mountaxis.py
66.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
# -*- coding: utf-8 -*-
import time
import math
import os
try:
from .dates import Date
except:
from dates import Date
try:
from .home import Home
except:
from home import Home
try:
from .siteobs import Siteobs
except:
from siteobs import Siteobs
try:
from .ephemeris import Ephemeris
except:
from ephemeris import Ephemeris
try:
from .guitastrotools import GuitastroTools, GuitastroException
except:
from guitastrotools import GuitastroTools, GuitastroException
# #####################################################################
# #####################################################################
# #####################################################################
# Class Mountaxis
# #####################################################################
# #####################################################################
# #####################################################################
class MountaxisException(GuitastroException):
"""Exception raised for errors in the Mountaxis class.
"""
MOUNTAXIS_TYPE_NOT_FOUND = 0
errors = [""]*1
errors[MOUNTAXIS_TYPE_NOT_FOUND] = "Mount axis type not found"
class Mountaxis(MountaxisException, GuitastroTools):
"""
Class to define an axis of a motor.
The first element of args is a string to define the axis type amongst:
* HA: Hour angle axis of an eqquatorial mount.
* DEC: Declination axis of an eqquatorial mount.
* AZ: Azimuth axis of an altaz mount.
* ELEV: Elevation axis of an altaz mount.
* ROT: Paralactic roation axis of an altaz mount.
* ROLL: Roll axis of an altalt mount.
* PITCH: Pitch axis of an altalt mount.
* YAW: Yaw axis of an altalt mount.
Dictionnary of motion parameters are:
* NAME: A string to identify the axis in memory.
* LABEL: A string to identify the axis for prints.
:Example:
::
>>> axisb = Mountaxis("HA", name = "Hour angle", label= "H.A.")
>>> axisp = Mountaxis("DEC", name = "Declination", label= "Dec.")
A mount axis is defined by a frame called 'rot' constituted by two perpendicular axes:
* Axisp: The polar axis, a great circle passing by the poles
* Axisb: The base axis. Its axis is parallel to the pole direction
The natural unit of 'rot' is degree.
The definition of the 'rot' frame is compatible with equatorial and altaz or altalt mounts:
* hadec : Equatorial, axisp = declination (dec), axisb = hour angle (ha)
* altaz : Altaz , axisp = elevation (alt) , axisb = azimuth (az)
* altalt : Altalt , axisp = pitch (pit) , axisb = roll (rol)
The definition of 'rot=0' depends on the mount types:
* Axisp: 'rot=0' at the pole direction upper horizon
* Axisb: 'rot=0' depdns on the mount type (meridian, south, etc)
The encoders provide another frame called 'enc' which shares the same rotational axis than 'rot'.
The natural unit of 'enc' is increments.
The celestial coordinate system provide another frame called 'cel' which shares the same rotational axis than 'rot'.
The natural unit of 'cel' is degree.
The 'cel' frame if fixed to the 'rot' frame. The zeroes are fixed by definition (see above).
The 'enc' frame is considered as absolute encoders. As it is impossible to place the inc=0 of the encoder exactly on the rot=0, we define a inc0 = inc when rot=0. As a consequence, for a linear response encoder:
rot = (inc-inc0) * deg_per_inc
However, a rotational sense (senseinc) is indroduced to take accound the increasing increments are in the increasing angles of 'rot' or not:
rot = (inc-inc0) * deg_per_inc * senseinc
deg_per_inc is always positive.
"""
# === Constants for error codes
NO_ERROR = 0
# === Constants for pier side
PIERSIDE_AUTO = 0
PIERSIDE_POS1 = 1
PIERSIDE_POS2 = -1
# === Constants for senses
POSITIVE = 1;
NEGATIVE = -1;
# === constants for saving coords
SAVE_NONE = 0
SAVE_AS_SIMU = 1
SAVE_AS_REAL = 2
# === Indexes for real, simu,...
REAL = 0
SIMU = 1
# === Axis types
axes = []
axes.append(["HA", "b"])
axes.append(["DEC", "p"])
axes.append(["AZ", "b"])
axes.append(["ELEV", "p"])
axes.append(["YAW", "y"])
axes.append(["ROLL", "b"])
axes.append(["PITCH", "p"])
axes.append(["ROT", "r"])
AXIS_MAX = len(axes)
symbols = list({s for t, s in axes})
# === Axis motion state
MOTION_STATE_UNKNOWN = -1
MOTION_STATE_NOMOTION = 0
MOTION_STATE_SLEWING = 1
MOTION_STATE_DRIFTING = 2
MOTION_STATE_MOVING = 3
# === Identification of the axis
_name = "Declination"
_axis_type = "DEC"
_latitude = 43
# === relations angle and inc
# --- rotb0=0 when the tube is observing at the meridian
_inc0 = 0 ; # value of the motor increment corresponding to _rot0
_senseinc = POSITIVE ; # +1 or -1 according the increasing of inc / rot
_senseang = POSITIVE ; # +1 or -1 according the increasing of ang / rot
# === relations mechanics and inc
_ratio_wheel_pulley = 5.25
_ratio_pulley_motor = 100.0 ; # harmonic reducer
_inc_per_motor_rev = 1000.0 ; # IMC parameter. System Confg -> System Parameters - Distance/Revolution
_inc_per_sky_rev = None
_inc_per_deg = None
# === last values
_inc = 0
_rot = 0
_ang = 0
_pierside = PIERSIDE_POS1
_incsimu = 0
_rotsimu = 0
_angsimu = 0
_piersidesimu = PIERSIDE_POS1
# === simulation
_inc_simu = 0
_simu_signal_move = 0
_simu_current_velocity_deg_per_sec = 0
# === slew velicities
_slewmax_deg_per_sec = 5
_slew_deg_per_sec = 5
# === motion state
_motion_state = MOTION_STATE_NOMOTION
_motion_state_simu = MOTION_STATE_NOMOTION
# === Pointing limits of celestial coordinate
_lim_cel_inf = None
_lim_cel_sup = None
# =====================================================================
# =====================================================================
# Private methods
# =====================================================================
# =====================================================================
def _set_ratio_wheel_pulley(self, ratio:float) -> int:
"""
Set the ratio between wheel and motor pulley, in diameter.
:param ratio: Ratio between wheel and pulley (for exampe : 5.25)
:type numerateur: float
:returns: Error if ratio are not strictly positive.
:rtype: int
"""
if ratio<=0:
raise Exception("ratio must be strictly positive")
self._ratio_wheel_pulley = ratio
self._incr_variables()
return self.NO_ERROR
def _get_ratio_wheel_pulley(self) -> float:
"""
Get the ratio between wheel and motor pulley, in diameter.
:returns: Ratio between wheel and motor pulley (for example : 5.25)
:rtype: float
"""
return self._ratio_wheel_pulley
def _set_ratio_pulley_motor(self, ratio:float) -> int:
"""
Set the ratio between pulley and motor, take care about the ratio of motor reducer type.
:param ratio: Ratio between pulley and motor (for example : 100).
:type ratio: float
:returns: Error if ratio are not strictly positive.
:rtype: int
"""
if ratio<=0:
raise Exception("ratio must be strictly positive")
self._ratio_pulley_motor = ratio
self._incr_variables()
return self.NO_ERROR
def _get_ratio_pulley_motor(self) -> float:
"""
Get the ratio between pulley and motor.
:returns: Ratio between pulley and motor (for example : 100).
:rtype: float
"""
return self._ratio_pulley_motor
def _set_inc_per_motor_rev(self, nbr_inc:float) -> int:
"""
Set the number of increments for a single turn of the motor.
