splinefit.py 22.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
# -*- coding: utf-8 -*-
import os
import csv
import numpy as np
import matplotlib.pyplot as plt
import random as rd
import math

class Splinefit:
    """Spline fit tool

    Reference of the algorithm:
    Christian H. Reinsch, Numerische Mathematik 10, 177-183 (1967)

    """

    _x = None
    _y = None
    _dy = None
    _xx = None
    _yy = None

    _t = None
    _mag = None
    _dmag = None
    _tt = None
    _magmag = None

    _tt_default = np.logspace(0,6,61)

    _f = None
    _df = None
    _ff = None

# =====================================================================
# =====================================================================
# Private methods
# =====================================================================
# =====================================================================

    def _clear_xydyxxyy(self):
        self._x = None
        self._y = None
        self._dy = None
        self._xx = None
        self._yy = None

    def _clear_tmagdmagttmagmag(self):
        self._t = None
        self._mag = None
        self._dmag = None
        self._tt = None
        self._magmag = None
        self._f = None
        self._df = None
        self._ff = None

    def _load_data(self,full_filename:str, col_t1:int, col_t2:int, col_mag:int, col_dmag:int):
        """
        """
        # =================
        path, filename = os.path.split(full_filename)
        rootname, extension = os.path.splitext(filename)
        # -------------------------------
        method = ""
        if (extension=='.txt'):
            method = "dsv" ; # Delimiter Separator Values
            delimiter = ' '
        if (extension=='.csv'):
            method = "dsv" ; # Delimiter Separator Values
            delimiter = ','
        # -------------------------------
        if (method == "dsv"):
            try:
                with open(full_filename, 'r', encoding='utf-8', newline='') as fid:
                    reader = csv.reader(fid, delimiter=delimiter, skipinitialspace=True)
                    try:
                        self._clear_tmagdmagttmagmag()
                        klig = 0
                        self._t=[]
                        self._mag=[]
                        self._dmag=[]
                        for ligne in reader:
                            klig+=1
                            ncol = len(ligne)
                            if (ligne[0])[0]=="#":
                                continue
                            if ncol<3:
                                continue
                            t1 = float(ligne[col_t1])
                            t2 = float(ligne[col_t2])
                            mag = float(ligne[col_mag])
                            dmag = float(ligne[col_dmag])
                            self._t.append((t1+t2)/2.)
                            self._mag.append(mag)
                            self._dmag.append(dmag)
                            # print(f"ligne={ligne} lig={klig} ncol={ncol}")
                    except csv.Error as e:
                        print(f'Problem file {full_filename}, line {klig}: {e}')
                    self._t = np.array(self._t)
                    self._mag = np.array(self._mag)
                    self._dmag = np.array(self._dmag)
                    self._clear_xydyxxyy()
                return ""
            except OSError:
                print("Problem with file "+full_filename)

# =====================================================================
# =====================================================================
# Private methods getter/setter
# =====================================================================
# =====================================================================

    def _set_x(self, x:np.ndarray):
        self._x = np.array(x)
        self._clear_tmagdmagttmagmag()

    def _get_x(self):
        return self._x

    def _set_y(self, y:np.ndarray):
        self._y = np.array(y)
        self._clear_tmagdmagttmagmag()

    def _get_y(self):
        return self._y

    def _set_dy(self, dy:np.ndarray):
        self._dy = np.array(dy)
        self._clear_tmagdmagttmagmag()

    def _get_dy(self):
        return self._dy

    def _set_xx(self, xx:np.ndarray):
        self._xx = np.array(xx)
        self._clear_tmagdmagttmagmag()

    def _get_xx(self):
        return self._xx

    def _set_yy(self, yy:np.ndarray):
        pass

    def _get_yy(self):
        return self._yy

    def _set_t(self, t:np.ndarray):
        self._t = np.array(t)
        self._clear_xydyxxyy()

    def _get_t(self):
        return self._t

    def _set_mag(self, mag:np.ndarray):
        self._mag = np.array(mag)
        self._clear_xydyxxyy()

    def _get_mag(self):
        return self._mag

    def _set_dmag(self, dmag:np.ndarray):
        self._dmag = np.array(dmag)
        self._clear_xydyxxyy()

    def _get_dmag(self):
        return self._dmag

    def _set_tt(self, tt:np.ndarray):
        self._tt = np.array(tt)
        self._clear_xydyxxyy()

    def _get_tt(self):
        return self._tt

    def _set_magmag(self, magmag:np.ndarray):
        pass

    def _get_magmag(self):
        return self._magmag

    def _set_tt_default(self, tt_default:np.ndarray):
        self._tt_default = np.array(tt_default)

