ephemeris.py 66.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
# -*- coding: utf-8 -*-
"""
@author: aklotz@irap.omp.eu
"""

import os
import time
import skyfield.api
from skyfield.api import wgs84
from astroquery.simbad import Simbad
from astroquery.mpc import MPC
import astropy.units as u
from astropy.coordinates import ICRS, AltAz, HADec, EarthLocation, SkyCoord
from astropy.time import Time
import numpy as np
import requests

try:
    from .home import Home
except:
    from home import Home

try:
    from .dates import Date
except:
    from dates import Date

try:
    from .durations import Duration
except:
    from durations import Duration

try:
    from .angles import Angle
except:
    from angles import Angle

try:
    from .coords import Coords
except:
    from coords import Coords

try:
    from .filenames import FileNames
except:
    from filenames import FileNames

try:
    from .guitastrotools import GuitastroTools, GuitastroException
except:
    from guitastrotools import GuitastroTools, GuitastroException

# #####################################################################
# #####################################################################
# #####################################################################
# Class Ephemeris
# #####################################################################
# #####################################################################
#
#
# #####################################################################

class EphemerisException(GuitastroException):
    """Exception raised for errors in the Ephemeris class.
    """

    TARGET_NOT_FOUND = 0
    DATE_OUTSIDE_THE_NIGHT = 1

    errors = [""]*2
    errors[TARGET_NOT_FOUND] = "Target not found"
    errors[DATE_OUTSIDE_THE_NIGHT] = "The date is outside the night limits"



class Ephemeris(EphemerisException, GuitastroTools):
    """Compute coordinates of an object from various input formats

    :Usage:

    First, instanciate an object from the class:

    ::

        eph = Ephemeris()

    Second, compute coordinates of the Sun at Guitalens at the current time:

    ::

        target  = "sun"
        eph.set_home("guitalens")
        date = "Now"
        ephem = eph.radec(target, unit_ra="H0.2", unit_dec="d+090.1")
        ra, dec, equinox, epoch = ephem['ra_equinox'], ephem['dec_equinox'], ephem['header']['equinox'], ephem['jd']
        print(f"{name} ra={ra} dec={dec}")

    To get the drift:

        target  = "sun"
        eph.set_home("guitalens")
        date = "Now"
        ephem = eph.radec_speed(target, unit_ra="H0.2", unit_dec="d+090.1")
        ra, dec, equinox, epoch, dra, ddec = ephem['ra_equinox'], ephem['dec_equinox'], ephem['header']['equinox'], ephem['jd'], ephem['dra_equinox'], ephem['ddec_equinox']
        print(f"{name} ra={ra} dec={dec} dra={dra} ddec={ddec}")

    Note the output of the method radec is ephemeris dictionary.

    Other examples of inputs:

    ::

        eph.set_home("GPS 2.567 E -21.456 1205")
        date = "2022-01-31T22:34:15"
        ephem = eph.radec(target, unit_ra="H0.2", unit_dec="d+090.1")
        ra, dec, equinox, epoch = ephem['ra_equinox'], ephem['dec_equinox'], ephem['header']['equinox'], ephem['jd']

    The target is a major planet of the solar system (+ Moon and Sun):

    ::

        target = "neptune"

    The target is a name which can be solved by Simbad:

    ::

        target = "UGC 3462"

    The target is a name which can be solved by MPCEphem:

    ::

        target = "1994 PC1345"

    The target is a RA, Dec coordinates:

    ::

        target = "RADEC 13h29m40s +47d04m09s"

    The target is a RA, Dec coordinates followed by the drift dRA, dDec (drift in deg/s):

    ::

        target = "RADECDRIFT 13h29m40s +47d04m09s 0.0123 -0.0452"

    The target is a list of coordinates at given times.
    The output is an interpolation:

    ::

        target  = "DATERADECS "
        target += "2022-01-31T22:34:00 : 12 34 32.12 -01 45 46.2\\n"
        target += "2022-01-31T22:35:00 : 12 34 33.23 -01 56 04.5\\n"

    The target is designed in GCN Circulars:

    ::

        target = "GCNC 220408A"

    The target is a name which can be solved by SGP4 and the Celestrack database.
    This example shows how to compute the derivatives of the coordinates:

    ::

        target = "CELESTRACK ISS"
        ephem = eph.radec_speed(target, date="now")
        ra, dec, equinox, epoch, dra, ddec = ephem['ra_equinox'], ephem['dec_equinox'], ephem['header']['equinox'], ephem['jd'], ephem['dra_equinox'], ephem['ddec_equinox']
        print(f"{name} ra={ra} dec={dec} dra={dra*3600:.3f} ddec={ddec*3600:.3f}")


    The target is a name which can be solved by SGP4 and its TLE.

    ::

        name = "GSAT0203 (PRN E26)"
        tle  = f"TLE {name}\\n"
        tle += "1 40544U 15017A   22029.59832018 -.00000064  00000+0  00000+0 0  9991\\n"
        tle += "2 40544  56.7391  25.1641 0005059 269.6475  90.3121  1.70475734 42591\\n"
        ephem = eph.radec_speed(tle)
        ra, dec, equinox, epoch, dra, ddec = ephem['ra_equinox'], ephem['dec_equinox'], ephem['header']['equinox'], ephem['jd'], ephem['dra_equinox'], ephem['ddec_equinox']
        print(f"{name} ra={ra:.6f} dec={dec:.6f} dra={dra*3600:.5f} ddec={ddec*3600:.5f}")

    """

    TARGET_TYPE_NAME = 1
    TARGET_TYPE_RADEC = 2
    TARGET_TYPE_DATERADECS = 3
    TARGET_TYPE_TLEFILES = 4
    TARGET_TYPE_TLE = 5
    TARGET_TYPE_GCNC = 6
    TARGET_TYPE_MPC = 7
    TARGET_TYPE_RADECDRIFT = 8
    TARGET_TYPE_HADEC = 9
    TARGET_TYPE_AZELEV = 9

    def __init__(self):
        self._observatory = None
        self.home = None
        self._obscodes = None
        self._earthsatellites = None
        # ---
        self._planets = skyfield.api.load('de421.bsp')
        self._earth = self._planets['earth']
        # ---
        self.home = Home("GPS 0.1423 E 42.936639 2880")
        self.set_home(self.home)
        # ---
        self._ts = skyfield.api.load.timescale()
        self._earthsatellites = None
        # ---
        self._computed_ephem = {}

    def set_home(self, home):
        """Set the home position (on Earth)

        home can be "148", "guitalens"
        """
        found = False
        if type(home)==Home:
            self.home = home
            found = True
        else:
            try:
                self.home = Home(home)
                found = True
            except:
                home = str(home).upper()
                #print(f"home={home}")
                if isinstance(self._obscodes, type(None)) == True:
                    self._obscodes = MPC.get_observatory_codes()
                # astropy.table.table.Table
                # self._obscodes[0].colnames
                # ['Code', 'Longitude', 'cos', 'sin', 'Name']
                # self._obscodes[lig][col]
                for klig in range(len(self._obscodes)):
                    lig = self._obscodes[klig]
                    code, longitude, cos, sin, name = lig
                    if home==code:
                        found = True
                        break
                    if name.upper().find(home) >= 0:
                        found = True
                        #print(f"code={code}")
                        break
                if found==True:
                    home = f"MPC {longitude} {cos} {sin}"
                    self.home = Home(home)
        if found==False:
            if self.home==None:
                self.home = Home("GPS 0.1423 E 42.936639 2880")
        latitude = self.home.latitude
        longitude = self.home.longitude
        self._observatory = self._earth + wgs84.latlon(latitude, longitude)