:param nbr_inc: Number of increments for a single turn of the motor (for example : 1000).
:type nbr_inc: float
:returns: Error if ratio is not positive.
:rtype: int
"""
if nbr_inc<=0:
raise Exception("ratio must be strictly positive")
self._inc_per_motor_rev = nbr_inc
self._incr_variables()
return self.NO_ERROR
def _get_inc_per_motor_rev(self) -> float:
"""
Get the number of increments for a single turn of the motor.
:returns: Number of increments for a single turn of the motor (for example : 1000).
:rtype: float
"""
return self._inc_per_motor_rev
def _incr_variables(self) -> float:
"""
Update and calculus of two parameters :
- number of increments for a complete turn of an axis
- number of increments for single decimal degrees.
:returns: Number of increments for a complete turn of an axis and number of increments for single decimal degrees.
:rtype: float
"""
self._inc_per_sky_rev = self.ratio_wheel_pulley*self.ratio_pulley_motor*self.inc_per_motor_rev
self._inc_per_deg = self._inc_per_sky_rev/360.
def _set_inc0(self, inc0:float) -> int:
"""
Set the value of increments for "rot=0". When mount was initialized, the "inc0" are set by the fonction "update_inc0".
:param inc0: Value of the increments for "rot=0" (for example : 1800)
:returns: Error if increment is not positive.
:rtype: int
"""
self._inc0 = inc0
return self.NO_ERROR
def _get_inc0(self) -> float:
"""
Get the value of increments for "rot=0".
:returns: Number of increments for "rot=0" (for example : 1800)
:rtype: float
"""
return self._inc0
def _set_inc(self, inc:float) -> int:
"""
Set the value for actual increments position of an axis, direct interogation of the controller.
:param inc: Value of the increments for the actual position.
:returns: Error if value is not a real.
:rtype: int
"""
self._inc = inc
return self.NO_ERROR
def _get_inc(self) -> float:
"""
Get the value for actual increments position of an axis, direct interogation of the controller.
:returns: Number of increments (for example : 37265)
:rtype: float
"""
return self._inc
def _set_incsimu(self, inc:float) -> int:
"""
Set the value for actual increments position of an axis in simulation mode.
:param inc: Value of the increments for the simulated position.
:returns: Error if value is not a real.
:rtype: int
"""
self._incsimu = inc
return self.NO_ERROR
def _get_incsimu(self) -> float:
"""
Get the value for actual increments position of an axis, direct interogation of the controller. Value are real if axle is real.
:returns: Number of increments in simulation mode (for example : 37265)
:rtype: float
"""
return self._incsimu
def _set_senseinc(self, sense:int) -> int:
"""
If progression of increments are positive and progression of rot0 are positive, senseinc are positive. However, senseinc are negative when progression are inverse.
The sense depend of the physical rolling sense of motor cable system.
:param sense: Value sense are "-1" or "1".
:returns: Error if value is not a real.
:rtype: int
"""
if sense>self.NEGATIVE:
self._senseinc = self.POSITIVE
else:
self._senseinc = self.NEGATIVE
return self.NO_ERROR
def _get_senseinc(self) -> int:
"""
If progression of increments are positive and progression of 'rot0' are positive, 'senseinc' are positive. However, 'senseinc' are negative when progression are inverse.
The sense depend of the physical rolling sense of motor cable system.
:returns: Value sense are "-1" or "1".
:rtype: int
"""
return self._senseinc
def _set_ang(self, ang:float) -> int:
"""
Set the arrival angle of a calculated movement for a target.
The orientation of the coordinate system are orthonormal. (Right hand rules, tom pouce for visible polar axis !)
:param ang: Celestial angle of an axis (degrees)
:returns: Error if value is not a real.
:rtype: int
"""
self._ang = ang
return self.NO_ERROR
def _get_ang(self) -> int:
"""
Get the arrival angle of a calculated movement for a target.
The orientation of the coordinate system are orthonormal. (Right hand rules, tom pouce for visible polar axis !)
:returns: Error if value is not a real.
:rtype: int
"""
return self._ang
def _set_angsimu(self, ang:float) -> int:
"""
In simulation mode, set the arrival angle of a calculated movement for a target.
The orientation of the coordinate system are orthonormal. (Right hand rules, tom pouce for visible polar axis !)
:param ang: Celestial angle of an axis (degrees)
:returns: Error if value is not a real.
:rtype: int
"""
self._angsimu = ang
return self.NO_ERROR
def _get_angsimu(self) -> int:
"""
In simulation mode, get the arrival angle of a calculated movement for a target.
The orientation of the coordinate system are orthonormal. (Right hand rules, tom pouce for visible polar axis !)
:returns: Error if value is not a real.
:rtype: int
"""
return self._angsimu
def _set_senseang(self, sense:int) -> int:
"""
If progression of mechanical angles referentiel are positive and progression of rot0 are positive, 'set_senseang' are positive. However, 'set_senseang' are negative when progression are inverse.
The sense depend of the orientation of celestial coordinates systems and mechanical coordinates systems.
The orientation of the coordinate system are orthonormal. (Right hand rules, tom pouce for visible polar axis !)
:param sense: Value sense are "-1" or "1".
:returns: Error if value is not a real.
:rtype: int
"""
if sense>self.NEGATIVE:
self._senseang = self.POSITIVE
else:
self._senseang = self.NEGATIVE
return self.NO_ERROR
def _get_senseang(self) -> int:
"""
If progression of mechanical angles referentiel are positive and progression of rot0 are positive, 'set_senseang' are positive. However, 'set_senseang' are negative when progression are inverse.
The sense depend of the orientation of celestial coordinates systems and mechanical coordinates systems.
The orientation of the coordinate system are orthonormal. (Right hand rules, tom pouce for visible polar axis !)
:returns: Error if value is not a real.
:rtype: int
"""
return self._senseang
def _set_real(self, real:bool) -> int:
"""
Set the axis in real mode or simulation mode. With simulation mode, the value of the axis are given by Mountaxis simulation value.
:param real: True or False.
:returns: Error if value is not a real.
:rtype: int
"""
self._real = real
return self.NO_ERROR
def _set_lim_cel_inf(self, lim_cel_inf:float) -> float:
"""
Pointing limit lowest value (deg).
:param lim_cel_inf: Value (deg).
:returns: lim_cel_inf.
:rtype: float
"""
self._lim_cel_inf = lim_cel_inf
return self._lim_cel_inf
def _get_lim_cel_inf(self) -> float:
"""
Pointing limit lowest value (deg).
:returns: lim_cel_inf.
:rtype: float
"""
return self._lim_cel_inf
def _set_lim_cel_sup(self, lim_cel_sup:float) -> float:
"""
Pointing limit highest value (deg).
:param lim_cel_sup: Value (deg).
:returns: lim_cel_sup.
:rtype: float
"""
self._lim_cel_sup = lim_cel_sup
return self._lim_cel_sup
def _get_lim_cel_sup(self) -> float:
"""
Pointing limit highest value (deg).
:param lim_cel_sup: Value (deg).
:returns: lim_cel_sup.
:rtype: float
"""
return self._lim_cel_sup
def _get_real(self) -> bool:
"""
Get the axis mode, real or simulation.
:returns: True or False
:rtype: bool
"""
return self._real
def _set_axis_type(self, axis_type:str):
"""
Set type and mechanical position of an axis on the mount.
- BASE : Azimut or hour angle axis,
- POLAR : Elevation or declination axix,
- ROT : Derotator system for non equatorial mount (if equiped),
- YAW : Equivalent to secondary azimut base (for Alt-Alt mount).
- ROLL : Equivalent to primary azimut base (for Alt-Alt mount).