    def _get_tt_default(self):
        return self._tt_default

    def _set_f(self, f:np.ndarray):
        pass

    def _get_f(self):
        return self._f

    def _set_df(self, df:np.ndarray):
        pass

    def _get_df(self):
        return self._df

    def _set_ff(self, ff:np.ndarray):
        pass

    def _get_ff(self):
        return self._ff

# =====================================================================
# =====================================================================
# Public Property methods
# =====================================================================
# =====================================================================

    x = property(_get_x, _set_x)
    y = property(_get_y, _set_y)
    dy = property(_get_dy, _set_dy)
    xx = property(_get_xx, _set_xx)
    yy = property(_get_yy, _set_yy)

    t = property(_get_t, _set_t)
    mag = property(_get_mag, _set_mag)
    dmag = property(_get_dmag, _set_dmag)
    tt = property(_get_tt, _set_tt)
    magmag = property(_get_magmag, _set_magmag)

    f = property(_get_f, _set_f)
    df = property(_get_df, _set_df)
    ff = property(_get_ff, _set_ff)

# =====================================================================
# =====================================================================
# Methods for users
# =====================================================================
# =====================================================================

    def fit(self, x:np.ndarray, y:np.ndarray, dy:(float, np.ndarray), s:float, xx:np.ndarray) -> np.ndarray:
        """Compute an array which fit points defined by arrays x and y.

        Args:
            x: Input array of x coordinates
            y: Input array of y coordinates
            dy: Input uncertainties for y coordinates. If only one value is given, it is applied to all elements of y. Else use an array of the same number of elements to define different uncertainties for each element of y.
            s: The smooth parameter. Should be equal to the number of y elements if dy is well defined.
            xx: Output array of x coordinates. Be careful, the xx values must be inside the mini,maxi of the x array. No extrapolation is possible.

        Returns:
            The array of y coordinates fit along the xx coordinates.

        """
        # x[1..n1..n2]
        # y[1..n1..n2]
        # dy[1..n1..n2] 1 sigma errors (do not put zeros !!!)
        # s = smooth parameter >=0 (=nb x points if dy are 1 sigma errors)
        # xx[1..nn] vector of x values to compute
        # xx[1]>=x[n1+2] and xx[nn]<=x[n2-1]
        # Internal indexes start at 1
        # x and xx are sorted before the calculation
        #
        # verify the dimensions
        nx=len(x)
        ny=len(y)
        if isinstance(dy,(int,float))==True:
            dy=np.array([dy],dtype=float)
        elif isinstance(dy,np.ndarray)==True:
            if self._dmag !=  None:
                if isinstance(self._dmag.tolist(),(int,float)):
                    dy=np.array([self._dmag],dtype=float)
        ndy=len(dy)
        if (nx < 3):
            raise Exception(f"Length of x ({nx} counts) must be >= 3.")
        if (ny != nx):
            raise Exception(f"Length of y ({ny} counts) not equal to length of x ({nx} counts).")
        if ((ndy!=ny) and (ndy>1)):
            raise Exception(f"Length of dy ({ndy} counts) not equal to length of y ({ny} counts).")

        # sort the vectors with x increasing
        inds = np.argsort(x)
        x = np.array([x[i] for i in inds])
        y = np.array([y[i] for i in inds])
        if (ndy==ny):
            dy = np.array([dy[i] for i in inds])
        inds = np.argsort(xx)
        xx = np.array([xx[i] for i in inds])
        self._xx = xx

        # estimation of std of the y vector if needed
        if (ndy==1) and (dy[0]>0):
            std = dy[0]
        else:
            d = np.zeros(len(y)-1, dtype=float)
            for i in range(len(y)-1):
                d[i] = y[i+1]-y[i]
            # empirical estimation of sigma
            std = np.std(d)/math.sqrt(2.0)
        if (std==0):
            std = 1

        # verify values of the dy vector if needed
        if (ndy==1):
            dy=np.full(ny,std)
        elif (ndy==ny):
            for i in range(ny):
                if (dy[i]<=0):
                    dy[i]=std
        else:
            dy = np.full(dy,std)