    def _date2ts(self, date):
        date = Date(date)
        y, m, d, hh, mm, ss = date.ymdhms()
        self._t = self._ts.utc(y, m, d, hh, mm, ss)

    def name2solar_system_planet(self, name=""):
        """ Return the identificator of skyfield planet from a human name
        """
        lps = []
        lplanets = list(self._planets.names().values())
        for lplanet in lplanets:
            for planet in lplanet:
                lps.append(planet)
        res = None
        if name=="":
            return lps
        else:
            name = name.upper()
            if name in lps:
                return name
            name_bar = name + "_BARYCENTER"
            if name_bar in lps:
                return name_bar
            if len(name)>=3:
                name = name[:3]
                for lp in lps:
                    if name == lp[:3]:
                        res = lp
            return res

    def tle_files(self):
        # ---
        tlefiles = []
        # --- Weather & Earth Resources Satellites
        tlefiles.append("weather.txt")
        tlefiles.append("noaa.txt")
        tlefiles.append("goes.txt")
        tlefiles.append("resource.txt")
        tlefiles.append("sarsat.txt")
        tlefiles.append("dmc.txt")
        tlefiles.append("tdrss.txt")
        tlefiles.append("argos.txt")
        tlefiles.append("planet.txt")
        tlefiles.append("spire.txt")
        # --- Communications Satellites
        tlefiles.append("geo.txt")
        tlefiles.append("gpz.txt")
        tlefiles.append("gpz-plus.txt")
        tlefiles.append("intelsat.txt")
        tlefiles.append("ses.txt")
        tlefiles.append("iridium.txt")
        tlefiles.append("iridium-NEXT.txt")
        tlefiles.append("starlink.txt")
        tlefiles.append("orbcomm.txt")
        tlefiles.append("globalstar.txt")
        tlefiles.append("amateur.txt")
        tlefiles.append("x-comm.txt")
        tlefiles.append("other-comm.txt")
        tlefiles.append("satnogs.txt")
        tlefiles.append("gorizont.txt")
        tlefiles.append("raduga.txt")
        tlefiles.append("molniya.txt")
        # --- Navigation Satellites
        tlefiles.append("gps-ops.txt")
        tlefiles.append("glo-ops.txt")
        tlefiles.append("galileo.txt")
        tlefiles.append("beidou.txt")
        tlefiles.append("sbas.txt")
        tlefiles.append("nnss.txt")
        tlefiles.append("musson.txt")
        # --- Scientific Satellites
        tlefiles.append("science.txt")
        tlefiles.append("geodetic.txt")
        tlefiles.append("engineering.txt")
        tlefiles.append("education.txt")
        # --- Miscellaneous Satellites
        tlefiles.append("military.txt")
        tlefiles.append("radar.txt")
        tlefiles.append("cubesat.txt")
        tlefiles.append("other.txt")
        return tlefiles

    def tle_delete(self):
        tlefiles = self.tle_files()
        for tlefile in tlefiles:
            if os.path.exists(tlefile)==True:
                os.remove(tlefile)

    def tle_download(self, reload=False):
        """Download the Celestrack TLE files if needed.

        The TLE files are considered obsolete after 3 days.
        """
        dtmax = 86400*3 # s
        if self._earthsatellites != None:
            dt = time.time() - self._earthsatellite_time
            if dt < dtmax:
                return
        # ---
        tlefiles = self.tle_files()
        stations_url0 = 'http://celestrak.com/NORAD/elements/'
        kf = 0
        satellites = []
        for tlefile in tlefiles:
            reload = False
            if os.path.exists(tlefile)==True:
                dt = time.time() - os.path.getmtime(tlefile)
                # print(f"tlefile={tlefile} dt={dt}")
                if dt > dtmax:
                    reload = True
            # lire la date du fichier et forcer ou non la mise à jour
            # 'http://celestrak.com/NORAD/elements/stations.txt'
            stations_url = stations_url0 + tlefile
            try:
                sats = skyfield.api.load.tle_file(stations_url, reload = reload)
                if kf==0:
                    satellites = sats
                else:
                    satellites.extend(sats)
            except:
                pass
            kf += 1
        self._earthsatellites = satellites
        self._earthsatellite_time = time.time()
        return len(satellites)

    def gcnc_download(self, name):
        """Download the gcnc files if needed.
        From https://gcn.gsfc.nasa.gov/selected.html
        Valid only from 020305 to 230414B
        TODO https://github.com/nasa-gcn/gcn-kafka-python for earliests.
        or https://gcn.nasa.gov/docs/contributing
        """
        equinox = "J2000"
        sra = "0"
        sdec = "0"
        gcncfile = name.upper()+".gcn3"
        yy = gcncfile[0:2]
        mm = gcncfile[2:4]
        dd = gcncfile[4:6]
        t0 = f"20{yy}-{mm}-{dd}T00:00:00"
        gcnc_url0 = 'https://gcn.gsfc.nasa.gov/other/'
        ident = gcncfile.replace(" ","+")
        url = f"{gcnc_url0}{ident}"
        res = requests.get(url, timeout = 10)
        if res.ok==False:
            # GCNC not found
            return sra, sdec, equinox, t0
        texte = res.text
        lignes = texte.split("\n")
        st0 = ""
        # --- Swift
        # At 11:54:30 UT, the Swift Burst Alert Telescope (BAT) triggered and
        if sra=="0" or sdec=="0":
            for ligne in lignes:
                key = "the Swift Burst Alert Telescope (BAT) triggered"
                k1 = ligne.find(key)
                if k1 >= 0:
                    st0 = ligne.split()[1]
                    t0 = t0[0:10]+"T"+st0
                ligne = ligne.upper()
                keys = ["RA(J2000):","RA (J2000):","RA(J2000)  =", "RA(J2000) ="]
                for key in keys:
                    k1 = ligne.find(key)
                    if k1 >= 0:
                        k1 += len(key)
                        sra = ligne[k1:]
                keys = ["DEC(J2000):","DEC (J2000):","DEC(J2000) ="]
                for key in keys:
                    k1 = ligne.find(key)
                    if k1 >= 0:
                        k1 += len(key)
                        sdec = ligne[k1:]
        # --- Fermi
        # At 22:23:51 UT on 10 Mar 2022, the Fermi Gamma-ray Burst Monitor (GBM) triggered and located
        if sra=="0" or sdec=="0":
            for ligne in lignes:
                key = "the Fermi Gamma-ray Burst Monitor (GBM) triggered"
                k1 = ligne.find(key)
                if k1 >= 0:
                    st0 = ligne.split()[1]
                    t0 = t0[0:10]+"T"+st0
                ligne = ligne.upper()
                ligne = ligne.replace(",","")
                key = "IS RA = "
                k1 = ligne.find(key)
                if k1 >= 0:
                    k1 += len(key)
                    lig = ligne[k1:]
                    lig = lig.replace("DEC =","")
                    ligs = lig.split()
                    sra = ligs[0]
                    sdec = ligs[1]
        elif st0=="":
            for ligne in lignes:
                key = "the Fermi Gamma-ray Burst Monitor (GBM) triggered"
                k1 = ligne.find(key)
                if k1 >= 0:
                    st0 = ligne.split()[1]
                    t0 = t0[0:10]+"T"+st0
                    #print(f"ligne={ligne}")
        return sra, sdec, equinox, t0

    def radec(self, target: str, **kwargs)-> tuple:
        """Return ra, dec, equinox, epoch of a target.