"""
axis_type = axis_type.upper()
indx = 0
found = False
for axe in self.axes:
axe_type, axe_symbol = axe
if axis_type == axe_type:
self._axis_index = indx
self._symbol = axe_symbol
found = True
break
indx += 1
if found == False:
axe_ts = [axe_t for axe_t, axe_symbol in self.axes]
msg = f"The mount axis type {axis_type} was not found amongst {axe_ts}"
raise MountaxisException(MountaxisException.MOUNTAXIS_TYPE_NOT_FOUND, msg)
self._axis_type = axis_type
return self.NO_ERROR
def _get_axis_type(self) -> str:
"""Get type and mechanical position of an axis on the mount.
- BASE : Azimut or hour angle axis,
- POLAR : Elevation or declination axix,
- ROT : Derotator system for non equatorial mount (if equiped),
- YAW : Equivalent to secondary azimut base (for Alt-Alt mount).
- ROLL : Equivalent to primary azimut base (for Alt-Alt mount).
Returns:
The axis type as a string.
"""
return self._axis_type
def _get_axis_index(self) -> int:
"""
Get the axis index of the mount.
Returns:
Index integer
"""
return self._axis_index
def _get_symbol(self) -> str:
"""
Get the axis symbol of the mount.
Returns:
Symbol amongst 'b', 'p', 'r'
"""
return self._symbol
def _set_inc_per_sky_rev(self, inc_per_sky_rev:float):
"""
.. attention::
no setting for this attribute
:param inc_per_sky_rev: Incrment per sky turn
:type inc_per_sky_rev: float
:returns: Error if ratio is not positive.
:rtype: int
"""
return self.NO_ERROR
def _get_inc_per_sky_rev(self) -> float:
"""
Get the number of increments for a single complete turn on the sky.
:returns: Number of increments.
:rtype: float
"""
return self._inc_per_sky_rev
def _set_inc_per_deg(self, inc_per_deg:float):
"""
.. attention::
no setting for this attribute
:param inc_per_deg: Incrment per degree
:type inc_per_deg: float
:returns: Error if ratio is not positive.
:rtype: int
"""
return self.NO_ERROR
def _get_inc_per_deg(self) -> float:
"""
Get the number of increments for a single degrees on the sky.
:returns: Number of increments (for example : env 970000)
:rtype: float
"""
return self._inc_per_deg
def _get_name(self) -> str:
"""
Get the nickname of the axis.
:returns: Nickname of the axis (for example : Declination, ...)
:rtype: str
"""
return self._name
def _set_name(self, name:str):
# no setting for this attribute
"""
.. attention::
no setting for this attribute
The name are setted at the instanciation of the mount axis. The name of an axis can have several value :
- Declination,
- Azimuth
- Hour angle,
- Elevation,
- Rotator,
- Roll,
- Pitch,
- Yaw,
You cannot set the value cause it is an protected attribute.
:param name: Name of the axis
:type name: str
:returns: Error if ratio is not positive.
:rtype: int
"""
return self.NO_ERROR
def _get_latitude(self) -> str:
"""
Get the latitude of the observational siteobs. Positive for north.
:returns: Latitude of siteobs (for example : 47,2 Degrees)
:rtype: str
"""
return self._latitude
def _set_latitude(self, latitude_deg:float) -> int:
"""
Set the latitude of the observational siteobs. Positive for north.
:param latitude_deg: Latitude of siteobs (for example : 47.2 Degrees)
:type latitude_deg: float
:returns: Error if value is not a real.
:rtype: int
"""
self._latitude = latitude_deg
return self.NO_ERROR
def _get_simu_current_velocity(self) -> int:
"""
Get the final cruising speed during the motion. Motion are celestial slewing speed or any other, like goto for example.
:returns: Terminal velocity speed for a movement in degrees / sec.
:rtype: int
"""
return self._simu_current_velocity_deg_per_sec
def _set_simu_current_velocity(self, simu_current_velocity_deg_per_sec:float):
# no setting for this attribute
"""
.. attention::
no setting for this attribute
:returns: Error if ratio is not positive.
:rtype: int
"""
return self.NO_ERROR
def _get_slew_deg_per_sec(self) -> int:
"""
Get the setting speed of a goto motion.
:returns: Speed for a goto movement in degrees / sec.
:rtype: int
"""
return self._slew_deg_per_sec
def _set_slew_deg_per_sec(self, deg_per_sec:float) ->int:
"""
Set the setting speed for a goto motion.
The value are limited by the maximun limited speed (_slewmax_deg_per_sec)
:param deg_per_sec: Speed for a goto movement in degrees / sec (for example : 30).
:type deg_per_sec: float
:returns: Error if value is not a real.
:rtype: int
"""
self._slew_deg_per_sec = abs(deg_per_sec)
if self._slew_deg_per_sec > self._slewmax_deg_per_sec:
self._slew_deg_per_sec = self._slewmax_deg_per_sec
return self.NO_ERROR
def _get_slewmax_deg_per_sec(self) -> float:
"""
Get the maximum speed for slew motion.
The value have a maximum, setting by a limit (_slewmax_deg_per_sec).
:returns: Maximum speed for a goto movement in degrees / sec.
:rtype: float
"""
return self._slew_deg_per_sec
def _set_slewmax_deg_per_sec(self, deg_per_sec:float) -> int:
"""
Set the maximum speed for slew motion. Set carrefully this parameter due to issue response of the mount.
The value have a maximum (for example : 30)
:param deg_per_sec: Speed for a slewing movement in degrees / sec (for example : 30)
:type deg_per_sec: float
:returns: Error if value is not a real.
:rtype: int
"""
self._slewmax_deg_per_sec = abs(deg_per_sec)
if self._slew_deg_per_sec > self._slewmax_deg_per_sec:
self._slew_deg_per_sec = self._slewmax_deg_per_sec
return self.NO_ERROR
def _get_language_protocol(self) -> str:
"""
Get the type of controller language protocol for an axis (for example : SCX 11 type, or another).
:returns: Type of controller language.
:rtype: str
"""
return self._language_protocol
def _set_language_protocol(self, language_protocol:str) -> int:
"""
Set the type of controller language protocol for an axis (for example : SCX 11 type, or another).
:param language_protocol : Specified the protocol language type (for example : SCX11)
:returns: Error if value is not a real.
:rtype: int
"""
self._language_protocol = language_protocol
return self.NO_ERROR
_motion_state = MOTION_STATE_NOMOTION
_motion_state_simu = MOTION_STATE_NOMOTION
def _get_motion_state(self) -> int:
"""
Get the current motion state
:returns: Moton state code (0=no motion, 1=slewing, 2=drifting, 3=moving).
:rtype: int
Slewiwng state is an absolute motion followed by a drift.
Moving state is an infinite motion. If a Moving is stopped we retreive the Drift state.
"""
return self._motion_state
def _set_motion_state(self, motion_state:int):
"""
Set the current motion state
:returns: Error code (0=no error).
:rtype: int
"""
self._motion_state = motion_state
return self.NO_ERROR
def _get_motion_state_simu(self) -> int:
"""
Get the current motion state for simulation
:returns: Moton state code (0=no motion, 1=slewing, 2=drifting, 3=moving).
:rtype: int
Slewiwng state is an absolute motion followed by a drift.
Moving state is an infinite motion. If a Moving is stopped we retreive the Drift state.
"""
return self._motion_state_simu
def _set_motion_state_simu(self, motion_state:int):
"""
Set the current motion state for simulation
:returns: Error code (0=no error).