        # x vector must not have same absissa
        sames=np.full(nx,0)
        for i in range(nx-1):
            if (x[i]==x[i+1]):
                if (sames[i]==0):
                    sames[i]=i
                sames[i+1]=sames[i]
        i=0
        ii=0
        xx0=[]
        yy0=[]
        dyy0=[]
        while (i<nx):
            i1=-1
            i2=i1
            if (sames[i]>0):
                i1=i
                iii=i+1
                while (iii<nx):
                    if (sames[iii]==0):
                        i2=iii-1
                        break
                    iii+=1
                mean = 0
                dy2 = 0
                #print(f"(1.7) i1={i1} i2={i2}")
                for iii in range (i1,i2+1):
                    mean += y[iii]
                    dy2 += dy[iii]*dy[iii]
                    #print(f"(1.8) iii={iii}")
                mean = mean/(i2-i1+1)
                dy2 = math.sqrt(dy2)/(i2-i1+1)
            xx0.append(x[i])
            #print(f"(1.80) i={i}")
            if (i1>=0):
                yy0.append(mean)
                dyy0.append(dy2)
                i+=(i2-i1)
            else:
                yy0.append(y[i])
                dyy0.append(dy[i])
            i+=1
            ii+=1
        self._x=np.array(xx0)
        self._y=np.array(yy0)
        self._dy=np.array(dyy0)
        self._xx=np.array(xx)

        # shift all indexes by an offset +1
        x = np.array(0.0)
        y = np.array(0.0)
        dy = np.array(0.0)
        xx = np.array(0.0)
        x = np.append(x,np.array(self._x))
        y = np.append(y,np.array(self._y))
        dy = np.append(dy,np.array(self._dy))
        xx = np.append(xx,np.array(self._xx))

        # create the output vector (filled by 0)
        nn=len(xx)-1
        ff=np.zeros(nn+1, dtype=float)

        # start the algorithm
        n1=1
        n2=len(x)-1; # -1 !
        n=(n2+1)-(n1-1)+2
        r=np.zeros(n, dtype=float)
        r1=np.zeros(n, dtype=float)
        r2=np.zeros(n, dtype=float)
        t=np.zeros(n, dtype=float)
        t1=np.zeros(n, dtype=float)
        u=np.zeros(n, dtype=float)
        v=np.zeros(n, dtype=float)
        a=np.zeros(n, dtype=float)
        b=np.zeros(n, dtype=float)
        c=np.zeros(n, dtype=float)
        d=np.zeros(n, dtype=float)

        m1=n1-1
        m2=n2+1
        r[m1]=0
        r[n1]=0
        r1[n2]=0
        r2[n2]=0
        r2[m2]=0
        u[m1]=0
        u[n1]=0
        u[n2]=0
        u[m2]=0
        p=0
        m1=n1+1
        m2=n2-1
        h=x[m1]-x[n1]
        f=(y[m1]-y[n1])/h
        for i in range(m1,m2+1):
            g=h
            h=x[i+1]-x[i]
            e=f
            f=(y[i+1]-y[i])/h
            a[i]=f-e
            t[i]=2*(g+h)/3
            t1[i]=h/3
            r2[i]=dy[i-1]/g
            r[i]=dy[i+1]/h
            r1[i]=-dy[i]/g-dy[i]/h
        for i in range(m1,m2+1):
            b[i]=r[i]*r[i]+r1[i]*r1[i]+r2[i]*r2[i]
            c[i]=r[i]*r1[i+1]+r1[i]*r2[i+1]
            d[i]=r[i]*r2[i+2]
        f2=-s
        while True:
            #:next_interation
            for i in range(m1,m2+1):
                r1[i-1]=f*r[i-1]
                r2[i-2]=g*r[i-2]
                r[i]=1/(p*b[i]+t[i]-f*r1[i-1]-g*r2[i-2])
                u[i]=a[i]-r1[i-1]*u[i-1]-r2[i-2]*u[i-2]
                f=p*c[i]+t1[i]-h*r1[i-1]
                g=h
                h=d[i]*p
            for i in range(m2,m1-1,-1):
                u[i]=r[i]*u[i]-r1[i]*u[i+1]-r2[i]*u[i+2]
            e=0
            h=0
            for i in range(n1,m2+1):
                g=h
                h=(u[i+1]-u[i])/(x[i+1]-x[i])
                v[i]=(h-g)*dy[i]*dy[i]
                e=e+v[i]*(h-g)
            g=-h*dy[n2]*dy[n2]
            v[n2]=g
            e=e-g*h
            g=f2
            f2=e*p*p
            if ((f2>=s) or (f2<=g)):
                break
            f=0
            h=(v[m1]-v[n1])/(x[m1]-x[n1])
            for i in range(m1,m2+1):
                g=h
                h=(v[i+1]-v[i])/(x[i+1]-x[i])
                g=h-g-r1[i-1]*r[i-1]-r2[i-2]*r[i-2]
                f=f+g*r[i]*g
                r[i]=g
            h=e-p*f
            if (h<=0):
                break
            p=p+(s-f2)/((math.sqrt(s/e)+p)*h)
            # goto next_iteration;
        # use negative branch of square root, if the sequence of absissae x[i] is strictly decreasing
        for i in range(n1,n2+1):
            a[i]=y[i]-p*v[i]
            c[i]=u[i]
        for i in range(n1,m2+1):
            h=x[i+1]-x[i]
            d[i]=(c[i+1]-c[i])/(3*h)
            b[i]=(a[i+1]-a[i])/h-(h*d[i]+c[i])*h
        # --- compute the final vector
        for ii in range(1,nn+1):
            ff[ii]=0
            for i in range(n1,n2):
                if ((xx[ii]>=x[i]) and (xx[ii]<=x[i+1])):
                    h=xx[ii]-x[i]
                    ff[ii]=((d[i]*h+c[i])*h+b[i])*h+a[i]
                    break

