motoraxis.py
50.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
# -*- coding: utf-8 -*-
import time
import math
import os
try:
from .guitastrotools import GuitastroTools, GuitastroException
except:
from guitastrotools import GuitastroTools, GuitastroException
# #####################################################################
# #####################################################################
# #####################################################################
# Class Motoraxis
# #####################################################################
# #####################################################################
# #####################################################################
class Motoraxis(GuitastroTools):
"""
Class to define an axis of a motor.
The first element of args is a string to define the axis type amongst:
* LIN: Linear. Value is a length (unit = m)
* ROT: Rotation. Value is an angle (unit = deg)
Dictionnary of motion parameters are:
* NAME: A string to identify the axis in memory.
* LABEL: A string to identify the axis for prints.
:Example:
::
>>> axis = Motoraxis("LIN", name = "Focuser", label= "Focus")
The encoder provides a frame called 'enc'. The unit is increments.
All motors are considered having a rotation.
The 'rot' system shares the same axis than 'enc' and the unit is deg.
rot = (inc-inc0) * rot_per_inc * senseinc
rot_per_inc is always positive and senseinc = 1 or -1
All motors are considered having a translation linked to to 'rot'.
The 'lin' system depends on 'rot':
lin = rot * m_per_rot_rev
m_per_rot_rev is the meters traveled when rot has increased by 360 degrees.
m_per_rot_rev is always positive or null. If the motor has no translation, m_per_rot_rev=0.
The physical system 'phy' provides another frame defined by a function provided by the user:
phy = function( rot, lin, **kwargs)
A default function is.
"""
# === Constants for error codes
NO_ERROR = 0
# === Constants for senses
POSITIVE = 1;
NEGATIVE = -1;
# === constants for saving coords
SAVE_NONE = 0
SAVE_AS_SIMU = 1
SAVE_AS_REAL = 2
# === Indexes for real, simu,...
REAL = 0
SIMU = 1
# === Axis motion state
MOTION_STATE_UNKNOWN = -1
MOTION_STATE_NOMOTION = 0
MOTION_STATE_SLEWING = 1
MOTION_STATE_DRIFTING = 2
MOTION_STATE_MOVING = 3
# === Identification of the axis
_name = "Linear motor"
_axis_type = "Lin"
# === relations angle and inc
# --- rotb0=0 when the tube is observing at the meridian
_inc0 = 0 ; # value of the motor increment corresponding to _rot0
_senseinc = POSITIVE ; # +1 or -1 according the increasing of inc / nat
# === relations mechanics and inc
_inc_per_ang = None
# === last values
_inc = 0
_rot = 0
_lin = 0
_phy = 0
_incsimu = 0
_rotsimu = 0
_linsimu = 0
_physimu = 0
# === simulation
_inc_simu = 0
_simu_signal_move = 0
_simu_current_velocity_deg_per_sec = 0
# === slew velicities
_slewmax_deg_per_sec = 5
_slew_deg_per_sec = 5
# === motion state
_motion_state = MOTION_STATE_NOMOTION
_motion_state_simu = MOTION_STATE_NOMOTION
# === Pointing limits of celestial coordinate
_lim_phy_inf = None
_lim_phy_sup = None
_m_per_motor_rev = 1
_nat2phy = None
_phy2nat = None
# =====================================================================
# =====================================================================
# Private methods
# =====================================================================
# =====================================================================
def nat2phy(self, rot, lin, **kwargs):
phy = rot
return phy
def phy2nat(self, phy, **kwargs):
rot = phy
lin = rot / self._m_per_motor_rev
return rot, lin
def _set_compute_phy(self, nat2phy, phy2nat=None):
self._nat2phy = nat2phy
if phy2nat != None:
self._phy2nat = phy2nat
def _get_compute_phy(self):
return self._nat2phy, self._phy2nat
def _set_inc_per_motor_rev(self, nbr_inc:float) -> int:
"""
Set the number of increments for a single turn of the motor.
:param nbr_inc: Number of increments for a single turn of the motor (for example : 1000).
:type nbr_inc: float
:returns: Error if ratio is not positive.
:rtype: int
"""
if nbr_inc<=0:
raise Exception("ratio must be strictly positive")
self._inc_per_motor_rev = nbr_inc
self._incr_variables()
return self.NO_ERROR
def _get_inc_per_motor_rev(self) -> float:
"""
Get the number of increments for a single turn of the motor.
:returns: Number of increments for a single turn of the motor (for example : 1000).
:rtype: float
"""
return self._inc_per_motor_rev
def _incr_variables(self) -> float:
"""
Update and calculus of two parameters :
- number of increments for a complete turn of an axis
- number of increments for single decimal degrees.
:returns: Number of increments for a complete turn of an axis and number of increments for single decimal degrees.
:rtype: float
"""
self._inc_per_deg = self._inc_per_motor_rev/360.
def _set_inc0(self, inc0:float) -> int:
"""
Set the value of increments for "rot=0". When mount was initialized, the "inc0" are set by the fonction "update_inc0".
:param inc0: Value of the increments for "rot=0" (for example : 1800)
:returns: Error if increment is not positive.
:rtype: int
"""
self._inc0 = inc0
return self.NO_ERROR
def _get_inc0(self) -> float:
"""
Get the value of increments for "rot=0".
:returns: Number of increments for "rot=0" (for example : 1800)
:rtype: float
"""
return self._inc0
def _set_inc(self, inc:float) -> int:
"""
Set the value for actual increments position of an axis, direct interogation of the controller.
:param inc: Value of the increments for the actual position.
:returns: Error if value is not a real.