:rtype: int
"""
self._motion_state_simu = motion_state
return self.NO_ERROR
# =====================================================================
# =====================================================================
# Methods for users
# =====================================================================
# =====================================================================
name = property(_get_name , _set_name)
axis_type = property(_get_axis_type , _set_axis_type)
axis_index = property(_get_axis_index )
symbol = property(_get_symbol )
latitude = property(_get_latitude , _set_latitude)
language_protocol = property(_get_language_protocol , _set_language_protocol)
ratio_wheel_pulley = property(_get_ratio_wheel_pulley , _set_ratio_wheel_pulley)
ratio_pulley_motor = property(_get_ratio_pulley_motor , _set_ratio_pulley_motor)
inc_per_motor_rev = property(_get_inc_per_motor_rev , _set_inc_per_motor_rev)
inc_per_sky_rev = property(_get_inc_per_sky_rev , _set_inc_per_sky_rev)
inc_per_deg = property(_get_inc_per_deg , _set_inc_per_deg)
inc0 = property(_get_inc0 , _set_inc0)
senseinc = property(_get_senseinc , _set_senseinc)
senseang = property(_get_senseang , _set_senseang)
real = property(_get_real , _set_real)
inc = property(_get_inc , _set_inc)
ang = property(_get_ang , _set_ang)
incsimu = property(_get_incsimu , _set_incsimu)
angsimu = property(_get_angsimu , _set_angsimu)
slew_deg_per_sec = property(_get_slew_deg_per_sec , _set_slew_deg_per_sec)
slewmax_deg_per_sec = property(_get_slewmax_deg_per_sec , _set_slewmax_deg_per_sec)
simu_current_velocity = property(_get_simu_current_velocity, _set_simu_current_velocity)
motion_state_simu = property(_get_motion_state_simu, _set_motion_state_simu)
motion_state = property(_get_motion_state, _set_motion_state)
lim_cel_inf = property(_get_lim_cel_inf, _set_lim_cel_inf)
lim_cel_sup = property(_get_lim_cel_sup, _set_lim_cel_sup)
def symbol2type(self, symbol:str)->str:
"""Returns the axis_type from a symbol 'b', 'p', 'r'
"""
for axe in self.axes:
axe_type, axe_symbol = axe
if symbol == axe_symbol and self._axis_type == axe_type:
return axe_type
def disp(self):
"""
Get information about an axis and print it on the console. Usefull for debug.
Instanciation of the axis are indispensable. However, the Mountaxis module when running, have by default axisb et axisp instancied.
:Instanciation Usage:
::
>>> axisb = Mountaxis("HA", name = "Unknown")
>>> axisp = Mountaxis("DEC", name = "Unknown")
:Usage:
::
>>> axisb.disp()
>>> axisp.disp()
:Return table of an axis:
::
--------------------
AXIS name = SCX11
axis_type = HA
latitude = 43
real hardware = False
--------------------
ratio_wheel_pulley = 5.25
ratio_pulley_motor = 100.0
inc_per_motor_rev = 1000.0
--------------------
inc_per_sky_rev = 525000.0
inc_per_deg = 1458.3333333333333
--------------------
senseinc = 1 : 1=positive
inc0 = 0.0 : Place mount rot at meridian and set inc0 = inc
senseang = 1 : 1=positive
--------------------
slew_deg_per_sec = 5.0
-------------------- SIMU INC -> ANG = HA
inc = 0.0 : inc is read from encoder
rot = 0.0000000 : rot = (inc - inc0) * senseinc / inc_per_deg
pierside = 1 : pierside must be given by polar axis
ang = 0.0000000 : ang = senseang * rot
-------------------- SIMU ANG = HA -> INC
ang = 0.0000000 : Next target celestial angle HA
pierside = 1 : Next target pier side (+1 or -1)
rot = 0.0000000 : rot = -ang / senseang
inc = 0.0 : inc = inc0 + rot * inc_per_deg / senseinc
-------------------- REAL INC -> ANG = HA
inc = 0.0 : inc is read from encoder
rot = 0.0000000 : rot = (inc - inc0) * senseinc / inc_per_deg
pierside = 1 : pierside must be given by polar axis
ang = 0.0000000 : ang = senseang * rot
-------------------- REAL ANG = HA -> INC
ang = 0.0000000 : Next target celestial angle HA
pierside = 1 : Next target pier side (+1 or -1)
rot = 0.0000000 : rot = -ang / senseang
inc = 0.0 : inc = inc0 + rot * inc_per_deg / senseinc
"""
if self._axis_type=="DEC" or self._axis_type=="ELEV":
msg_rot0 = "pole"
msg_pierside_inc2rot = "pierside = sign of rot"
if self._latitude<0:
msg_rot2cel = "ang = -90 + abs(rot) (Southern hem.)"
msg_ang2rot = "rot = (90 + ang) * pierside (Southern hem.)"
else:
msg_rot2cel = "ang = 90 - abs(rot) (Northern hem.)"
msg_ang2rot = "rot = (90 - ang) * pierside (Northern hem.)"
else:
msg_rot0 = "meridian"
msg_pierside_inc2rot = "pierside must be given by polar axis"
msg_rot2cel = "ang = senseang * rot"
if self._pierside == self.PIERSIDE_POS1:
msg_ang2rot = "rot = -ang / senseang"
else:
msg_ang2rot = "rot = (-ang-180) / senseang"
print("{}".format(20*"-"))
print("AXIS name = {} ".format(self.name))
print("axis_type = {} ".format(self.axis_type))
print("latitude = {} ".format(self.latitude))
print("real hardware = {} ".format(self.real))
print("{}".format(20*"-"))
print("ratio_wheel_pulley = {} ".format(self.ratio_wheel_pulley))
print("ratio_pulley_motor = {} ".format(self.ratio_pulley_motor))
print("inc_per_motor_rev = {} ".format(self.inc_per_motor_rev))
print("{}".format(20*"-"))
print("inc_per_sky_rev = {} ".format(self.inc_per_sky_rev))
print("inc_per_deg = {} ".format(self.inc_per_deg))
print("{}".format(20*"-"))
print("senseinc = {:d} : 1=positive".format(self.senseinc))
print("inc0 = {:12.1f} : Place mount rot at {} and set inc0 = inc".format(self.inc0, msg_rot0))
print("senseang = {:d} : 1=positive".format(self.senseang))
print("{}".format(20*"-"))
print("slew_deg_per_sec = {} ".format(self.slew_deg_per_sec))
for disp_real in (False,True):
if disp_real==True:
inc = self._inc
rot = self._rot
ang = self._ang
pierside = self._pierside
msg_simu = "REAL"
else:
inc = self._incsimu
rot = self._rotsimu
ang = self._angsimu
pierside = self._piersidesimu
msg_simu = "SIMU"
print("{} {} INC -> ANG = {}".format(20*"-",msg_simu,self.axis_type))
print("inc = {:12.1f} : inc is read from encoder ".format(inc))
print("rot = {:12.7f} : rot = (inc - inc0) * senseinc / inc_per_deg".format(rot))
print("pierside = {:d} : {}".format(pierside, msg_pierside_inc2rot))
print("ang = {:12.7f} : {} ".format(ang, msg_rot2cel))
print("{} {} ANG = {} -> INC".format(20*"-",msg_simu,self.axis_type))
print("ang = {:12.7f} : Next target celestial angle {}".format(ang,self.axis_type))
print("pierside = {:d} : Next target pier side (+1 or -1)".format(pierside))
print("rot = {:12.7f} : {}".format(rot, msg_ang2rot))
print("inc = {:12.1f} : inc = inc0 + rot * inc_per_deg / senseinc ".format(inc))
def synchro_real2simu(self):
"""
Synchronisation between simulation value of axis to real values of the axis. Parameters are setted :
- _incsimu,
- _rotsimu,
- _angsimu,
- _piersidesimu,
Useful for ending slewing movement to prevent difference offset due to calculation time of the simulation mode.