        Args:

            target: A string that starts with a keyword:

                * 'RADEC': Followed by an equatorial Right Ascension, Declination position.
                * 'RADECDRIFT': Followed by an equatorial Right Ascension, Declination position and the drift.
                * 'CELESTRACK' or 'TLEFILES': Followed by a satellite name in the Celestrack TLE files.
                * 'DATERADECS': Followed by a list of equatorial Right Ascension, Declination positions.
                * 'HADEC': Followed by a list of equatorial true Hour Angle, Declination positions.
                * 'AZELEV': Followed by a list of equatorial true Azimut, Elevation positions.
                * 'TLE': Followed by a satellite defined by its TLE (Two Line Elements).
                * 'GCNC': Followed by a number which is a GRB name (e.g. GCNC 990123) to search information in GCN circulars.
                * 'MPC': Followed by a name which is a Solar System Body.

            **kwargs: A dictionary of options, keys can be:

                * 'date': To compute ephemeris for a given date ("now" for now).
                * 'unit_ra': To indicate the output format (see Angle)
                * 'unit_dec': To indicate the output format (see Angle)
                * 'target_type': To indicate the input format if the keyword is not indicated in the target string.
                * 'target_type_only': To return the identified input format.

        Returns:

            ra: Target Right Ascention position at the given date for a given equinox
            dec: Target Declination at the given date for a given equinox
            equinox: Equinox of the position
            epoch: Date of the position when the object is moving

            or

            target_type: The identified input format.

        """
        equinox = "J2000"
        date = "now"
        unit_ra = "deg" # "H0.2"
        unit_dec = "deg" # "d+090.1"
        target_type = self.TARGET_TYPE_NAME
        target_type_only = False
        if len(kwargs) > 0:
            keys = kwargs.keys()
            if "date" in keys:
                date = kwargs["date"]
            if "unit_ra" in keys:
                unit_ra = kwargs["unit_ra"]
            if "unit_dec" in keys:
                unit_dec = kwargs["unit_dec"]
            if "target_type_only" in keys:
                target_type_only = kwargs["target_type_only"]
            if "target_type" in keys:
                target_t = kwargs["target_type"].upper()
                if target_t=="TLEFILES" or target_t=="CELESTRACK":
                    target_type = self.TARGET_TYPE_TLEFILES
                elif target_t=="TLE":
                    target_type = self.TARGET_TYPE_TLE
                elif target_t=="DATERADECS":
                    target_type = self.TARGET_TYPE_EPHEMRADEC
                elif target_t=="RADEC":
                    target_type = self.TARGET_TYPE_RADEC
                elif target_t=="RADECDRIFT":
                    target_type = self.TARGET_TYPE_RADECDRIFT
                elif target_t=="HADEC":
                    target_type = self.TARGET_TYPE_HADEC
                elif target_t=="AZELEV" or target_t=="ALTAZ":
                    target_type = self.TARGET_TYPE_AZELEV
                elif target_t=="GCNC":
                    target_type = self.TARGET_TYPE_GCNC
                elif target_t=="MPC":
                    target_type = self.TARGET_TYPE_MPC
                else:
                    target_type = self.TARGET_TYPE_NAME
        epoch = Date(date).iso(3)
        # ---
        target_init = target
        target = str(target)
        res = target.split()
        if len(res) > 0:
            target_t = res[0].upper()
            if target_t=="TLEFILES" or target_t=="CELESTRACK":
                target_type = self.TARGET_TYPE_TLEFILES
                target = target[len(res[0])+1:]
            elif target_t=="DATERADECS":
                target_type = self.TARGET_TYPE_DATERADECS
                target = target[len(res[0])+1:]
            elif target_t=="RADEC":
                target_type = self.TARGET_TYPE_RADEC
                target = target[len(res[0])+1:]
            elif target_t=="RADECDRIFT":
                target_type = self.TARGET_TYPE_RADECDRIFT
                target = target[len(res[0])+1:]
            elif target_t=="HADEC":
                target_type = self.TARGET_TYPE_HADEC
                target = target[len(res[0])+1:]
            elif target_t=="AZELEV" or target_t=="ALTAZ":
                target_type = self.TARGET_TYPE_AZELEV
                target = target[len(res[0])+1:]
            elif target_t=="GCNC":
                target_type = self.TARGET_TYPE_GCNC
                target = target[len(res[0])+1:]
            elif target_t=="MPC":
                target_type = self.TARGET_TYPE_MPC
                target = target[len(res[0])+1:]
            elif target_t=="TLE":
                target_type = self.TARGET_TYPE_TLE
                target = target[len(res[0])+1:]
        # ---
        if target_type_only:
            if target_type == self.TARGET_TYPE_NAME:
                target_t = "NAME"
            return target_t
        # ---
        self._date2ts(date)
        # ---
        if target_type == self.TARGET_TYPE_MPC:
            start = Date(date).iso()
            location = ( f"{self.home.longitude}d", f"{self.home.latitude}d", f"{self.home.altitude:.1f}m")
            try:
                table = MPC.get_ephemeris(target, location=location, number=1, start=start)
            except:
                table = None
            if table != None:
                colnames = table.colnames
                data= table.as_array()[0]
                index = colnames.index('RA')
                ra = data[index]
                index = colnames.index('Dec')
                dec = data[index]
                found = True
        # ---
        if target_type == self.TARGET_TYPE_RADEC:
            c = SkyCoord(target.lower(), unit=(u.hourangle, u.deg))
            ra, dec = c.to_string("hmsdms").split()
        # ---
        if target_type == self.TARGET_TYPE_HADEC:
            time = Time(epoch)
            location = EarthLocation(lat=self.home.latitude*u.deg, lon=self.home.longitude*u.deg, height=self.home.altitude*u.m)
            c = SkyCoord(target.lower(), unit=(u.hourangle, u.deg), frame="hadec", obstime = time, location=location)
            ra, dec = c.icrs.to_string("hmsdms").split()
        # ---
        if target_type == self.TARGET_TYPE_AZELEV:
            time = Time(epoch)
            location = EarthLocation(lat=self.home.latitude*u.deg, lon=self.home.longitude*u.deg, height=self.home.altitude*u.m)
            c = SkyCoord(target.lower(), unit=(u.deg, u.deg), frame="altaz", obstime = time, location=location)
            ra, dec = c.icrs.to_string("hmsdms").split()
        # ---
        if target_type == self.TARGET_TYPE_RADECDRIFT:
            res = target.split()
            # last two elements are dra, ddec. Not used here.
            target = ""
            for k in range(len(res)-2):
                target += res[k] + " "
            target = target.strip()
            c = SkyCoord(target.lower(), unit=(u.hourangle, u.deg))
            ra, dec = c.to_string("hmsdms").split()
        # ---
        if target_type == self.TARGET_TYPE_GCNC:
            res = self.gcnc_download(target)
            ra, dec, equinox, epoch = res
        # ---
        if target_type == self.TARGET_TYPE_DATERADECS:
            targets = target.split("\n")
            # you must separate the date to coordinates by an isolated ' : '
            # 2022-01-31T22:34:00 : 12 34 32.12 -01 45 46.2
            # 2022-01-31T22:35:00 : 12 34 33.23 -01 56 04.5
            jd0 = Date(date).jd()
            jds = []
            radecs = []
            for target in targets:
                k = target.find(" : ")
                if k == -1:
                    continue
                date, radec = target.split(" : ")
                print(f"date={date} radec={radec}")
                jd = Date(date).jd()
                jds.append(jd)
                c = SkyCoord(radec.lower(), unit=(u.hourangle, u.deg))
                radec = c.to_string("hmsdms")
                radecs.append(radec)
            # sort the vector radecs with jds increasing
            inds = np.argsort(jds)
            sorted_jds = []
            sorted_radecs = []
            for i in inds:
                sorted_jds.append(jds[i])
                sorted_radecs.append(radecs[i])
            # place jd inside the range of jds if needed
            jd1 = sorted_jds[0]
            jd2 = sorted_jds[-1]
            if jd<jd1: jd = jd1
            if jd>jd2: jd = jd2
            # search the two jds values that are just before and just after jd0
            n = len(sorted_jds)
            if jd0 < sorted_jds[0]:
                # extrapol before
                k1 = 0
                k2 = 1
            elif jd0 > sorted_jds[n-1]:
                # extrapol after
                k1 = n-2
                k2 = n-1
            else:
                # interpol
                jd1 = sorted_jds[0]
                for k in range(1,n):
                    jd2 = sorted_jds[k]
                    if jd0>=jd1 and jd0<=jd2:
                        k1 = k-1
                        k2 = k
                        break
                    jd1 = jd2
            jd1 = sorted_jds[k1]
            jd2 = sorted_jds[k2]
            frac = (jd0 - jd1) / (jd2 - jd1)
            radec1 = sorted_radecs[k1]
            radec2 = sorted_radecs[k2]
            ra1, dec1 = radec1.split()
            ra2, dec2 = radec2.split()
            c1 = Coords((1, Angle(ra1), Angle(dec1)))
            c2 = Coords((1, Angle(ra2), Angle(dec2)))
            dra, ddec = c2.difference_angles_with_reference(c1)
            ra = Angle(ra1) + frac*dra
            dec = Angle(dec1) + frac*ddec
            ra = ra.deg()
            dec = dec.deg()
        # ---
        if target_type == self.TARGET_TYPE_NAME:
            found = False
            # --- Try a solar system planet
            if found == False:
                #print("==> Try solar system")
                ident = self.name2solar_system_planet(target)
                if ident != None:
                    planet = self._planets[ident]
                    astrometric = self._observatory.at(self._t).observe(planet)
                    ra, dec, distance = astrometric.radec()
                    #difference = planet - self._observatory
                    #topocentric = difference.at(self._t)
                    #elev, az, distance = topocentric.altaz()
                    ra = ra._degrees
                    dec = dec._degrees
                    found = True
            # --- Try a Simbad name
            if found == False:
                #print("==> Try Simbad")
                try:
                    table = Simbad.query_object(target)
                except:
                    pass
                if table != None:
                    colnames = table.colnames
                    data= table.as_array()[0]
                    index = colnames.index('RA')
                    ra = data[index]
                    index = colnames.index('DEC')
                    dec = data[index]
                    ra = Angle(ra).deg()*15
                    dec = Angle(dec).deg()
                    found = True
            # --- Try a MPC object
            if found == False:
                #print("==> Try MPC")
                start = Date(date).iso()
                location = ( f"{self.home.longitude}d", f"{self.home.latitude}d", f"{self.home.altitude:.1f}m")
                try:
                    table = MPC.get_ephemeris(target, location=location, number=1, start=start)
                except:
                    table = None
                if table != None:
                    colnames = table.colnames
                    data= table.as_array()[0]
                    index = colnames.index('RA')
                    ra = data[index]
                    index = colnames.index('Dec')
                    dec = data[index]
                    found = True
            # ---
            if found == False:
                msg = f"The target {target} was not found in Skyfield, Simbad and MPC databases"
                raise EphemerisException(EphemerisException.TARGET_NOT_FOUND, msg)
        # ---
        if target_type == self.TARGET_TYPE_TLEFILES:
            found = False
            # --- Try an Earth satellite
            target = str(target).upper()
            self.tle_download()
            by_names = {sat.name: sat for sat in self._earthsatellites}
            for name, satellite in by_names.items():
                # https://rhodesmill.org/skyfield/api-satellites.html
                norad = satellite.model.satnum
                international_designator = satellite.model.intldesg
                if name.find(target) >= 0:
                    found = True
                if target == str(norad):
                    found = True
                elif target == international_designator:
                    found = True
                if found == True:
                    break
            if found == False:
                msg = f"The target {target} was not found in Celestrack database"
                raise EphemerisException(EphemerisException.TARGET_NOT_FOUND, msg)
            # --- Compute ephemeris
            #print(f"Satel found = {name}")
            latitude = self.home.latitude
            longitude = self.home.longitude
            bluffton = wgs84.latlon(latitude, longitude)
            ts = skyfield.api.load.timescale()
            t = ts.now()
            difference = satellite - bluffton
            topocentric = difference.at(t)
            ra, dec, distance = topocentric.radec()  # ICRF ("J2000")
            ra = ra._degrees
            dec = dec._degrees
            #res = topocentric.speed()
        if target_type == self.TARGET_TYPE_TLE:
            found = False
            target = str(target).upper()
            lines = target.split("\n")
            latitude = self.home.latitude
            longitude = self.home.longitude
            bluffton = wgs84.latlon(latitude, longitude)
            ts = skyfield.api.load.timescale()
            t = ts.now()
            satellite = skyfield.api.EarthSatellite(lines[1], lines[2], lines[0], ts)
            difference = satellite - bluffton
            topocentric = difference.at(t)
            ra, dec, distance = topocentric.radec()  # ICRF ("J2000")
            ra = ra._degrees
            dec = dec._degrees
        # ---
        if unit_ra == "deg":
            ra = Angle(ra).deg()
        else:
            ra = Angle(ra).sexagesimal(unit_ra)
        if unit_dec == "deg":
            dec = Angle(dec).deg()
        else:
            dec = Angle(dec).sexagesimal(unit_dec)
        ra_equinox = ra
        dec_equinox = dec
         # --- dictionary
        eph = {}
        eph['header'] = {}
        eph['header']['home'] = self.home.gps
        eph['header']['target'] = target_init
        eph['header']['equinox'] = equinox
        eph['jd'] = Date(epoch).jd()
        eph['ra_equinox'] = ra_equinox
        eph['dec_equinox'] = dec_equinox
        return eph

