Fwhm_psf/Foclen) # deg
fwhmx = Fwhm_psf/cdelt1
fwhmy = Fwhm_psf/cdelt2
res = {}
res["max_sig"] = [max_sig, f"Signal in the central pixel ({unit})"]
res["fwhmx"] = [fwhmx, "Full Width at Half Maximum along x axis (pixels)"]
res["fwhmy"] = [fwhmy, "Full Width at Half Maximum along y axis (pixels)"]
res["tot_sig"] = [tot_sig, f"Integral signal of the star ({unit})"]
res["sky_sig"] = [sky_sig, f"Sky signal ({unit})"]
res["sky_std"] = [sky_std, f"Sky standard deviation ({unit})"]
return res
# #####################################################################
# #####################################################################
# #####################################################################
# Main
# #####################################################################
# #####################################################################
# #####################################################################
if __name__ == "__main__":
default = 4
example = input(f"Select the example (0 to 4) ({default}) ")
try:
example = int(example)
except:
example = default
print("Example = {}".format(example))
if example == 1:
"""
List all cameras and optics
"""
etc = ExposureTimeCalculator()
print("List of cameras ===")
print(etc.camera())
print("List of optics ===")
print(etc.optics())
if example == 2:
"""
TRE: Compute SNR and limiting magnitude
"""
etc = ExposureTimeCalculator()
camera = "ProLine 16803"
etc.camera(camera)
optic = "Takahashi_180ED"
etc.optics("Takahashi_180ED")
# ---
etc.params("Fwhm_psf_opt", 15e-6)
band = etc.params("band","C")[0]
etc.params("seeing", 2.5)
# --- 1st calculation
t = 90
etc.inputs("t", t)
m= 17
etc.inputs("m", m)
snr = etc.t2snr_computations()
print(f"Setup: Camera={camera} Optic={optic}")
print(f"For an exposure of {t}s a star of mag({band})={m} has a SNR = {snr:.1f}")
# --- 2nd calculation
snr = 5
etc.inputs("snr", snr)
m = etc.snr2m_computations()
print(f"For an exposure of {t}s a star of SNR={snr} has a mag({band}) = {m:.1f}")
print("=== Params for star simulation ===")
print(etc.simu_star_params())
if example == 3:
"""
T1M: Compute SNR and limiting magnitude
"""
etc = ExposureTimeCalculator()
optic = "T1M"
etc.params("D", 1.05)
etc.params("FonD", 11.0) # 11.0 17.5
etc.params("Topt", 0.6)
etc.params("Fwhm_psf_opt", 15e-6)
etc.params("diamFull", 30e-3)
etc.params("optPrice", 1e5)
camera = "Andor DW936 BV" # Andor DW936 BV Lytid SIRIS
etc.camera(camera)
# ---
band = etc.params("band","J")[0]
etc.params("seeing", 1.2)
etc.params("moon_age", 14)
# --- 1st calculation
etc.params("bin1", 2)
etc.params("bin2", 2)
t = 100
etc.inputs("t", t)
m= 17
etc.inputs("m", m)
snr = etc.t2snr_computations()
print(f"Setup: Camera={camera} Optic={optic}")
print(f"For an exposure of {t}s a star of mag({band})={m} has a SNR = {snr:.1f}")
# --- 2nd calculation
snr = 5
etc.inputs("snr", snr)
m = etc.snr2m_computations()
print(f"For an exposure of {t}s a star of SNR={snr} has a mag({band}) = {m:.1f}")
print("=== Params for star simulation ===")
print(etc.simu_star_params())
if example == 4:
"""
Zadko: Compute SNR and limiting magnitude
"""
etc = ExposureTimeCalculator()
optic = "Zadko"
etc.params("D", 1.0)
etc.params("FonD", 4.0) # 11.0 17.5
etc.params("Topt", 0.6)
etc.params("Fwhm_psf_opt", 60e-6)
etc.params("diamFull", 0.1)
etc.params("optPrice", 1e5)
camera = "Kepler 4040"
etc.camera(camera)
# ---
band = etc.params("band","R")[0]
etc.params("seeing", 1.5)
etc.params("moon_age", 0)
# --- 1st calculation
etc.params("bin1", 1)
etc.params("bin2", 1)
t = 100
etc.inputs("t", t)
m= 17
etc.inputs("m", m)
snr = etc.t2snr_computations()
print(f"Setup: Camera={camera} Optic={optic}")
print(f"For an exposure of {t}s a star of mag({band})={m} has a SNR = {snr:.1f}")
# --- 2nd calculation
snr = 5
etc.inputs("snr", snr)
m = etc.snr2m_computations()
print(f"For an exposure of {t}s a star of SNR={snr} has a mag({band}) = {m:.1f}")
print("=== Params for star simulation ===")
print(etc.simu_star_params())