Instanciation of the axis are indispensable. However, the Mountaxis module when running, have by default axisb et axisp instancied.
:Instanciation Usage:
::
>>> axisb = Mountaxis("HA", name = "Unknown")
>>> axisp = Mountaxis("DEC", name = "Unknown")
:Usage:
::
>>> axisb.synchro_real2simu()
>>> axisp.synchro_real2simu()
:returns: No message returned by the fonction
"""
inc = self._inc
rot, pierside = self.inc2rot(inc)
ang = self.rot2cel(rot, pierside)
self._incsimu = inc
self._rotsimu = rot
self._angsimu = ang
self._piersidesimu = pierside
def synchro_simu2real(self):
"""
Synchronisation between real value of axis to simulation values of the axis. Parameters are setted :
- _inc,
- _rot,
- _ang,
- _pierside,
Useful for ending slewing movement to prevent difference offset due to calculation time of the simulation mode.
Instanciation of the axis are indispensable. However, the Mountaxis module when running, have by default axisb et axisp instancied.
:Instanciation Usage:
::
>>> axisb = Mountaxis("HA", name = "Unknown")
>>> axisp = Mountaxis("DEC", name = "Unknown")
:Usage:
::
>>> axisb.sydispnchro_simu2real()
>>> axisp.synchro_simu2real()
:returns: No message returned by the fonction
"""
inc = self._incsimu
rot, pierside = self.inc2rot(inc)
ang = self.rot2cel(rot, pierside)
self._inc = inc
self._rot = rot
self._ang = ang
self._pierside = pierside
def update_inc0(self, inc, ang, pierside=PIERSIDE_POS1):
"""
Update the value of the inc0.
Instanciation of the axis are indispensable. However, the Mountaxis module when running, have by default axisb et axisp instancied.
:Instanciation Usage:
::
>>> axisb = Mountaxis("HA", name = "Unknown")
>>> axisp = Mountaxis("DEC", name = "Unknown")
:Usage:
::
>>> axisb.update_inc0()
>>> axisp.update_inc0()
:param inc:
:param ang:
:param pierside:
:returns: No message returned by the fonction.
"""
if self._axis_type=="DEC" or self._axis_type=="ELEV":
if ang > 90:
ang = 90
if ang < -90:
ang = -90
if self._latitude<0:
rot = (90 + ang) * pierside
else:
rot = (90 - ang) * pierside
# inc = inc0 + rot * inc_per_deg / senseinc
inc0 = inc - rot * self.inc_per_deg / self.senseinc
else:
rot = ang / self.senseang
if self._latitude>0:
rot *= -1
rot = math.fmod(rot+1440,360)
if (rot>180):
rot -= 360
if pierside==self.PIERSIDE_POS1:
# inc = inc0 + rot * inc_per_deg / senseinc
inc0 = inc - rot * self.inc_per_deg / self.senseinc
else:
# inc = inc0 + (rot-180) * inc_per_deg / senseinc
inc0 = inc - (rot-180) * self.inc_per_deg / self.senseinc
self.inc0 = inc0
return inc0
def inc2rot(self, inc:float, save=SAVE_NONE) -> tuple:
"""
Calculation of rot and pierside from inc.
:param inc: Encoder increments (inc)
:type inc: float
:param save: Define how the results are stored:
* SAVE_NONE (=0)
* SAVE_AS_SIMU (=1)
* SAVE_AS_REAL (=2)
:type save: int
:returns: Tuple of (rot, pierside)
:rtype: tuple
The rot value is computed according inc, _inc0, _senseinc, _inc_per_deg and _axis_type.
The save parameter allows to update the real or simu internal values of inc and rot:
* SAVE_AS_SIMU: Only _incsimu, _rotsimu and _piersidesimu for simulated values are updated.
* SAVE_AS_REAL: Only _inc, _rot and _pierside for real values are updated.
* SAVE_NONE: No internal variables are updates.
Instanciation of the axis is indispensable.
:Instanciation Usage:
::
>>> axisb = Mountaxis("HA", name = "Unknown")
:Usage:
::
>>> axisb.inc2rot(2000,axisb.SAVE_NONE)
"""
rot = (inc - self._inc0) * self._senseinc / self._inc_per_deg
# --- identify the pierside of the current pointing for polar axis
if self._axis_type=="DEC" or self._axis_type=="ELEV":
if rot >= 0:
pierside = self.PIERSIDE_POS1
else:
pierside = self.PIERSIDE_POS2
else:
pierside = self.PIERSIDE_POS1
# --- update attributes
if save == self.SAVE_AS_SIMU:
self._rotsimu = rot
self._incsimu = inc
self._piersidesimu = pierside
elif save == self.SAVE_AS_REAL:
self._rot = rot
self._inc = inc
self._pierside = pierside
return rot, pierside
def rot2cel(self, rot:float, pierside:int, save:int=SAVE_NONE) -> float:
"""
Calculation of ang from rot and pierside.
:param rot: Rotation angle (degrees)
:type rot: float
:param pierside: Location of the optical tube against the mount pier:
* PIERSIDE_POS1 (=1) normal position
* PIERSIDE_POS2 (=-1) back flip position
:type pierside: int
:param save: Define how the results are stored:
* SAVE_NONE (=0)
* SAVE_AS_SIMU (=1)
* SAVE_AS_REAL (=2)
:type save: int
:returns: ang
:rtype: float
The ang value is computed according rot, _latitude, _senseang and _axis_type.
The save parameter allows to update the real or simu internal values of and, pierside and rot:
* SAVE_AS_SIMU: Only _angsimu, _rotsimu and _piersidesimu for simulated values are updated.
* SAVE_AS_REAL: Only _ang, _rot and _pierside for real values are updated.
* SAVE_NONE: No internal variables are updates.
Instanciation of the axis is indispensable.
:Instanciation Usage:
::
>>> axisb = Mountaxis("HA", name = "Unknown")
:Usage:
::
>>> axisb.rot2cel(10, axisb.PIERSIDE_POS1, axisb.SAVE_NONE)
"""
# compute apparent ang
ang = 0
if self._axis_type=="DEC" or self._axis_type=="ELEV":
if self._latitude<0:
# --- southern hemisphere
ang = -90 + abs(rot)
else:
# --- nothern hemisphere
ang = 90 - abs(rot)
# --- following lines must be verified
if ang<-90:
ang +=360;
if ang>90:
ang -=360;
# identify the pierside of the current pointing
if self._axis_type=="HA" or self._axis_type=="ROLL":
if self._latitude<0:
ang = self._senseang * rot
else:
ang = self._senseang * -rot
if pierside == self.PIERSIDE_POS2:
ang += 180
ang = math.fmod(ang+720,360)
if (ang>180):
ang -= 360
if self._axis_type=="AZ":
if self._latitude<0:
ang = self._senseang * rot
else:
ang = self._senseang * -rot
if pierside == self.PIERSIDE_POS2:
ang += 180
ang = math.fmod(ang+720,360)
if save == self.SAVE_AS_SIMU:
self._angsimu = ang
self._piersidesimu = pierside
self._rotsimu = rot
elif save == self.SAVE_AS_REAL:
self._ang = ang
self._pierside = pierside
self._rot = rot
return ang
def ang2rot(self, ang:float, dang:float, pierside:int=PIERSIDE_POS1, save:int=SAVE_NONE) -> float:
"""
Calculation rot from ang and pierside.