    def radec_speed(self, target, **kwargs):
        """Return ra, dec J2000 of a target as method radec and add the speed (deg/s)

        Args:

            target: See radec for explanations
            **kwargs: See radec for explanations

        Returns:

            ra: Target Right Ascention position at the given date for a given equinox
            dec: Target Declination at the given date for a given equinox
            equinox: Equinox of the position
            epoch: Date of the position when the object is moving
            dra: Velocity on Right Ascension axis (deg/s)
            ddec: Velocity on Declination axis (deg/s)

        """
        ephem = self.radec(target, **kwargs)
        ra = ephem['ra_equinox']
        dec = ephem['dec_equinox']
        epoch1 = ephem['jd']
        target = str(target)
        res = target.split()
        target_t = res[0].upper()
        if target_t=="RADECDRIFT":
            target = target[len(res[0])+1:]
            res = target.split()
            ddec = float(res[-1])
            dra = float(res[-2])
        else:
            kwarg0s = kwargs.copy()
            if len(kwarg0s) == 0:
                kwarg0s = { "date":"now" }
            keys = kwarg0s.keys()
            if "date" in keys:
                date1 = kwarg0s["date"]
            else:
                date1 = "now"
            date_1 = Date(date1)
            dt = Duration("60s")
            date_2 = date_1 + dt.day()
            kwarg0s["unit_ra"] = "deg"
            kwarg0s["unit_dec"] = "deg"
            kwarg0s["date"] = date_1.iso(3)
            eph = self.radec(target, **kwarg0s)
            ra1 = eph['ra_equinox']
            dec1 = eph['dec_equinox']
            epoch1 = eph['jd']
            kwarg0s["date"] = date_2.iso(3)
            eph = self.radec(target, **kwarg0s)
            ra2 = eph['ra_equinox']
            dec2 = eph['dec_equinox']
            c1 = Coords((1, Angle(ra1), Angle(dec1)))
            c2 = Coords((1, Angle(ra2), Angle(dec2)))
            dra, ddec = c2.difference_angles_with_reference(c1)
            dra /= (86400*dt.day())
            ddec /= (86400*dt.day())
        eph = {}
        eph['header'] = {}
        eph['header'] = ephem['header']
        eph['jd'] = Date(epoch1).jd()
        eph['ra_equinox'] = Date(epoch1).jd()
        eph['ra_equinox'] = ra
        eph['dec_equinox'] = dec
        eph['dra_equinox'] = dra
        eph['ddec_equinox'] = ddec
        return eph

    def altitude2tp(self, alti:float, p0m:float=101325):
        """Compute the theoretical pressure and temperature in the Earth atmosphere given an altitude

        Args:

            alti: The altitude of the observation site in meters
            p0m: The pressure at the sea level. Default is 101325 Pascal.