        # --- shift indexes of ff
        yy = ff[1:]
        self._yy = yy

        return yy

    def fitmag(self, s:float, tt:np.ndarray=None):
        if (self._t is None) or (self._mag is None) or (self._dmag is None):
            raise Exception("No input data. Use methods import_data or t, mag, dmag")
        if (self._tt is None):
            t=self._tt_default
        else:
            t=self._tt
        tt = []
        # --- cancel absissa outside x range
        for i in range(len(t)):
            if t[i]<self._t[0]:
                continue
            elif t[i]>self._t[-1]:
                continue
            tt.append(t[i])
        # --- nomalization of s
        s *= len(self._t)
        self.fit(self._t,self._mag,self._dmag,s,tt)
        self._t = self._x
        self._mag = self._y
        self._dmag = self._dy
        self._tt = self._xx
        self._magmag = self._yy
        self._clear_xydyxxyy()
        return (self._tt, self._magmag)

    def fitmag2mjy(self, s:float, mag2mjy:float, tt:np.ndarray=None):
        self.fitmag(s,tt)
        tt = self.tt
        fmax = mag2mjy*1e3*np.power(10,-0.4*(self.mag-self.dmag));  # mJy
        fmin = mag2mjy*1e3*np.power(10,-0.4*(self.mag+self.dmag));  # mJy
        self._f = (fmin+fmax)/2
        self._df = fmax - self._f
        self._ff = mag2mjy*1e3*np.power(10,-0.4*self.magmag);  # mJy
        return (self._tt, self._ff)

    def plot(self):
        mode = 0
        if self._f is not None:
            mode = 3
        elif self._mag is not None:
            mode = 2
        elif self._y is not None:
            mode = 1
        # ---
        if mode==1:
            x = self._x
            y = self._y
            dy = self._dy
            xx = self._xx
            yy = self._yy
            plt.figure(1)
            fig, ax=plt.subplots(1,1,figsize=(5.0,5.0))
            plt.plot(x,y,'ob');
            if isinstance(dy,np.ndarray)==True:
                if isinstance(dy.tolist(),(int,float)):
                    dy=np.array([dy],dtype=float)
                ndy=len(dy)
                for i in range(ndy):
                    vx = np.array([x[i], x[i]])
                    vy = np.array([y[i]+dy[i], y[i]-dy[i]])
                    plt.plot(vx,vy,'-b')
            if yy is not None:
                plt.plot(xx,yy,'r-');
            plt.xlabel('x')
            plt.ylabel('y')
            plt.grid(True)
            plt.show()
            # plt.savefig('/Users/rosa/Desktop/Utiles/Prueba.png')
            plt.close()
        elif mode==2:
            t = self._t
            mag = self._mag
            dmag = self._dmag
            tt = self._tt
            magmag = self._magmag
            plt.figure(1)
            fig, ax=plt.subplots(1,1,figsize=(5.0,5.0))
            plt.semilogx(t,mag,'ob');
            plt.gca().invert_yaxis()
            if isinstance(dmag,np.ndarray)==True:
                if isinstance(dmag.tolist(),(int,float)):
                    dmag=np.array([dmag],dtype=float)
                ndmag=len(dmag)
                for i in range(ndmag):
                    vx = np.array([t[i], t[i]])
                    vy = np.array([mag[i]+dmag[i], mag[i]-dmag[i]])
                    plt.semilogx(vx,vy,'-b')
            if tt is not None:
                plt.semilogx(tt,magmag,'r-');
            plt.xlabel('Time since trigger')
            plt.ylabel('Magnitude')
            plt.grid(True)
            plt.show()
            plt.close()
        elif mode==3:
            t = self._t
            f = self._f
            df = self._df
            tt = self._tt
            ff = self._ff
            plt.figure(1)
            fig, ax=plt.subplots(1,1,figsize=(5.0,5.0))
            plt.loglog(t,f,'ob');
            if isinstance(df,np.ndarray)==True:
                if isinstance(df.tolist(),(int,float)):
                    df=np.array([df],dtype=float)
                ndf=len(df)
                for i in range(ndf):
                    vx = np.array([t[i], t[i]])
                    vy = np.array([f[i]+df[i], f[i]-df[i]])
                    plt.semilogx(vx,vy,'-b')
            if tt is not None:
                plt.semilogx(tt,ff,'r-');
            plt.xlabel('Time since trigger')
            plt.ylabel('Flux density')
            plt.grid(True)
            plt.show()
            plt.close()