:param ang: Celestial angle (degrees)
:type ang: float
:param pierside: Location of the optical tube against the mount pier:
* PIERSIDE_POS1 (=1) normal position
* PIERSIDE_POS2 (=-1) back flip position
:type pierside: int
:param save: Define how the results are stored:
* SAVE_NONE (=0)
* SAVE_AS_SIMU (=1)
* SAVE_AS_REAL (=2)
:type save: int
:returns: rot
:rtype: float
The rot value is computed according rot, _latitude, _senseang and _axis_type.
The save parameter allows to update the real or simu internal values of and, pierside and rot:
* SAVE_AS_SIMU: Only _angsimu, _rotsimu and _piersidesimu for simulated values are updated.
* SAVE_AS_REAL: Only _ang, _rot and _pierside for real values are updated.
* SAVE_NONE: No internal variables are updates.
Instanciation of the axis is indispensable.
:Instanciation Usage:
::
>>> axisb = Mountaxis("HA", name = "Unknown")
:Usage:
::
>>> axisb.ang2rot(-10, axisb.PIERSIDE_POS1, axisb.SAVE_NONE)
pierside must not be 0!
"""
# compute apparent rot
rot = 0
drot = dang
if self._axis_type=="DEC" or self._axis_type=="ELEV":
if self._latitude<0:
# --- southern hemisphere
rot = (90 + ang) * pierside
drot *= -1
else:
# --- nothern hemisphere
rot = (90 - ang) * pierside
if self._axis_type=="HA" or self._axis_type=="AZ":
#drot *= pierside
if pierside==self.PIERSIDE_POS2:
ang -= 180
if self._latitude<0:
rot = ang
else:
rot = -ang
drot *= -1
if (rot>180):
rot -= 360
if (rot<-180):
rot += 360
rot /= self._senseang
if save == self.SAVE_AS_SIMU:
self._angsimu = ang
self._dangsimu = dang
self._piersidesimu = pierside
self._rotsimu = rot
self._drotsimu = drot
elif save == self.SAVE_AS_REAL:
self._ang = ang
self._dang = dang
self._pierside = pierside
self._rot = rot
self._drot = drot
return rot, drot
def rot2inc(self, rot:float, drot:float, save:int=SAVE_NONE) -> float :
"""
Calculation of inc from rot.
:param rot: Rotation angle (degrees)
:type rot: float
:param save: Define how the results are stored:
* SAVE_NONE (=0)
* SAVE_AS_SIMU (=1)
* SAVE_AS_REAL (=2)
:type save: int
:returns: inc
:rtype: float
The inc value is computed according rot, _inc0, _senseinc, _inc_per_deg.
The inc values are calculated in the interval from -inc_per_sky_rev/2 to +inc_per_sky_rev/2.
The save parameter allows to update the real or simu internal values of inc and rot:
* SAVE_AS_SIMU: Only _incsimu, _rotsimu for simulated values are updated.
* SAVE_AS_REAL: Only _inc, _rot for real values are updated.
* SAVE_NONE: No internal variables are updates.
Instanciation of the axis is indispensable.
:Instanciation Usage:
::
>>> axisb = Mountaxis("HA", name = "Unknown")
:Usage:
::
>>> axisb.rot2inc(10,axisb.SAVE_NONE)
"""
inc = self._inc0 + rot * self._inc_per_deg / self._senseinc
dinc = drot * self._inc_per_deg / self._senseinc
# --- verify the limits
inc_per_sky_rev = self._inc_per_sky_rev
limn = -inc_per_sky_rev/2
limp = inc_per_sky_rev/2
if inc>limp:
inc -= inc_per_sky_rev
if inc<limn:
inc += inc_per_sky_rev
# ---
if save == self.SAVE_AS_SIMU:
self._rotsimu = rot
self._drotsimu = drot
self._incsimu = inc
self._dincsimu = dinc
elif save == self.SAVE_AS_REAL:
self._rot = rot
self._drot = drot
self._inc = inc
self._dinc = dinc
return inc, dinc
# =====================================================================
# =====================================================================
# Motion methods for simulation
# =====================================================================
# =====================================================================
def simu_motion_start(self, *args, **kwargs):
"""
Start a simulation motion.
:param args: First args is a string to define the type of motion to do.
:type args: args
:param kwargs: Dictionnary of motion parameters:
:type kwargs: kwargs
:returns: _incsimu
:rtype: float
Types of motion can be:
* SLEW or ABSOLUTE: Absolute position of the target position.
* MOVE or CONTINUOUS: Infinite motion.
Dictionnary of motion parameters are:
* Case motion type = SLEW or ABSOLUTE:
* POSITION (inc or ang according the FRAME).
* VELOCITY (deg/sec). Slewing speed.
* DRIFT (deg/sec). Drift speed. Can be negative.
* Case motion type = MOVE or CONTINUOUS:
* VELOCITY (deg/sec). Slewing speed. Can be negative.
* DRIFT (deg/sec). Drift speed. Can be negative.
* For all cases of motions:
* FRAME (str). "inc" (by default) or "ang"
* For all cases of motions:
* NIGHTEPHEM (dict nightephem). {} (by default) else use the night ephemeris as a look up table
Instanciation of the axis is mandatory.
:Instanciation Usage:
::
>>> axisb = Mountaxis("HA", name = "Unknown")
:Usage:
::
>>> axisb.simu_motion_start("SLEW", position=1000, velocity=100, frame='inc', drift=0)
"""
# ========= Definition of motion_types
# --- Dico of motion types and their parameters
motion_types = {}
motion_types["SLEW"] = {"MANDATORY" : {"POSITION":[float,0.0], "VELOCITY":[float,1.0]}, "OPTIONAL" : {"DRIFT":[float,0.0]} }
motion_types["MOVE"] = {"MANDATORY" : {"VELOCITY":[float,1.0]}, "OPTIONAL" : {"DRIFT":[float,0.0]} }
motion_types["DRIFT"] = {"MANDATORY" : {"DRIFT":[float,0.0]}, "OPTIONAL" : {} }
# --- deprecadec
motion_types["ABSOLUTE"] = {"MANDATORY" : {"POSITION":[float,0.0], "VELOCITY":[float,1.0]}, "OPTIONAL" : {"DRIFT":[float,0.0]} }
motion_types["CONTINUOUS"] = {"MANDATORY" : {"VELOCITY":[float,1.0]}, "OPTIONAL" : {"DRIFT":[float,0.0]} }
# --- Dico of optional parameters for all motion types
param_optionals = {}
param_optionals["FRAME"] = (str,'inc') # inc or ang
param_optionals["NIGHTEPHEM"] = (dict,{}) # Input look up table
# ========= Decode params
self._simu_params = self.decode_args_kwargs(0,motion_types, param_optionals, *args, **kwargs)
#print(f"### self._simu_params={self._simu_params}")
# ========= Decode params
self._simu_motion_type = self._simu_params["SELECTED_ARG"]
# ========= Update motion_state_simu
self.motion_state_simu = self.MOTION_STATE_UNKNOWN
if self._simu_motion_type=="SLEW" or self._simu_motion_type=="ABSOLUTE":
self.motion_state_simu = self.MOTION_STATE_SLEWING
#self.log.print("SLEW drift={} ".format(self._simu_params['DRIFT']))
elif self._simu_motion_type=="MOVE" or self._simu_motion_type=="CONTINUOUS":
self.motion_state_simu = self.MOTION_STATE_MOVING
#self.log.print("MOVE drift={} ".format(self._simu_params['DRIFT']))
elif self._simu_motion_type=="DRIFT":
self.motion_state_simu = self.MOTION_STATE_DRIFTING
# --- Update t0, inct0
self._simu_motion_t0 = time.time()
self._simu_motion_inct0 = self._incsimu
# --- Update start_t0, start_inct0
self._simu_motion_start_t0 = self._simu_motion_t0
self._simu_motion_start_inct0 = self._simu_motion_inct0
# --- Fille history motion
history = [time.time(), 0.0, "MOTION_START", self._simu_motion_type, self._simu_params]
self._history.append(history)
# --- get the current inc
inc = self.simu_update_inc()
return inc
def simu_motion_stop(self):
"""
Stop a simulation motion.