        Returns:

            pressure: The pressure in Pascal
            temperature: The temperature in Kelvin
        """
        tk0m=273.15+15
        if alti<11000:
            tk=tk0m-0.0065*alti
            p=p0m*pow(tk/tk0m,5.255)
        elif alti<15000:
            tk0m=273.15+15
            tk=tk0m-0.0065*11000
            p=p0m*pow((tk0m-0.0065*alti)/tk0m,5.255)
        elif (alti>=15000) and (alti<20000):
            h1=15000; p1=p0m*pow((tk0m-0.0065*h1)/tk0m,5.255); t1=tk0m-0.0065*11000
            h2=20000; p2=5500; t2=273.15-46
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif (alti>=20000) and (alti<30000):
            h1=20000; p1=5500; t1=273.15-46
            h2=30000; p2=1100; t2=273.15-38
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif (alti>=30000) and (alti<40000):
            h1=30000; p1=1100; t1=273.15-38
            h2=40000; p2=300; t2=273.15-5
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif (alti>=40000) and (alti<50000):
            h1=40000; p1=300; t1=273.15-5
            h2=50000; p2=90; t2=273.15+1
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif (alti>=50000) and (alti<60000):
            h1=50000; p1=90; t1=273.15+1
            h2=60000; p2=25; t2=273.15-20
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif (alti>=60000) and (alti<100000):
            h1=60000; p1=25; t1=273.15-20
            h2=100000; p2=0.04; t2=273.15-64
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif (alti>=100000) and (alti<200000):
            h1=100000; p1=0.04; t1=273.15-64
            h2=200000; p2=1.3e-4; t2=273.15-82.2
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif (alti>=200000) and (alti<400000):
            h1=200000; p1=1.3e-4; t1=273.15-82.2
            h2=400000; p2=4.4e-6; t2=273.15-97.3
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        elif (alti>=200000) and (alti<400000):
            h1=400000; p1=4.4e-6; t1=273.15-97.3
            h2=500000; p2=0; t2=273.15-97.7
            frac=(alti-h1)/(h2-h1)
            p=p1+frac*(p2-p1)
            tk=t1+frac*(t2-t1)
        else:
            p=0
            tk=273.15-97.7
        return p, tk

    def date_ephem(self, ephem_night:dict, date:Date="now")->dict:
        """Extract the ephemeris for a given date asked from a night ephemeris.

        Arg:

            ephem_night: A night ephemeris returned by the method night_ephem
            date: The date of the calculation

        Returns:

            eph: The ephemeris at the date
            deph: The differential ephemeris in units of inverse of seconds (deg/s for angles)

        """
        # jd = jd0 + k*djd
        d = Date(date)
        jd = d.jd()
        jjds = ephem_night['jd']
        njd = len(jjds)
        djd = jjds[1]-jjds[0]
        n = round((jd-jjds[0])/djd)
        if n<0 or n>njd:
            msg = f"The date {d.iso(0)} is not inside the night {ephem_night['header']['night']}"
            raise EphemerisException(EphemerisException.DATE_OUTSIDE_THE_NIGHT, msg)
        eph = {}
        for key, val in ephem_night.items():
            if isinstance(val, np.ndarray):
                eph[key] = val[n] # deg
            else:
                eph[key] = val # str
        return eph

    def night_ephem(self, target, night:str, ephem_sun:dict=None, ephem_moon:dict=None, **kwargs)->dict:
        """Same as target2night but avoids to recompute many times the same night ephemeris if target is the same

        All args and returns are the same than target2night.
        """
        #
        # _computed_ephem["night"]
        # _computed_ephem["night"]["targets"] = List of targets (0..n-1)
        # _computed_ephem["night"][0] = targets index 0
        # _computed_ephem["night"][...]
        # _computed_ephem["night"][n-1] = targets index n-1
        if night in self._computed_ephem.keys():
            # --- this night is known
            targets = self._computed_ephem[night]["targets"]
            try:
                # --- case target is ever computer. Return the history instead to recompute
                indx = targets.index(target)
                ephem = self._computed_ephem[night][indx]
                return ephem
            except:
                # --- new target to be computed
                indx = len(targets)
        else:
            # --- this night is not known, clear all the history
            del self._computed_ephem
            self._computed_ephem = {}
            self._computed_ephem[night] = {}
            indx = 0
            self._computed_ephem[night]["targets"] = []
        # --- Compute the night ephemeris
        ephem = self.target2night(target, night, ephem_sun, ephem_moon, **kwargs)
        # --- Add the ephem into the history
        self._computed_ephem[night]["targets"].append(target)
        self._computed_ephem[night][indx] = ephem
        return ephem

    def target2night(self, target, night:str, ephem_sun:dict=None, ephem_moon:dict=None, **kwargs)->dict:
        """Compute the ephemeris at every second of local coodinates for a night

        Two computations are importants:

            * 'visibility': An integer defining why the target is visible or not.
            * 'observability': A float value from 0 (not observable) to 100 (best conditions to observe)

        Args:

            target: A target in the formalism of the method radec
            night: A night symbol (e.g. 20230330)
            ephem_sun: A dictionary result of the method called target2night("sun", night)
            ephem_moon: A dictionary result of the method called target2night("moon", night)
            kwargs: A dictionary of options:

                * horizon: An object of the class Horizon of Guitastro that defines the horizon line.
                * preference: A string "bestelev" or "immediate" to compute the observability
                * duskelev: A float, the elevation of the Sun defining the start and end of the night.
                * wavelength_nm: A float, the observation wavelength (in nanometers)
                * humidity: A float, the relative humidiy (between 0 and 1)
                * distmin_sun: A float to define the minimum angular distance from the Sun (degrees)
                * distmin_moon: A float to define the minimum angular distance from the Moon (degrees)
                * speed: A boolean, True to compute the derivative of coordinates
                * nsec: An integer, default is 86400 to compute for every seconds of the night. Else, compute only centered on the Date indicated in the night. Speed can be computed only for nsec >= 3.

        Returns:

            A dictionary:

                * 'night': String of the night
                * 'home': String of the GPS position
                * 'target': String of the input target
                * 'ndate': Number of dates used to compute amers before interpolations
                * 'jd': Numpy array of Julian days
                * 'alt': Numpy array of the elevation (deg)
                * 'az': Numpy array of the azimut (deg)
                * 'ha': Numpy array of the apparent hour angle (deg)
                * 'parallactic': Numpy array of the parallactic angle (deg)
                * 'dec': Numpy array of the apparent declination (deg)
                * 'ra_equinox': Numpy array of the Right Ascension at the input equinox (deg)
                * 'dec_equinox': Numpy array of the Declination at the input equinox (deg)
                * 'cosphi': Numpy array of cos(ra_equinox)
                * 'sinphi': Numpy array of sin(ra_equinox)
                * 'costheta': Numpy array of cos(dec_equinox)
                * 'sintheta': Numpy array of sin(dec_equinox)
                * 'distsun': Numpy array of the distance from the Sun (deg)
                * 'distmoon': Numpy array of the distance from the Moon (deg)
                * 'visibility': Numpy array of the visibility
                * 'observability': Numpy array of the observability (>0 means observable)
                * 'horizon': Numpy array of horizon elevations (deg)

        The Numpy arrays are 1D of 86400 elements.
        if ephem_sun==None or ephem_moon==None, the distances between the target and the Sun and Moon will not be calculated.