:rtype: int
"""
self._inc = inc
return self.NO_ERROR
def _get_inc(self) -> float:
"""
Get the value for actual increments position of an axis, direct interogation of the controller.
:returns: Number of increments (for example : 37265)
:rtype: float
"""
return self._inc
def _set_incsimu(self, inc:float) -> int:
"""
Set the value for actual increments position of an axis in simulation mode.
:param inc: Value of the increments for the simulated position.
:returns: Error if value is not a real.
:rtype: int
"""
self._incsimu = inc
return self.NO_ERROR
def _get_incsimu(self) -> float:
"""
Get the value for actual increments position of an axis, direct interogation of the controller. Value are real if axle is real.
:returns: Number of increments in simulation mode (for example : 37265)
:rtype: float
"""
return self._incsimu
def _set_senseinc(self, sense:int) -> int:
"""
If progression of increments are positive and progression of rot0 are positive, senseinc are positive. However, senseinc are negative when progression are inverse.
The sense depend of the physical rolling sense of motor cable system.
:param sense: Value sense are "-1" or "1".
:returns: Error if value is not a real.
:rtype: int
"""
if sense>self.NEGATIVE:
self._senseinc = self.POSITIVE
else:
self._senseinc = self.NEGATIVE
return self.NO_ERROR
def _get_senseinc(self) -> int:
"""
If progression of increments are positive and progression of 'rot0' are positive, 'senseinc' are positive. However, 'senseinc' are negative when progression are inverse.
The sense depend of the physical rolling sense of motor cable system.
:returns: Value sense are "-1" or "1".
:rtype: int
"""
return self._senseinc
def _set_ang(self, ang:float) -> int:
"""
Set the arrival angle of a calculated movement for a target.
The orientation of the coordinate system are orthonormal. (Right hand rules, tom pouce for visible polar axis !)
:param ang: Celestial angle of an axis (degrees)
:returns: Error if value is not a real.
:rtype: int
"""
self._ang = ang
return self.NO_ERROR
def _get_ang(self) -> int:
"""
Get the arrival angle of a calculated movement for a target.
The orientation of the coordinate system are orthonormal. (Right hand rules, tom pouce for visible polar axis !)
:returns: Error if value is not a real.
:rtype: int
"""
return self._ang
def _set_physimu(self, ang:float) -> int:
"""
In simulation mode, set the arrival angle of a calculated movement for a target.
The orientation of the coordinate system are orthonormal. (Right hand rules, tom pouce for visible polar axis !)
:param ang: Celestial angle of an axis (degrees)
:returns: Error if value is not a real.
:rtype: int
"""
self._physimu = ang
return self.NO_ERROR
def _get_physimu(self) -> int:
"""
In simulation mode, get the arrival angle of a calculated movement for a target.
The orientation of the coordinate system are orthonormal. (Right hand rules, tom pouce for visible polar axis !)
:returns: Error if value is not a real.
:rtype: int
"""
return self._physimu
def _set_real(self, real:bool) -> int:
"""
Set the axis in real mode or simulation mode. With simulation mode, the value of the axis are given by Motoraxis simulation value.
:param real: True or False.
:returns: Error if value is not a real.
:rtype: int
"""
self._real = real
return self.NO_ERROR
def _set_lim_phy_inf(self, lim_cel_inf:float) -> float:
"""
Pointing limit lowest value (deg).
:param lim_cel_inf: Value (deg).
:returns: lim_cel_inf.
:rtype: float
"""
self._lim_phy_inf = lim_cel_inf
return self._lim_phy_inf
def _get_lim_phy_inf(self) -> float:
"""
Pointing limit lowest value (deg).
:returns: lim_cel_inf.
:rtype: float
"""
return self._lim_phy_inf
def _set_lim_phy_sup(self, lim_cel_sup:float) -> float:
"""
Pointing limit highest value (deg).
:param lim_cel_sup: Value (deg).
:returns: lim_cel_sup.
:rtype: float
"""
self._lim_phy_sup = lim_cel_sup
return self._lim_phy_sup
def _get_lim_phy_sup(self) -> float:
"""
Pointing limit highest value (deg).
:param lim_cel_sup: Value (deg).
:returns: lim_cel_sup.
:rtype: float
"""
return self._lim_phy_sup
def _get_real(self) -> bool:
"""
Get the axis mode, real or simulation.
:returns: True or False
:rtype: bool
"""
return self._real
def _set_axis_type(self, axis_type:str) -> int:
"""
Set type and mechanical position of an axis on the mount.
- BASE : Azimut or hour angle axis,
- POLAR : Elevation or declination axix,
- ROT : Derotator system for non equatorial mount (if equiped),
- YAW : Equivalent to secondary azymtuh base (for Alt-Alt mount).
:param axis_type : BASE = 0, POLAR = 1, ROT = 2, YAW = 3
:returns: Error if value is not a real.
:rtype: int
"""
self._axis_type = axis_type
return self.NO_ERROR
def _get_axis_type(self) -> int:
"""
Get type and mechanical position of an axis on the mount.
- BASE : Azimut or hour angle axis,
- POLAR : Elevation or declination axix,
- ROT : Derotator system for non equatorial mount (if equiped),
- YAW : Equivalent to secondary azymtuh base (for Alt-Alt mount).
:returns: BASE = 0, POLAR = 1, ROT = 2, YAW = 3
:rtype: int
"""
return self._axis_type
def _set_inc_per_deg(self, inc_per_deg:float):
"""
.. attention::
no setting for this attribute
:param inc_per_deg: Incrment per degree
:type inc_per_deg: float
:returns: Error if ratio is not positive.