"""
# --- get the current inc
inc = self.simu_update_inc()
# --- we stop
self.motion_state_simu = self.MOTION_STATE_NOMOTION
t = time.time()
dt = t-self._simu_motion_start_t0;
history = [t, dt, "MOTION_STOP", self.motion_state_simu , inc]
self._history.append(history)
# --- obsolete attributes
self._simu_signal_move = 0
self._simu_signal_drift = 0
return inc
def simu_motion_stop_move(self):
"""
Stop a moving motion.
"""
if self.motion_state_simu == self.MOTION_STATE_MOVING:
# --- get the current inc
inc = self.simu_update_inc()
# --- We switch to drift
self.motion_state_simu = self.MOTION_STATE_DRIFTING
# --- get the current inc
inc = self.simu_update_inc()
return inc
def simu_update_inc(self):
"""
Calculate the current position of a simulation motion.
A simple rectangular profile is applied to velocity.
"""
if self.motion_state_simu == self.MOTION_STATE_NOMOTION:
return self._incsimu
# --- compute the duration from t0
t = time.time()
t0 = self._simu_motion_t0
inc = self._incsimu
inct0 = self._simu_motion_inct0
# --- get motion parameters
vel = 0
if "VELOCITY" in self._simu_params:
# --- velocity unit deg/sec
vel = float(self._simu_params["VELOCITY"])
drift = 0
if "DRIFT" in self._simu_params:
# --- drift unit deg/sec
drift = float(self._simu_params["DRIFT"])
frame = 'ang'
if "FRAME" in self._simu_params:
frame = self._simu_params["FRAME"]
if frame == "ang":
# --- conversions deg/sec to inc/sec
vel *= self.inc_per_deg
drift *= self.inc_per_deg
if "NIGHTEPHEM" in self._simu_params:
night_ephem = self._simu_params["NIGHTEPHEM"]
# --- moving case
if self.motion_state_simu == self.MOTION_STATE_MOVING:
# --- So we can compute the inc since t0
inc = inct0 + vel*(t-t0)
# --- slewing case
if self.motion_state_simu == self.MOTION_STATE_SLEWING:
if night_ephem == {}:
# --- compute the pos to reach from position
inc_end_slew = float(self._simu_params["POSITION"])
if frame == "ang":
# --- conversions deg to inc
inc_end_slew *= self.inc_per_deg
# --- process the sign of vel
#if self._axis_type=="HA":
# print("inct0={} inc_end_slew={:.1f} vel={}".format(inct0,inc_end_slew,vel))
else:
# --- compute the pos to reach from night_ephem
inc, dinc = self._simu_ephem2inc(night_ephem, "now")
inc_end_slew = inc
if inct0 < inc_end_slew:
vel = abs(vel)
else:
vel = -abs(vel)
# --- compute the expected t to reach inc_end_slew
t1 = (inc_end_slew-inct0) / vel + t0
#print("vel={} t={} t1={}".format(vel,t,t1))
if t < t1:
# --- We did not overtake the target. We continue to slew
# --- So we can compute the inc since t0
inc = inct0 + vel*(t-t0)
#if self._axis_type=="HA":
# print("t<t1 {:.0f} = {:.0f} + {:.1f} * {}".format(inc, inct0, vel, (t-t0)))
t0 = t
else:
# --- We overtook the target. We switch to drift at time t1
# --- So we can compute the inc since t0
self.motion_state_simu = self.MOTION_STATE_DRIFTING
t0 = t1
inct0 = inc_end_slew
inc = inct0
#if self._axis_type=="HA":
# print("t>=t1 {:.0f}".format(inc))
# --- drifting case
if self.motion_state_simu == self.MOTION_STATE_DRIFTING:
#if self._axis_type=="HA":
# print("drift drift={} inc/sec".format(drift))
if night_ephem == {}:
# --- compute the pos to reach from position
if drift == 0:
self.motion_state_simu = self.MOTION_STATE_NOMOTION
else:
# --- compute the current inc
inc = inct0 + drift*(t-t0)
#if self._axis_type=="HA":
# self.log.print("t<t1 {:.0f} = {:.0f} + {:.1f} * {}".format(inc, inct0, drift, (t-t0)))
# --- We must test if we overtake the inc limits
else:
# --- compute the pos to reach from night_ephem
inc, dinc = self._simu_ephem2inc(night_ephem, "now")
t0 = t
# --- update the inc0 and t0 values
self._incsimu = inc
self._simu_motion_t0 = t0
self._simu_motion_inct0 = inc
# --- deprecated attributes
if self.motion_state_simu == self.MOTION_STATE_NOMOTION:
self._simu_signal_move = 0
else:
self._simu_signal_move = 1
if self.motion_state_simu == self.MOTION_STATE_DRIFTING:
self._simu_signal_drift = 1
else:
self._simu_signal_drift = 0
# --- update the motion history
dt = t-self._simu_motion_start_t0;
history = [t, dt, "MOTION_UPDATE", self.motion_state_simu , inc]
self._history.append(history)
return inc
def _simu_ephem2inc(self, night_ephem:dict, date:Date= "now")->tuple:
eph = self._eph.date_ephem(night_ephem)
if self._axis_type=="DEC":
ang = eph['dec']
drift = eph['ddec']
if self._axis_type=="ELEV":
ang = eph['alt']
drift = eph['dalt']
if self._axis_type=="AZ":
ang = eph['az']
drift = eph['daz']
if self._axis_type=="HA":
ang = eph['ha']
drift = eph['dha']
inc = ang * self.inc_per_deg # inc
dinc = drift * self.inc_per_deg # inc/s
return inc, dinc
# =====================================================================
# =====================================================================
# Special methods
# =====================================================================
# =====================================================================
def __init__(self, *args, **kwargs):
# --- Dico of optional parameters for all axis_types
param_optionals = {}
param_optionals["RATIO_WHEEL_PULLEY"] = (float, 5.250)
param_optionals["RATIO_PULLEY_MOTOR"] = (float, 100.0)
param_optionals["INC_PER_MOTOR_REV"] = (float, 1000.0)
param_optionals["INC0"] = (float, 0.0)
param_optionals["SENSEINC"] = (float, Mountaxis.POSITIVE)
param_optionals["SENSEANG"] = (float, Mountaxis.POSITIVE)
param_optionals["REAL"] = (bool, False)
param_optionals["DESCRIPTION"] = (str, "No description.")