        """
        if ephem_sun==None or ephem_moon==None:
            sunmoon = False
        else:
            sunmoon = True
        if 'horizon' in kwargs.keys():
            hor = kwargs['horizon']
            hor_az, hor_elev = hor.horizon_altaz
        elif 'siteobs' in kwargs.keys():
            siteobs = kwargs['siteobs']
            hor_az, hor_elev = siteobs.horizon_altaz
        else:
            hor_az = np.arange(0, 361)
            hor_elev = np.zeros(len(hor_az))
        if 'preference' in kwargs.keys():
            preference = kwargs['preference'].lower()
        else:
            preference="bestelev"
        if 'duskelev' in kwargs.keys():
            duskelev = kwargs['duskelev']
        else:
            duskelev = -7
        if 'humidity' in kwargs.keys():
            rel_humidity = kwargs['humidity']
        else:
            rel_humidity = 0.6
        if 'wavelength_nm' in kwargs.keys():
            wavelength_nm = kwargs['wavelength_nm']
        else:
            wavelength_nm = 600
        if 'distmin_sun' in kwargs.keys():
            distmin_sun = float(kwargs['distmin_sun'])
        else:
            distmin_sun = 30
        if 'distmin_moon' in kwargs.keys():
            distmin_moon = float(kwargs['distmin_moon'])
        else:
            distmin_moon = 0
        if 'speed' in kwargs.keys():
            speed = kwargs['speed']
        else:
            speed = False
        if 'nsec' in kwargs.keys():
            nsec = int(kwargs['nsec'])
        else:
            nsec = 86400
        location = EarthLocation(lat=self.home.latitude*u.deg, lon=self.home.longitude*u.deg, height=self.home.altitude*u.m)
        tan_lat = np.tan(np.radians(self.home.latitude))
        temp_k, pres_pa = self.altitude2tp(self.home.altitude)
        temperature = (temp_k + 273.15) * u.deg_C
        pressure = pres_pa * u.pascal
        relative_humidity = rel_humidity
        obswl = wavelength_nm * u.nm
        fn = FileNames()
        fn.longitude(self.home.longitude)
        # --- compute jd1, jd2 the limits of dates to compute the ephemeris
        if nsec==86400:
            # - we compute ephemeris for all the night
            jd1, jd2 = fn.night2date(night)
        else:
            # - we compute ephemeris only for a duration centered on the date indicated by night
            jd = Date(night).jd()
            night = fn.date2night(jd)
            #nsec = round(nsec)
            if nsec <= 1:
                nsec = 1
            djd = (nsec-1)/86400.
            jd1, jd2 = jd-djd, jd+djd
        # --- identify the type of target
        target_type = self.radec(target, target_type_only=True)
        # --- compute the drift
        date = Date((jd1+jd2)/2).iso()
        speedephem = self.radec_speed(target, date=date, unit_ra="deg", unit_dec="deg")
        ra_equinox = speedephem['ra_equinox']
        dec_equinox = speedephem['dec_equinox']
        epoch = speedephem['jd']
        dra = speedephem['dra_equinox']
        ddec = speedephem['ddec_equinox']
        ddrift = np.sqrt(dra*dra+ddec*ddec) # deg/s
        # --- adapt ndate according the drift
        ndate = 0
        if dra==0 and ddec==0:
            drift = False
            epoch = Date((jd1+jd2)/2).iso()
            targ = SkyCoord(frame=ICRS, ra=ra_equinox*u.deg, dec=dec_equinox*u.deg, obstime=epoch)
        else:
            ndate = int(np.floor(86400*abs(ddrift)/10.0))
            drift = True
        #print(f"ndate={ndate} ddrift={ddrift}")
        # --- one computation every 30 min at minimum
        lim = 1440/30
        if ndate < lim:
            ndate = round(lim)
        # --- one computation every 5 min at maximum
        lim = 1440/5
        if ndate > lim:
            ndate = round(lim)
        # --- one computation every second at maximum
        if ndate > nsec:
            ndate = nsec
        # --- prepare angles
        jds = np.linspace(jd1, jd2, ndate)
        nangle = 13
        angles = np.zeros(nangle*ndate).reshape((nangle,ndate))
        angle_offsets = np.zeros(nangle)
        angle_prevs = np.zeros(nangle)
        angle_curs = np.zeros(nangle)
        # --- compute angles for a restricted number of dates
        for k in range(ndate):
            # --- compute celestial local angles
            jd = jds[k]
            obstime = Time(jd, format="jd")
            if drift == True:
                # --- recompute ra,dec for each date
                date = jd
                speedephem = self.radec_speed(target, date=date, unit_ra="deg", unit_dec="deg")
                ra_equinox = speedephem['ra_equinox']
                dec_equinox = speedephem['dec_equinox']
                epoch = Time(speedephem['jd'], format="jd")
                dra = speedephem['dra_equinox']
                ddec = speedephem['ddec_equinox']
                targ = SkyCoord(frame=ICRS, ra=ra_equinox*u.deg, dec=dec_equinox*u.deg, obstime=epoch)
            if target_type == "HADEC":
                target = str(target)
                res = target.split()
                mtarget = target[len(res[0])+1:]
                targ = SkyCoord(mtarget.lower(), unit=(u.hourangle, u.deg), frame="hadec", obstime = obstime, location=location)
                hadec= targ
            else:
                hadec = targ.transform_to(HADec(obstime=obstime, location=location, pressure=pressure, temperature=temperature, relative_humidity=relative_humidity, obswl=obswl))
            ha = hadec.ha.deg
            dec = hadec.dec.deg
            altaz = targ.transform_to(AltAz(obstime=obstime, location=location, pressure=pressure, temperature=temperature, relative_humidity=relative_humidity, obswl=obswl))
            alt = altaz.alt.deg
            az = altaz.az.deg
            az -= 180 # astro azimut instead geo
            ha_rad = np.radians(ha)
            dec_rad = np.radians(dec)
            y = np.sin(ha_rad)
            x = tan_lat * np.cos(dec_rad) - np.sin(dec_rad) * np.cos(ha_rad)
            parallactic = np.degrees(np.arctan2(y,x))
            ra_rad = np.radians(ra_equinox)
            dec_rad = np.radians(dec_equinox)
            cos_phi = np.cos(ra_rad)
            sin_phi = np.sin(ra_rad)
            cos_theta = np.cos(dec_rad)
            sin_theta = np.sin(dec_rad)
            if sunmoon==True:
                kk = int(np.round(k/ndate*nsec))
                # --- distance from the Sun
                _cos_phi = ephem_sun['cosphi'][kk]
                _sin_phi = ephem_sun['sinphi'][kk]
                _cos_theta = ephem_sun['costheta'][kk]
                _sin_theta = ephem_sun['sintheta'][kk]
                dx = _cos_theta * _cos_phi - cos_theta * cos_phi
                dy = _cos_theta * _sin_phi - cos_theta * sin_phi
                dz = _sin_theta - _sin_theta
                c = np.sqrt(dx*dx + dy*dy + dz*dz)
                dist_sun = np.degrees(2*np.arcsin(c/2))
                # --- distance from the Moon
                _cos_phi = ephem_moon['cosphi'][kk]
                _sin_phi = ephem_moon['sinphi'][kk]
                _cos_theta = ephem_moon['costheta'][kk]
                _sin_theta = ephem_moon['sintheta'][kk]
                dx = _cos_theta * _cos_phi - cos_theta * cos_phi
                dy = _cos_theta * _sin_phi - cos_theta * sin_phi
                dz = _sin_theta - _sin_theta
                c = np.sqrt(dx*dx + dy*dy + dz*dz)
                dist_moon = np.degrees(2*np.arcsin(c/2))
            else:
                dist_sun = 180
                dist_moon = 180
            # --- ensure continue angles
            angle_curs[0], angle_curs[1] = alt, az
            angle_curs[2], angle_curs[3] = ha, dec
            angle_curs[4], angle_curs[5] = ra_equinox, dec_equinox
            angle_curs[6], angle_curs[7] = cos_phi, sin_phi
            angle_curs[8], angle_curs[9] = cos_theta, sin_theta
            angle_curs[10], angle_curs[11] = dist_sun, dist_moon
            angle_curs[12] = parallactic
            # --- ensure continue angles
            if k>0:
                dif = angle_curs - angle_prevs
                for kk in range(nangle):
                    if dif[kk]>180:
                        angle_offsets[kk] -= 360
                    elif dif[kk]<-180:
                        angle_offsets[kk] += 360
            for kk in range(nangle):
                angles[kk][k] = angle_curs[kk] + angle_offsets[kk]
            angle_prevs = angle_curs.copy()
        # --- interpolate angles for a full number of dates
        jjds = np.linspace(jd1, jd2, nsec)
        aangles = np.zeros(nangle*nsec).reshape((nangle,nsec))
        if nsec == ndate:
            for kk in range(nangle):
                aangles[kk] = angles[kk]
        else:
            for kk in range(nangle):
                aangles[kk] = np.interp(jjds, jds, angles[kk])
        # --- interpolated angles
        alts = aangles[0]
        azs = aangles[1]
        has = aangles[2]
        decs = aangles[3]
        raequinoxs = aangles[4]
        decequinoxs = aangles[5]
        cosphis = aangles[6]
        sinphis = aangles[7]
        costhetas = aangles[8]
        sinthetas = aangles[9]
        distsuns = aangles[10]
        distmoons = aangles[11]
        parallactics = aangles[12]
        # --- compute speed angles if needed
        if speed and len(jjds)>=3:
            djd = jjds[1]-jjds[0]
            dt = djd*86400
            dt2 = dt*2
            dangles = np.zeros(nangle*nsec).reshape((nangle,nsec))
            for kk in range(nangle):
                y = aangles[kk]
                dangles[kk, 1:nsec-1] = (y[2:] - y[:-2])/dt2
                dangles[kk, 0] = (y[1]-y[0])/dt
                dangles[kk, nsec-1] = (y[nsec-1]-y[nsec-2])/dt
            dalts = dangles[0]
            dazs = dangles[1]
            dhas = dangles[2]
            ddecs = dangles[3]
            draequinoxs = dangles[4]
            ddecequinoxs = dangles[5]
            dparallactics = dangles[12]
        # --- observability and visibility
        visibilitys = np.zeros(nsec)
        observabilitys = np.zeros(nsec)
        horizons = np.zeros(nsec)
        # --- visibility
        kk = 0
        for alt, az in zip(alts, azs):
            k = int(np.floor(az))%360
            altmini = hor_elev[k]
            horizons[kk] = altmini
            if alt < altmini:
                visibilitys[kk] += 1
            if sunmoon==True:
                if ephem_sun['alt'][kk] > duskelev:
                    visibilitys[kk] += 2
            kk += 1
        visibilitys = np.where(distsuns > distmin_sun, visibilitys, visibilitys+4)
        visibilitys = np.where(distmoons > distmin_moon, visibilitys, visibilitys+8)
        # --- observability
        nvis = 0
        altmaxi = 0
        for kk in range(nsec):
            if visibilitys[kk] == 0:
                nvis += 1
                if alts[kk] > altmaxi:
                    altmaxi = alts[kk]
        if preference=="immediate":
            kvis = nvis
            for kk in range(nsec):
                if visibilitys[kk] == 0:
                    observabilitys[kk] = kvis/nvis*100
                    kvis -= 1
        if preference=="bestelev":
            for kk in range(nsec):
                if visibilitys[kk] == 0:
                    observabilitys[kk] = alts[kk]/altmaxi*100
         # --- dictionary
        eph = {}
        eph['header'] = {}
        eph['header']['night'] = night
        eph['header']['home'] = self.home.gps
        eph['header']['target'] = target
        eph['header']['ndate'] = ndate
        eph['header']['duskelev'] = duskelev
        eph['header']['preference'] = preference
        eph['header']['temperature_k'] = temp_k
        eph['header']['pressure_pa'] = pres_pa
        eph['header']['humidity_rel'] = rel_humidity
        eph['header']['wavelength_nm'] = wavelength_nm
        eph['jd'] = jjds
        eph['alt'] = alts
        eph['az'] = azs
        eph['parallactic'] = parallactics
        eph['ha'] = has
        eph['dec'] = decs
        eph['ra_equinox'] = raequinoxs
        eph['dec_equinox'] = decequinoxs
        eph['cosphi'] = cosphis
        eph['sinphi'] = sinphis
        eph['costheta'] = costhetas
        eph['sintheta'] = sinthetas
        eph['distsun'] = distsuns
        eph['distmoon'] = distmoons
        eph['visibility'] = visibilitys
        eph['observability'] = observabilitys
        eph['horizon'] = horizons
        if speed and len(jjds)>=3:
            eph['dalt'] = dalts
            eph['daz'] = dazs
            eph['dparallactic'] = dparallactics
            eph['dha'] = dhas
            eph['ddec'] = ddecs
            eph['dra_equinox'] = draequinoxs
            eph['ddec_equinox'] = ddecequinoxs
        return eph