:rtype: int
"""
return self.NO_ERROR
def _get_inc_per_deg(self) -> float:
"""
Get the number of increments for a single degrees on the sky.
:returns: Number of increments (for example : env 970000)
:rtype: float
"""
return self._inc_per_deg
def _get_name(self) -> str:
"""
Get the nickname of the axis.
:returns: Nickname of the axis (for example : Declination, ...)
:rtype: str
"""
return self._name
def _set_name(self, name:str):
# no setting for this attribute
"""
.. attention::
no setting for this attribute
The name are setted at the instanciation of the mount axis. The name of an axis can have several value :
- Declination,
- Azimuth
- Hour angle,
- Elevation,
- Rotator,
- Roll,
- Pitch,
- Yaw,
You cannot set the value cause it is an protected attribute.
:param name: Name of the axis
:type name: str
:returns: Error if ratio is not positive.
:rtype: int
"""
return self.NO_ERROR
def _get_simu_current_velocity(self) -> int:
"""
Get the final cruising speed during the motion. Motion are celestial slewing speed or any other, like goto for example.
:returns: Terminal velocity speed for a movement in degrees / sec.
:rtype: int
"""
return self._simu_current_velocity_deg_per_sec
def _set_simu_current_velocity(self, simu_current_velocity_deg_per_sec:float):
# no setting for this attribute
"""
.. attention::
no setting for this attribute
:returns: Error if ratio is not positive.
:rtype: int
"""
return self.NO_ERROR
def _get_slew_deg_per_sec(self) -> int:
"""
Get the setting speed of a goto motion.
:returns: Speed for a goto movement in degrees / sec.
:rtype: int
"""
return self._slew_deg_per_sec
def _set_slew_deg_per_sec(self, deg_per_sec:float) ->int:
"""
Set the setting speed for a goto motion.
The value are limited by the maximun limited speed (_slewmax_deg_per_sec)
:param deg_per_sec: Speed for a goto movement in degrees / sec (for example : 30).
:type deg_per_sec: float
:returns: Error if value is not a real.
:rtype: int
"""
self._slew_deg_per_sec = abs(deg_per_sec)
if self._slew_deg_per_sec > self._slewmax_deg_per_sec:
self._slew_deg_per_sec = self._slewmax_deg_per_sec
return self.NO_ERROR
def _get_slewmax_deg_per_sec(self) -> float:
"""
Get the maximum speed for slew motion.
The value have a maximum, setting by a limit (_slewmax_deg_per_sec).
:returns: Maximum speed for a goto movement in degrees / sec.
:rtype: float
"""
return self._slew_deg_per_sec
def _set_slewmax_deg_per_sec(self, deg_per_sec:float) -> int:
"""
Set the maximum speed for slew motion. Set carrefully this parameter due to issue response of the mount.
The value have a maximum (for example : 30)
:param deg_per_sec: Speed for a slewing movement in degrees / sec (for example : 30)
:type deg_per_sec: float
:returns: Error if value is not a real.
:rtype: int
"""
self._slewmax_deg_per_sec = abs(deg_per_sec)
if self._slew_deg_per_sec > self._slewmax_deg_per_sec:
self._slew_deg_per_sec = self._slewmax_deg_per_sec
return self.NO_ERROR
def _get_language_protocol(self) -> str:
"""
Get the type of controller language protocol for an axis (for example : SCX 11 type, or another).
:returns: Type of controller language.
:rtype: str
"""
return self._language_protocol
def _set_language_protocol(self, language_protocol:str) -> int:
"""
Set the type of controller language protocol for an axis (for example : SCX 11 type, or another).
:param language_protocol : Specified the protocol language type (for example : SCX11)
:returns: Error if value is not a real.
:rtype: int
"""
self._language_protocol = language_protocol
return self.NO_ERROR
_motion_state = MOTION_STATE_NOMOTION
_motion_state_simu = MOTION_STATE_NOMOTION
def _get_motion_state(self) -> int:
"""
Get the current motion state
:returns: Moton state code (0=no motion, 1=slewing, 2=drifting, 3=moving).
:rtype: int
Slewiwng state is an absolute motion followed by a drift.
Moving state is an infinite motion. If a Moving is stopped we retreive the Drift state.
"""
return self._motion_state
def _set_motion_state(self, motion_state:int):
"""
Set the current motion state
:returns: Error code (0=no error).
:rtype: int
"""
self._motion_state = motion_state
return self.NO_ERROR
def _get_motion_state_simu(self) -> int:
"""
Get the current motion state for simulation
:returns: Moton state code (0=no motion, 1=slewing, 2=drifting, 3=moving).
:rtype: int
Slewiwng state is an absolute motion followed by a drift.
Moving state is an infinite motion. If a Moving is stopped we retreive the Drift state.
"""
return self._motion_state_simu
def _set_motion_state_simu(self, motion_state:int):
"""
Set the current motion state for simulation
:returns: Error code (0=no error).