    def import_data(self,full_filename:str, col_t1:int, col_t2:int, col_mag:int, col_dmag:int):
        return self._load_data(full_filename,col_t1,col_t2,col_mag,col_dmag)

    def clear(self):
        self._clear_xydyxxyy()
        self._clear_tmagdmagttmagmag()

# =====================================================================
# =====================================================================
# Special methods
# =====================================================================
# =====================================================================

    def __init__(self):
        self._clear_xydyxxyy()
        self._clear_tmagdmagttmagmag()
        self._tt_default = np.logspace(0,6,61)

# =====================================================================
# =====================================================================
# Test if main
# =====================================================================
# =====================================================================

if __name__ == "__main__":

    example = 3
    print("Example       = {}".format(example))

    if example == 1:
        """
        case where we define (time,mag) inputs by hands
        """
        fiter = Splinefit();
        fiter.clear()
        fiter.t   = [1e2, 3e2, 1e3, 5e3, 2e4]
        fiter.mag = [14.5, 15.0, 15.8, 16.7, 18.3]
        fiter.dmag = 0 # we put 0 when we have no error available for data
        s = 0.5 # smoothing factor
        # --- fit mag -> mag
        fiter.fitmag(s)
        fiter.plot()
        # --- fit mag -> mJy
        mag2mjy = 3500 ; # F(mJy) for a zero magnitude
        fiter.fitmag2mjy(s,mag2mjy)
        fiter.plot()

    if example == 2:
        """
        Case here we read a text file of (time,mag)
        """
        fiter = Splinefit();
        fiter.clear()
        grb_text_file = os.getcwd() + "/grb180418a_r_ratir.txt"
        # col 0 = t1
        # col 1 = t2
        # col 3 = mag
        # col 4 = dmag
        fiter.import_data(grb_text_file,0,1,3,4)
        s = 1 # smoothing factor
        # --- fit mag -> mag
        fiter.fitmag(s)
        fiter.plot()
        # --- fit mag -> mJy
        mag2mjy = 3500 ; # F(mJy) for a zero magnitude
        fiter.fitmag2mjy(s,mag2mjy)
        fiter.plot()

    if example == 3:
        """
        Case of an example of (x,y) inputs as sinus
        """
        fiter = Splinefit();
        fiter.clear()
        # --- Define an example x,y
        x=np.linspace(0,20,100)
        y1=np.sin(x/1+1)
        y2=[]
        for i in range(len(x)):
            y2.append(0.2*(rd.random()-0.5))
        y=y1+y2
        # --- Define dy as a same value for all data
        # =0 means the uncertainties are estimated by the fiter itself
        dy = 0
        # --- Define a smooth factor
        s=0.01*len(x)
        # --- Define a resampling
        xx = np.linspace(x[0],x[-1],100)
        # --- Use the splinefit
        fiter.fit(x,y,dy,s,xx)
        fiter.plot()
        # --- print output data
        xx = fiter.xx
        yy = fiter.yy
        print(f"xx={xx}")
        print(f"yy={yy}")

    if example == 4:
        """
        """
        fiter = Splinefit();
        t  = [1e2, 3e2, 1e3, 5e3, 2e4]
        mag = [14.5, 15.0, 15.8, 16.7, 18.3]
        dmag = 0
        s = 1*len(t)
        tfit = np.linspace(t[0],t[-1],100)
        magfit = fiter.fit(t, mag, dmag, s, tfit)
        # you can now plot(tfit,magfit)