param_optionals["LANGUAGE_PROTOCOL"] = (str, "")
param_optionals["SITE"] = (Siteobs,"GPS 0 E 45 100")
# --- Dico of axis_types and their parameters
axis_types = {}
# --- equatorial
axis_types["HA"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Hour Angle"]} }
axis_types["DEC"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Declination"]} }
# --- altaz
axis_types["AZ"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Azimuth"]} }
axis_types["ELEV"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Elevation"]} }
axis_types["ROT"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Rotator"]} }
# --- altalt
axis_types["ROLL"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Roll"]} }
axis_types["PITCH"]= {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Pitch"]} }
axis_types["YAW"] = {"MANDATORY" : {"NAME":[str,"Unknown"]}, "OPTIONAL" : {"LABEL":[str,"Yaw"]} }
# N.B. Generally yaw is fixed in EW or NS direction
# --- Decode args and kwargs parameters
self._axis_params = self.decode_args_kwargs(0, axis_types, param_optionals, *args, **kwargs)
# ===
self.axis_type = self._axis_params["SELECTED_ARG"]
# ===
self._name = self._axis_params["NAME"]
self._description = self._axis_params["DESCRIPTION"]
self._language_protocol = self._axis_params["LANGUAGE_PROTOCOL"]
# === Observatory location for ephemeris
if str(type(self._axis_params["SITE"])) == "<class 'siteobs.Siteobs'>":
self.siteobs = self._axis_params["SITE"]
else:
self.siteobs = Siteobs(self._axis_params["SITE"])
# === Ephemeris (to compute night ephemeis)
self._eph = Ephemeris()
self._eph.set_home(self.siteobs.home)
# === relations mechanics and inc
self.ratio_wheel_pulley = self._axis_params["RATIO_WHEEL_PULLEY"]
self.ratio_pulley_motor = self._axis_params["RATIO_PULLEY_MOTOR"]
self.inc_per_motor_rev = self._axis_params["INC_PER_MOTOR_REV"]
# === relations angle and inc
self.inc0 = self._axis_params["INC0"]
self.senseinc = self._axis_params["SENSEINC"]
self.senseang = self._axis_params["SENSEANG"]
# === simulation
self.real = self._axis_params["REAL"]
self.simu_signal_move = 0
self._simu_signal_drift = 0
self._simu_param_vel = 0
self._simu_param_drift = 0
self._simu_param_frame = "ang"
self._simu_motion_t0 = time.time()
self._simu_motion_start_t0 = self._simu_motion_t0
# === velocities only for inheritance
self.slewmax_deg_per_sec = 5.0
self.slew_deg_per_sec = 5.0
# === motion states
self.motion_state_simu = self.MOTION_STATE_NOMOTION
self.motion_state = self.MOTION_STATE_NOMOTION
# === history
self._history = []
self._simu_start_t0 = time.time()
# #####################################################################
# #####################################################################
# #####################################################################
# Main
# #####################################################################
# #####################################################################
# #####################################################################
if __name__ == "__main__":
cwd = os.getcwd()
example = 1
print("Example = {}".format(example))
if example == 1:
# === SCX11
# --- default values
ratio_wheel_pulley = 5.25 ; # 5.25
ratio_pulley_motor = 100.0 ; # harmonic reducer
inc_per_motor_rev = 1000.0 ; # IMC parameter. System Confg -> System Parameters - Distance/Revolution
# --- SCX11 HA
axisp = Mountaxis("DEC", name = "SCX11", ratio_wheel_pulley=ratio_wheel_pulley, ratio_pulley_motor=ratio_pulley_motor, inc_per_motor_rev=inc_per_motor_rev, inc0=0, senseinc=1, real=False)
axisp.update_inc0(0,0,axisp.PIERSIDE_POS1)
inc = axisp.simu_update_inc()
print("inc before SLEW={:.0f} state={}".format(inc,axisp.motion_state_simu))
axisp.simu_motion_start("SLEW", position=30, velocity=4.0, frame="ang", drift=0.1)
time.sleep(1)
inc = axisp.simu_update_inc()
print("inc during SLEW={:.0f} state={}".format(inc,axisp.motion_state_simu))
for k in range(10):
time.sleep(1)
inc = axisp.simu_update_inc()
print("inc during SLEW={:.0f} state={}".format(inc,axisp.motion_state_simu))
axisp.simu_motion_start("MOVE", velocity=-1.0, frame="ang", drift=0.1)
for k in range(10):
time.sleep(1)
inc = axisp.simu_update_inc()
print("inc during MOVE={:.0f} state={}".format(inc,axisp.motion_state_simu))
axisp.simu_motion_stop_move() # stop move, start drift
for k in range(10):
time.sleep(1)
inc = axisp.simu_update_inc()
print("inc after MOVE={:.0f} state={}".format(inc,axisp.motion_state_simu))
inc = axisp.simu_motion_stop()
print("inc after STOP={:.0f} state={}".format(inc,axisp.motion_state_simu))
time.sleep(1)
inc = axisp.simu_update_inc()
print("inc after STOP={:.0f} state={}".format(inc,axisp.motion_state_simu))
inc = axisp.simu_update_inc()
print("inc before DRIFT={:.0f} state={}".format(inc,axisp.motion_state_simu))
axisp.simu_motion_start("DRIFT", frame="ang", drift=0.1)
for k in range(10):
time.sleep(1)
inc = axisp.simu_update_inc()
print("inc during DRIFT={:.0f} state={}".format(inc,axisp.motion_state_simu))
inc = axisp.simu_motion_stop()
print("inc after STOP={:.0f} state={}".format(inc,axisp.motion_state_simu))
if example == 2:
# === EQMOD
# --- default values to simulate a EQ6 mount
a = 9024000 ; # microsteps / 360° : Number of microsteps for one turn over the sky
#b = 64935 ; # (microsteps2 / sec) : Velocity parameter (i) = (1|g) * (b) / speedtrack(deg/s) / ((a)/360)
d = 8388608 ; # (microsteps) : initial position (j) when the mount is just switched on
s = 50133 ; # (microsteps) : Microsteps to a complete turnover of worm
inc_per_sky_rev = a
ratio_pulley_motor = 1
inc_per_motor_rev = s
ratio_wheel_pulley = inc_per_sky_rev/(ratio_pulley_motor*inc_per_motor_rev)
# --- EQMOD HA
axisb = Mountaxis("HA", name = "EQMOD", ratio_wheel_pulley=ratio_wheel_pulley, ratio_pulley_motor=ratio_pulley_motor, inc_per_motor_rev=inc_per_motor_rev, inc0=0, senseinc=1, real=False)
axisb.senseinc = 1
axisb.update_inc0(d,-90,axisb.PIERSIDE_POS1)
axisb.slew_deg_per_sec = 10
# --- EQMOD DEC
axisp = Mountaxis("DEC", name = "EQMOD", ratio_wheel_pulley=ratio_wheel_pulley, ratio_pulley_motor=ratio_pulley_motor, inc_per_motor_rev=inc_per_motor_rev, inc0=0, senseinc=1, real=False)
axisp.update_inc0(d+a/4,90,axisp.PIERSIDE_POS1)
axisp.slew_deg_per_sec = 10
inc = axisp.simu_update_inc()
print("inc before CONTINUOUS={:.0f}".format(inc))
axisp.simu_motion_start("CONTINUOUS", frame="ang", drift=0.1)
time.sleep(3)
inc = axisp.simu_update_inc()
print("inc during CONTINUOUS={:.0f}".format(inc))
inc = axisp.simu_motion_stop()
print("inc after CONTINUOUS={:.0f}".format(inc))
time.sleep(1)
inc = axisp.simu_update_inc()
print("inc after CONTINUOUS={:.0f}".format(inc))
inc = axisp.simu_update_inc()
print("inc before OFFSET={:.0f}".format(inc))
axisp.simu_motion_start("OFFSET", velocity=2.1, offset=1.0, drift=0)
time.sleep(3)
inc = axisp.simu_update_inc()
print("inc during OFFSET={:.0f}".format(inc))
inc = axisp.simu_motion_stop()
print("inc after OFFSET={:.0f}".format(inc))
time.sleep(1)
inc = axisp.simu_update_inc()
print("inc after OFFSET={:.0f}".format(inc))