:rtype: int
"""
self._motion_state_simu = motion_state
return self.NO_ERROR
# =====================================================================
# =====================================================================
# Methods for users
# =====================================================================
# =====================================================================
name = property(_get_name , _set_name)
axis_type = property(_get_axis_type , _set_axis_type)
language_protocol = property(_get_language_protocol , _set_language_protocol)
inc_per_motor_rev = property(_get_inc_per_motor_rev , _set_inc_per_motor_rev)
inc_per_deg = property(_get_inc_per_deg , _set_inc_per_deg)
inc0 = property(_get_inc0 , _set_inc0)
senseinc = property(_get_senseinc , _set_senseinc)
real = property(_get_real , _set_real)
inc = property(_get_inc , _set_inc)
ang = property(_get_ang , _set_ang)
incsimu = property(_get_incsimu , _set_incsimu)
angsimu = property(_get_physimu , _set_physimu)
compute_phy = property(_get_compute_phy , _set_compute_phy)
slew_deg_per_sec = property(_get_slew_deg_per_sec , _set_slew_deg_per_sec)
slewmax_deg_per_sec = property(_get_slewmax_deg_per_sec , _set_slewmax_deg_per_sec)
simu_current_velocity = property(_get_simu_current_velocity, _set_simu_current_velocity)
motion_state_simu = property(_get_motion_state_simu, _set_motion_state_simu)
motion_state = property(_get_motion_state, _set_motion_state)
lim_cel_inf = property(_get_lim_phy_inf, _set_lim_phy_inf)
lim_cel_sup = property(_get_lim_phy_sup, _set_lim_phy_sup)
def disp(self):
"""
Get information about an axis and print it on the console. Usefull for debug.
Instanciation of the axis are indispensable. However, the Motoraxis module when running, have by default axisb et axisp instancied.
:Instanciation Usage:
::
>>> axisb = Motoraxis("HA", name = "Unknown")
>>> axisp = Motoraxis("DEC", name = "Unknown")
:Usage:
::
>>> axisb.disp()
>>> axisp.disp()
:Return table of an axis:
::
--------------------
AXIS name = SCX11
axis_type = HA
latitude = 43
real hardware = False
--------------------
RATIO_WHEEL_PULLEY = 5.25
RATIO_PULLEY_MOTOR = 100.0
inc_per_motor_rev = 1000.0
--------------------
inc_per_sky_rev = 525000.0
inc_per_deg = 1458.3333333333333
--------------------
senseinc = 1 : 1=positive
inc0 = 0.0 : Place mount rot at meridian and set inc0 = inc
senseang = 1 : 1=positive
--------------------
slew_deg_per_sec = 5.0
-------------------- SIMU INC -> ANG = HA
inc = 0.0 : inc is read from encoder
rot = 0.0000000 : rot = (inc - inc0) * senseinc / inc_per_deg
pierside = 1 : pierside must be given by polar axis
ang = 0.0000000 : ang = senseang * rot
-------------------- SIMU ANG = HA -> INC
ang = 0.0000000 : Next target celestial angle HA
pierside = 1 : Next target pier side (+1 or -1)
rot = 0.0000000 : rot = -ang / senseang
inc = 0.0 : inc = inc0 + rot * inc_per_deg / senseinc
-------------------- REAL INC -> ANG = HA
inc = 0.0 : inc is read from encoder
rot = 0.0000000 : rot = (inc - inc0) * senseinc / inc_per_deg
pierside = 1 : pierside must be given by polar axis
ang = 0.0000000 : ang = senseang * rot
-------------------- REAL ANG = HA -> INC
ang = 0.0000000 : Next target celestial angle HA
pierside = 1 : Next target pier side (+1 or -1)
rot = 0.0000000 : rot = -ang / senseang
inc = 0.0 : inc = inc0 + rot * inc_per_deg / senseinc
"""
self.log.print("{}".format(20*"-"))
self.log.print("AXIS name = {} ".format(self.name))
self.log.print("axis_type = {} ".format(self.axis_type))
self.log.print("real hardware = {} ".format(self.real))
self.log.print("{}".format(20*"-"))
self.log.print("inc_per_motor_rev = {} ".format(self.inc_per_motor_rev))
self.log.print("{}".format(20*"-"))
self.log.print("inc_per_deg = {} ".format(self.inc_per_deg))
self.log.print("{}".format(20*"-"))
self.log.print("senseinc = {:d} : 1=positive".format(self.senseinc))
self.log.print("inc0 = {:12.1f} : Place motor rot at a reference and set inc0 = inc".format(self.inc0))
self.log.print("{}".format(20*"-"))
self.log.print("slew_deg_per_sec = {} ".format(self.slew_deg_per_sec))
for disp_real in (False,True):
if disp_real==True:
inc = self._inc
rot = self._rot
lin = self._lin
phy = self._phy
msg_simu = "REAL"
else:
inc = self._incsimu
rot = self._rotsimu
lin = self._linsimu
phy = self._physimu
msg_simu = "SIMU"
self.log.print("{} {} INC -> ANG = {}".format(20*"-",msg_simu,self.axis_type))
self.log.print("inc = {:12.1f} : inc is read from encoder ".format(inc))
self.log.print("rot = {:12.7f} : rot = (inc - inc0) * senseinc / inc_per_deg".format(rot))
self.log.print("lin = {:12.7f} : m ".format(lin))
self.log.print("phy = {:12.7f} : physical units ".format(phy))
def synchro_real2simu(self):
"""
Synchronisation between simulation value of axis to real values of the axis. Parameters are setted :
- _incsimu,
- _rotsimu,
- _physimu,
- _piersidesimu,
Useful for ending slewing movement to prevent difference offset due to calculation time of the simulation mode.
Instanciation of the axis are indispensable. However, the Motoraxis module when running, have by default axisb et axisp instancied.
:Instanciation Usage:
::
>>> axisb = Motoraxis("HA", name = "Unknown")
>>> axisp = Motoraxis("DEC", name = "Unknown")
:Usage:
::
>>> axisb.synchro_real2simu()
>>> axisp.synchro_real2simu()
:returns: No message returned by the fonction
"""
inc = self._inc
rot, pierside = self.inc2rot(inc)
ang = self.rot2ang(rot, pierside)
self._incsimu = inc
self._rotsimu = rot
self._physimu = ang
self._piersidesimu = pierside
def synchro_simu2real(self):
"""
Synchronisation between real value of axis to simulation values of the axis. Parameters are setted :
- _inc,
- _rot,
- _ang,
- _pierside,
Useful for ending slewing movement to prevent difference offset due to calculation time of the simulation mode.