    def hadec2ephem(self, ha, dec, date, **kwargs):
        if 'humidity' in kwargs.keys():
            rel_humidity = kwargs['humidity']
        else:
            rel_humidity = 0.6
        if 'wavelength_nm' in kwargs.keys():
            wavelength_nm = kwargs['wavelength_nm']
        else:
            wavelength_nm = 600
        # ---
        jd = Date(date).jd()
        obstime = Time(jd, format="jd")
        location = EarthLocation(lat=self.home.latitude*u.deg, lon=self.home.longitude*u.deg, height=self.home.altitude*u.m)
        temp_k, pres_pa = self.altitude2tp(self.home.altitude)
        temperature = (temp_k + 273.15) * u.deg_C
        pressure = pres_pa * u.pascal
        relative_humidity = rel_humidity
        obswl = wavelength_nm * u.nm
        # ---
        c = SkyCoord(frame="hadec", ha=ha*u.deg, dec=dec*u.deg, obstime=obstime, location=location)
        # ---
        altaz = c.transform_to(AltAz(obstime=obstime, location=location, pressure=pressure, temperature=temperature, relative_humidity=relative_humidity, obswl=obswl))
        alt = altaz.alt.deg
        az = altaz.az.deg
        az -= 180
        # ---
        radec = c.icrs
        ra_equinox, dec_equinox = radec.ra.deg, radec.dec.deg
        # ---
        ephem = {}
        ephem['header'] = {}
        ephem['header']['home'] = self.home.gps
        ephem['header']['temperature_k'] = temp_k
        ephem['header']['pressure_pa'] = pres_pa
        ephem['header']['humidity_rel'] = rel_humidity
        ephem['header']['wavelength_nm'] = wavelength_nm
        ephem['jd'] = jd
        ephem['ra_equinox'] = ra_equinox
        ephem['dec_equinox'] = dec_equinox
        ephem['ha'] = ha
        ephem['dec'] = dec
        ephem['az'] = az
        ephem['alt'] = alt
        return ephem