Instanciation of the axis are indispensable. However, the Motoraxis module when running, have by default axisb et axisp instancied.
:Instanciation Usage:
::
>>> axisb = Motoraxis("HA", name = "Unknown")
>>> axisp = Motoraxis("DEC", name = "Unknown")
:Usage:
::
>>> axisb.sydispnchro_simu2real()
>>> axisp.synchro_simu2real()
:returns: No message returned by the fonction
"""
inc = self._incsimu
rot, pierside = self.inc2rot(inc)
ang = self.rot2ang(rot, pierside)
self._inc = inc
self._rot = rot
self._ang = ang
self._pierside = pierside
def update_inc0(self, inc, ang, pierside):
"""
Update the value of the inc0.
Instanciation of the axis are indispensable. However, the Motoraxis module when running, have by default axisb et axisp instancied.
:Instanciation Usage:
::
>>> axisb = Motoraxis("HA", name = "Unknown")
>>> axisp = Motoraxis("DEC", name = "Unknown")
:Usage:
::
>>> axisb.update_inc0()
>>> axisp.update_inc0()
:param inc:
:param ang:
:param pierside:
:returns: No message returned by the fonction.
"""
if self._axis_type=="DEC" or self._axis_type=="ELEV":
if ang > 90:
ang = 90
if ang < -90:
ang = -90
if self._latitude<0:
rot = (90 + ang) * pierside
else:
rot = (90 - ang) * pierside
# inc = inc0 + rot * inc_per_deg / senseinc
inc0 = inc - rot * self.inc_per_deg / self.senseinc
else:
rot = ang / self.senseang
if self._latitude>0:
rot *= -1
rot = math.fmod(rot+1440,360)
if (rot>180):
rot -= 360
if pierside==self.PIERSIDE_POS1:
# inc = inc0 + rot * inc_per_deg / senseinc
inc0 = inc - rot * self.inc_per_deg / self.senseinc
else:
# inc = inc0 + (rot-180) * inc_per_deg / senseinc
inc0 = inc - (rot-180) * self.inc_per_deg / self.senseinc
self.inc0 = inc0
return inc0
def inc2rot(self, inc:float, save=SAVE_NONE) -> tuple:
"""
Calculation of rot and pierside from inc.
:param inc: Encoder increments (inc)
:type inc: float
:param save: Define how the results are stored:
* SAVE_NONE (=0)
* SAVE_AS_SIMU (=1)
* SAVE_AS_REAL (=2)
:type save: int
:returns: Tuple of (rot, pierside)
:rtype: tuple
The rot value is computed according inc, _inc0, _senseinc, _inc_per_deg and _axis_type.
The save parameter allows to update the real or simu internal values of inc and rot:
* SAVE_AS_SIMU: Only _incsimu, _rotsimu and _piersidesimu for simulated values are updated.
* SAVE_AS_REAL: Only _inc, _rot and _pierside for real values are updated.
* SAVE_NONE: No internal variables are updates.
Instanciation of the axis is indispensable.
:Instanciation Usage:
::
>>> axisb = Motoraxis("HA", name = "Unknown")
:Usage:
::
>>> axisb.inc2rot(2000,axisb.SAVE_NONE)
"""
rot = (inc - self._inc0) * self._senseinc / self._inc_per_deg
# --- identify the pierside of the current pointing for polar axis
if self._axis_type=="DEC" or self._axis_type=="ELEV":
if rot >= 0:
pierside = self.PIERSIDE_POS1
else:
pierside = self.PIERSIDE_POS2
else:
pierside = self.PIERSIDE_POS1
# --- update attributes
if save == self.SAVE_AS_SIMU:
self._rotsimu = rot
self._incsimu = inc
self._piersidesimu = pierside
elif save == self.SAVE_AS_REAL:
self._rot = rot
self._inc = inc
self._pierside = pierside
return rot, pierside
def rot2ang(self, rot:float, pierside:int, save:int=SAVE_NONE) -> float:
"""
Calculation of ang from rot and pierside.
:param rot: Rotation angle (degrees)
:type rot: float
:param pierside: Location of the optical tube against the mount pier:
* PIERSIDE_POS1 (=1) normal position
* PIERSIDE_POS2 (=-1) back flip position
:type pierside: int
:param save: Define how the results are stored:
* SAVE_NONE (=0)
* SAVE_AS_SIMU (=1)
* SAVE_AS_REAL (=2)
:type save: int
:returns: ang
:rtype: float
The ang value is computed according rot, _latitude, _sensephy and _axis_type.
The save parameter allows to update the real or simu internal values of and, pierside and rot:
* SAVE_AS_SIMU: Only _physimu, _rotsimu and _piersidesimu for simulated values are updated.
* SAVE_AS_REAL: Only _ang, _rot and _pierside for real values are updated.
* SAVE_NONE: No internal variables are updates.
Instanciation of the axis is indispensable.
:Instanciation Usage:
::
>>> axisb = Motoraxis("HA", name = "Unknown")
:Usage:
::
>>> axisb.rot2ang(10, axisb.PIERSIDE_POS1, axisb.SAVE_NONE)
"""
# compute apparent ang
ang = 0
if self._axis_type=="DEC" or self._axis_type=="ELEV":
if self._latitude<0:
# --- southern hemisphere
ang = -90 + abs(rot)
else:
# --- nothern hemisphere
ang = 90 - abs(rot)
# --- following lines must be verified
if ang<-90:
ang +=360;
if ang>90:
ang -=360;
# identify the pierside of the current pointing
if self._axis_type=="HA" or self._axis_type=="ROLL":
if self._latitude<0:
ang = self._sensephy * rot
else:
ang = self._sensephy * -rot
if pierside == self.PIERSIDE_POS2:
ang += 180
ang = math.fmod(ang+720,360)
if (ang>180):
ang -= 360
if self._axis_type=="AZ":
if self._latitude<0:
ang = self._sensephy * rot
else:
ang = self._sensephy * -rot
if pierside == self.PIERSIDE_POS2:
ang += 180
ang = math.fmod(ang+720,360)
if save == self.SAVE_AS_SIMU:
self._physimu = ang
self._piersidesimu = pierside
self._rotsimu = rot
elif save == self.SAVE_AS_REAL:
self._ang = ang
self._pierside = pierside
self._rot = rot
return ang
def ang2rot(self, ang:float, pierside:int, save:int=SAVE_NONE) -> float:
"""
Calculation rot from ang and pierside.
:param ang: Celestial angle (degrees)
:type ang: float
:param pierside: Location of the optical tube against the mount pier:
* PIERSIDE_POS1 (=1) normal position
* PIERSIDE_POS2 (=-1) back flip position
:type pierside: int
:param save: Define how the results are stored:
* SAVE_NONE (=0)
* SAVE_AS_SIMU (=1)
* SAVE_AS_REAL (=2)
:type save: int
:returns: rot
:rtype: float
The rot value is computed according rot, _latitude, _sensephy and _axis_type.
The save parameter allows to update the real or simu internal values of and, pierside and rot:
* SAVE_AS_SIMU: Only _physimu, _rotsimu and _piersidesimu for simulated values are updated.
* SAVE_AS_REAL: Only _ang, _rot and _pierside for real values are updated.
* SAVE_NONE: No internal variables are updates.
Instanciation of the axis is indispensable.
:Instanciation Usage:
::
>>> axisb = Motoraxis("HA", name = "Unknown")
:Usage:
::
>>> axisb.ang2rot(-10, axisb.PIERSIDE_POS1, axisb.SAVE_NONE)
"""
# compute apparent rot
rot = 0
if self._axis_type=="DEC" or self._axis_type=="ELEV":
if self._latitude<0:
# --- southern hemisphere
rot = (90 + ang) * pierside
else:
# --- nothern hemisphere
rot = (90 - ang) * pierside
if self._axis_type=="HA" or self._axis_type=="AZ":
if pierside==self.PIERSIDE_POS2:
ang -= 180
if self._latitude<0:
rot = ang
else:
rot = -ang
if (rot>180):
rot -= 360
if (rot<-180):
rot += 360
rot /= self._sensephy
if save == self.SAVE_AS_SIMU:
self._physimu = ang
self._piersidesimu = pierside
self._rotsimu = rot
elif save == self.SAVE_AS_REAL:
self._ang = ang
self._pierside = pierside
self._rot = rot
return rot
def rot2inc(self, rot:float, save:int=SAVE_NONE) -> float :
"""
Calculation of inc from rot.
:param rot: Rotation angle (degrees)
:type rot: float
:param save: Define how the results are stored:
* SAVE_NONE (=0)
* SAVE_AS_SIMU (=1)
* SAVE_AS_REAL (=2)
:type save: int
:returns: inc
:rtype: float
The inc value is computed according rot, _inc0, _senseinc, _inc_per_deg.
The inc values are calculated in the interval from -inc_per_sky_rev/2 to +inc_per_sky_rev/2.
The save parameter allows to update the real or simu internal values of inc and rot:
* SAVE_AS_SIMU: Only _incsimu, _rotsimu for simulated values are updated.
* SAVE_AS_REAL: Only _inc, _rot for real values are updated.
* SAVE_NONE: No internal variables are updates.
Instanciation of the axis is indispensable.
:Instanciation Usage:
::
>>> axisb = Motoraxis("HA", name = "Unknown")
:Usage:
::
>>> axisb.rot2inc(10,axisb.SAVE_NONE)
"""
inc = self._inc0 + rot * self._inc_per_deg / self._senseinc
# --- verify the limits
inc_per_sky_rev = self._inc_per_sky_rev
limn = -inc_per_sky_rev/2
limp = inc_per_sky_rev/2
if inc>limp:
inc -= inc_per_sky_rev
if inc<limn:
inc += inc_per_sky_rev
# ---
if save == self.SAVE_AS_SIMU:
self._rotsimu = rot
self._incsimu = inc
elif save == self.SAVE_AS_REAL:
self._rot = rot
self._inc = inc
return inc
# =====================================================================
# =====================================================================
# Motion methods for simulation
# =====================================================================
# =====================================================================
def simu_motion_start(self, *args, **kwargs):
"""
Start a simulation motion.
:param args: First args is a string to define the type of motion to do.
:type args: args
:param kwargs: Dictionnary of motion parameters:
:type kwargs: kwargs
:returns: _incsimu
:rtype: float
Types of motion can be:
* SLEW or ABSOLUTE: Absolute position of the target position.
* MOVE or CONTINUOUS: Infinite motion.
Dictionnary of motion parameters are:
* Case motion type = SLEW or ABSOLUTE:
* POSITION (inc or ang according the FRAME).
* VELOCITY (deg/sec). Can be negative.
* DRIFT (deg/sec). Can be negative.
* Case motion type = MOVE or CONTINUOUS:
* VELOCITY (deg/sec). Can be negative.
* DRIFT (deg/sec). Can be negative.
* For all cases of motions:
* FRAME (str). "inc" (by default) or "ang"
Instanciation of the axis is mandatory.
:Instanciation Usage:
::
>>> axisb = Motoraxis("HA", name = "Unknown")
:Usage:
::
>>> axisb.simu_motion_start("SLEW", position=1000, velocity=100, frame='inc', drift=0)
"""
# ========= Definition of motion_types
# --- Dico of motion types and their parameters
motion_types = {}
motion_types["SLEW"] = {"MANDATORY" : {"POSITION":[float,0.0], "VELOCITY":[float,1.0]}, "OPTIONAL" : {"DRIFT":[float,0.0]} }
motion_types["MOVE"] = {"MANDATORY" : {"VELOCITY":[float,1.0]}, "OPTIONAL" : {"DRIFT":[float,0.0]} }
motion_types["DRIFT"] = {"MANDATORY" : {"DRIFT":[float,0.0]}, "OPTIONAL" : {} }
# --- deprecadec
motion_types["ABSOLUTE"] = {"MANDATORY" : {"POSITION":[float,0.0], "VELOCITY":[float,1.0]}, "OPTIONAL" : {"DRIFT":[float,0.0]} }
motion_types["CONTINUOUS"] = {"MANDATORY" : {"VELOCITY":[float,1.0]}, "OPTIONAL" : {"DRIFT":[float,0.0]} }
# --- Dico of optional parameters for all motion types
param_optionals = {"FRAME":(str,'inc')} ; # inc or ang
# ========= Decode params
self._simu_params = self.decode_args_kwargs(0,motion_types, param_optionals, *args, **kwargs)
# ========= Decode params
self._simu_motion_type = self._simu_params["SELECTED_ARG"]
# ========= Update motion_state_simu
self.motion_state_simu = self.MOTION_STATE_UNKNOWN
if self._simu_motion_type=="SLEW" or self._simu_motion_type=="ABSOLUTE":
self.motion_state_simu = self.MOTION_STATE_SLEWING
#self.log.print("SLEW drift={} ".format(self._simu_params['DRIFT']))
elif self._simu_motion_type=="MOVE" or self._simu_motion_type=="CONTINUOUS":
self.motion_state_simu = self.MOTION_STATE_MOVING
#self.log.print("MOVE drift={} ".format(self._simu_params['DRIFT']))
elif self._simu_motion_type=="DRIFT":
self.motion_state_simu = self.MOTION_STATE_DRIFTING
# --- Update t0, inct0
self._simu_motion_t0 = time.time()
self._simu_motion_inct0 = self._incsimu
# --- Update start_t0, start_inct0
self._simu_motion_start_t0 = self._simu_motion_t0
self._simu_motion_start_inct0 = self._simu_motion_inct0
# --- Fille history motion
history = [time.time(), 0.0, "MOTION_START", self._simu_motion_type, self._simu_params]
self._history.append(history)
# --- get the current inc
inc = self.simu_update_inc()
return inc
def simu_motion_stop(self):
"""
Stop a simulation motion.
"""
# --- get the current inc
inc = self.simu_update_inc()
# --- we stop
self.motion_state_simu = self.MOTION_STATE_NOMOTION
t = time.time()
dt = t-self._simu_motion_start_t0;
history = [t, dt, "MOTION_STOP", self.motion_state_simu , inc]
self._history.append(history)
# --- obsolete attributes
self._simu_signal_move = 0
self._simu_signal_drift = 0
return inc
def simu_motion_stop_move(self):
"""
Stop a moving motion.
"""
if self.motion_state_simu == self.MOTION_STATE_MOVING:
# --- get the current inc
inc = self.simu_update_inc()
# --- We switch to drift
self.motion_state_simu = self.MOTION_STATE_DRIFTING
# --- get the current inc
inc = self.simu_update_inc()
return inc
def simu_update_inc(self):
"""
Calculate the current position of a simulation motion.
A simple rectangular profile is applied to velocity.
"""
if self.motion_state_simu == self.MOTION_STATE_NOMOTION:
return self._incsimu
# --- compute the duration from t0
t = time.time()
t0 = self._simu_motion_t0
inc = self._incsimu
inct0 = self._simu_motion_inct0
# --- get motion parameters
vel = 0
if "VELOCITY" in self._simu_params:
# --- velocity unit deg/sec
vel = float(self._simu_params["VELOCITY"])
drift = 0
if "DRIFT" in self._simu_params:
# --- drift unit deg/sec
drift = float(self._simu_params["DRIFT"])
frame = 'ang'
if "FRAME" in self._simu_params:
frame = self._simu_params["FRAME"]
if frame == "ang":
# --- conversions deg/sec to inc/sec
vel *= self.inc_per_deg
drift *= self.inc_per_deg
# --- moving case
if self.motion_state_simu == self.MOTION_STATE_MOVING:
# --- So we can compute the inc since t0
inc = inct0 + vel*(t-t0)
# --- slewing case
if self.motion_state_simu == self.MOTION_STATE_SLEWING:
# --- compute the pos to reach
inc_end_slew = float(self._simu_params["POSITION"])
if frame == "ang":
# --- conversions deg to inc
inc_end_slew *= self.inc_per_deg
# --- process the sign of vel
#if self._axis_type=="HA":
# self.log.print("inct0={} inc_end_slew={:.1f} vel={}".format(inct0,inc_end_slew,vel))
if inct0 < inc_end_slew:
vel = abs(vel)
else:
vel = -abs(vel)
# --- compute the expected t to reach inc_end_slew
t1 = (inc_end_slew-inct0) / vel + t0
# self.log.print("vel={} t={} t1={}".format(vel,t,t1))
if t < t1:
# --- We did not overtake the target. We continue to slew
# --- So we can compute the inc since t0
inc = inct0 + vel*(t-t0)
#if self._axis_type=="HA":
# self.log.print("t<t1 {:.0f} = {:.0f} + {:.1f} * {}".format(inc, inct0, vel, (t-t0)))
t0 = t
else:
# --- We overtook the target. We switch to drift at time t1
# --- So we can compute the inc since t0
self.motion_state_simu = self.MOTION_STATE_DRIFTING
t0 = t1
inct0 = inc_end_slew
inc = inct0
#if self._axis_type=="HA":
# self.log.print("t>=t1 {:.0f}".format(inc))
# --- drifting case
if self.motion_state_simu == self.MOTION_STATE_DRIFTING:
#if self._axis_type=="HA":
# self.log.print("drift drift={} inc/sec".format(drift))
if drift == 0:
self.motion_state_simu = self.MOTION_STATE_NOMOTION
else:
# --- compute the current inc
inc = inct0 + drift*(t-t0)
#if self._axis_type=="HA":
# self.log.print("t<t1 {:.0f} = {:.0f} + {:.1f} * {}".format(inc, inct0, drift, (t-t0)))
t0 = t
# --- We must test if we overtake the inc limits
# --- update the inc0 and t0 values
self._incsimu = inc
self._simu_motion_t0 = t0
self._simu_motion_inct0 = inc
# --- deprecated attributes
if self.motion_state_simu == self.MOTION_STATE_NOMOTION:
self._simu_signal_move = 0
else:
self._simu_signal_move = 1
if self.motion_state_simu == self.MOTION_STATE_DRIFTING:
self._simu_signal_drift = 1
else:
self._simu_signal_drift = 0
# --- update the motion history
dt = t-self._simu_motion_start_t0;
history = [t, dt, "MOTION_UPDATE", self.motion_state_simu , inc]
self._history.append(history)
return inc
# =====================================================================
# =====================================================================
# Special methods
# =====================================================================
# =====================================================================
def __init__(self, *args, **kwargs):
# --- Dico of optional parameters for all axis_types
param_optionals = {}
param_optionals["RATIO_WHEEL_PULLEY"] = (float, 5.250)
param_optionals["RATIO_PULLEY_MOTOR"] = (float, 100.0)
param_optionals["INC_PER_MOTOR_REV"] = (float, 1000.0)
param_optionals["INC0"] = (float, 0.0)
param_optionals["SENSEINC"] = (float, Motoraxis.POSITIVE)
param_optionals["SENSEANG"] = (float, Motoraxis.POSITIVE)
param_optionals["REAL"] = (bool, False)
param_optionals["DESCRIPTION"] = (str, "No description.")
param_optionals["LANGUAGE_PROTOCOL"] = (str, "")
# --- Dico of axis_types and their parameters
axis_types = {}
# --- equatorial
axis_types["HA"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Hour Angle"]} }
axis_types["DEC"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Declination"]} }
# --- altaz
axis_types["AZ"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Azimuth"]} }
axis_types["ELEV"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Elevation"]} }
axis_types["ROT"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Rotator"]} }
# --- altalt
axis_types["ROLL"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Roll"]} }
axis_types["PITCH"]= {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Pitch"]} }
axis_types["YAW"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Yaw"]} }
# N.B. Generally yaw is fixed in EW or NS direction
# --- Decode args and kwargs parameters
self._axis_params = self.decode_args_kwargs(0, axis_types, param_optionals, *args, **kwargs)
# ===
self.axis_type = self._axis_params["SELECTED_ARG"]
# ===
self._name = self._axis_params["NAME"]
self._description = self._axis_params["DESCRIPTION"]
self._language_protocol = self._axis_params["LANGUAGE_PROTOCOL"]
# === relations mechanics and inc
self.RATIO_WHEEL_PULLEY = self._axis_params["RATIO_WHEEL_PULLEY"]
self.RATIO_PULLEY_MOTOR = self._axis_params["RATIO_PULLEY_MOTOR"]
self.inc_per_motor_rev = self._axis_params["INC_PER_MOTOR_REV"]
# === relations angle and inc
self.inc0 = self._axis_params["INC0"]
self.senseinc = self._axis_params["SENSEINC"]
self.senseang = self._axis_params["SENSEANG"]
# === simulation
self.real = self._axis_params["REAL"]
self.simu_signal_move = 0
self._simu_signal_drift = 0
self._simu_param_vel = 0
self._simu_param_drift = 0
self._simu_param_frame = "ang"
self._simu_motion_t0 = time.time()
self._simu_motion_start_t0 = self._simu_motion_t0
# === velocities
self.slewmax_deg_per_sec = 5.0
self.slew_deg_per_sec = 5.0
# === motion states
self.motion_state_simu = self.MOTION_STATE_NOMOTION
self.motion_state = self.MOTION_STATE_NOMOTION
# === history
self._history = []
self._simu_start_t0 = time.time()
# ===
self.compute_phy = self.nat2phy, self.phy2nat
# #####################################################################
# #####################################################################
# #####################################################################
# Main
# #####################################################################
# #####################################################################
# #####################################################################
if __name__ == "__main__":
cwd = os.getcwd()
example = 1
print("Example = {}".format(example))
if example == 1:
inc_per_motor_rev = 1000.0 ; # IMC parameter. System Confg -> System Parameters - Distance/Revolution
# --- SCX11 HA
maxis = Motoraxis("DEC", name = "test", inc_per_motor_rev=inc_per_motor_rev, inc0=0, senseinc=1, real=False)