    def altaz2ephem(self, az, alt, date, **kwargs):
        if 'humidity' in kwargs.keys():
            rel_humidity = kwargs['humidity']
        else:
            rel_humidity = 0.6
        if 'wavelength_nm' in kwargs.keys():
            wavelength_nm = kwargs['wavelength_nm']
        else:
            wavelength_nm = 600
        # ---
        jd = Date(date).jd()
        obstime = Time(jd, format="jd")
        location = EarthLocation(lat=self.home.latitude*u.deg, lon=self.home.longitude*u.deg, height=self.home.altitude*u.m)
        temp_k, pres_pa = self.altitude2tp(self.home.altitude)
        temperature = (temp_k + 273.15) * u.deg_C
        pressure = pres_pa * u.pascal
        relative_humidity = rel_humidity
        obswl = wavelength_nm * u.nm
        # ---
        azg = az + 180
        c = SkyCoord(frame="altaz", az=azg*u.deg, alt=alt*u.deg, obstime=obstime, location=location)
        # ---
        hadec = c.transform_to(HADec(obstime=obstime, location=location, pressure=pressure, temperature=temperature, relative_humidity=relative_humidity, obswl=obswl))
        ha = hadec.ha.deg
        dec = hadec.dec.deg
        # ---
        radec = c.icrs
        ra_equinox, dec_equinox = radec.ra.deg, radec.dec.deg
        # ---
        ephem = {}
        ephem['header'] = {}
        ephem['header']['home'] = self.home.gps
        ephem['header']['temperature_k'] = temp_k
        ephem['header']['pressure_pa'] = pres_pa
        ephem['header']['humidity_rel'] = rel_humidity
        ephem['header']['wavelength_nm'] = wavelength_nm
        ephem['jd'] = jd
        ephem['ra_equinox'] = ra_equinox
        ephem['dec_equinox'] = dec_equinox
        ephem['ha'] = ha
        ephem['dec'] = dec
        ephem['az'] = az
        ephem['alt'] = alt
        return ephem

# #####################################################################
# #####################################################################
# #####################################################################
# Main
# #####################################################################
# #####################################################################
# #####################################################################

if __name__ == "__main__":

    default = 14
    example = input(f"Select the example (0 to 14) ({default}) ")
    try:
        example = int(example)
    except:
        example = default
    print("Example       = {}".format(example))

    if example == 1:
        """
        Simple ephemeris of a planet
        """
        eph = Ephemeris()
        name = "neptune"
        ephem = eph.radec(name, date="now", unit_ra="H0.2", unit_dec="d+090.1")
        print(f"{name} ra={ephem['ra_equinox']} dec={ephem['dec_equinox']} equinox={ephem['header']['equinox']} epoch={ephem['jd']}")

    if example == 2:
        """
        Simple ask to Simbad
        """
        eph = Ephemeris()
        name = "UGC 3462"
        ephem = eph.radec(name)
        print(f"{name} ra={ephem['ra_equinox']} dec={ephem['dec_equinox']} equinox={ephem['header']['equinox']} epoch={ephem['jd']}")

    if example == 3:
        """
        Simple ask to MPC
        """
        eph = Ephemeris()
        eph.set_home("guitalens")
        name = "2022 AB"
        ephem = eph.radec(name, date="now")
        print(f"{name} ra={ephem['ra_equinox']} dec={ephem['dec_equinox']} equinox={ephem['header']['equinox']} epoch={ephem['jd']}")

    if example == 4:
        """
        Simple ask from CELESTRACK
        """
        eph = Ephemeris()
        eph.set_home("guitalens")
        nsat = eph.tle_download()
        print(f"TLE files contain {nsat} satellites.")
        # --- First method
        name = "ISS"
        ephem = eph.radec(name, date="now", target_type="celestrack")
        print(f"1st method: ra={ephem['ra_equinox']} dec={ephem['dec_equinox']} equinox={ephem['header']['equinox']} epoch={ephem['jd']}")
        # --- Second method
        name = "CELESTRACK ISS"
        ephem = eph.radec(name, date="now")
        print(f"2nd method: ra={ephem['ra_equinox']} dec={ephem['dec_equinox']} equinox={ephem['header']['equinox']} epoch={ephem['jd']}")

    if example == 5:
        """
        Simple ask ISS with speed
        """
        eph = Ephemeris()
        name = "CELESTRACK ISS"
        ephem = eph.radec_speed(name)
        print(f"{name} ra={ephem['ra_equinox']} dec={ephem['dec_equinox']} dra={ephem['dra_equinox']*3600:.3f} ddec={ephem['ddec_equinox']*3600:.3f} equinox={ephem['header']['equinox']} epoch={ephem['jd']}")

    if example == 6:
        """
        Simple ask from TLE
        """
        eph = Ephemeris()
        eph.set_home("guitalens")
        name = "GSAT0203 (PRN E26)"
        tle  = f"TLE {name}\n"
        tle += "1 40544U 15017A   22029.59832018 -.00000064  00000+0  00000+0 0  9991\n"
        tle += "2 40544  56.7391  25.1641 0005059 269.6475  90.3121  1.70475734 42591_n"
        ephem = eph.radec_speed(tle)
        print(f"{name} ra={ephem['ra_equinox']} dec={ephem['dec_equinox']} dra={ephem['dra_equinox']*3600:.3f} ddec={ephem['ddec_equinox']*3600:.3f} equinox={ephem['header']['equinox']} epoch={ephem['jd']}")

    if example == 7:
        """
        Simple ask to DATERADECS
        """
        eph = Ephemeris()
        eph.set_home("guitalens")
        name = "My object"
        target  = "DATERADECS "
        target += "2022-01-31T22:34:00 : 12 34 32.12 -01 45 46.2\n"
        target += "2022-01-31T22:35:00 : 12 34 33.23 -01 56 04.5\n"
        ephem = eph.radec_speed(target, date="2022-01-31T22:34:15", unit_ra="H0.2", unit_dec="d+090.1")
        print(f"{name} ra={ephem['ra_equinox']} dec={ephem['dec_equinox']} dra={ephem['dra_equinox']*3600:.3f} ddec={ephem['ddec_equinox']*3600:.3f} equinox={ephem['header']['equinox']} epoch={ephem['jd']}")

    if example == 8:
        """
        Simple ask to GCNC
        """
        eph = Ephemeris()
        name = "220412A"
        target = f"GCNC {name}"
        ephem = eph.radec(target, unit_ra="H0.2", unit_dec="d+090.1")
        print(f"{name} ra={ephem['ra_equinox']} dec={ephem['dec_equinox']} equinox={ephem['header']['equinox']} epoch={ephem['jd']}")

    if example == 9:
        """
        Simple ask to Simbad
        """
        eph = Ephemeris()
        #
        #names = ["AF Vir", "DR And", "HH Aqr", "LN Boo", "TU Com", "TU Per", "V348 Vir"]
        names = ["OX Aqr"]
        for name in names:
            ephem = eph.radec(name)
            print(f"{name} ra={ephem['ra_equinox']} dec={ephem['dec_equinox']} equinox={ephem['header']['equinox']} epoch={ephem['jd']}")

    if example == 10:
        """
        Simple ask to DATERADECDRIFT
        """
        eph = Ephemeris()
        eph.set_home("guitalens")
        name = "My object"
        target  = "RADECDRIFT 12 34 32.12 -01 45 46.2 1 2"
        #target  = "RADEC 0H10M -16d "
        ephem = eph.radec_speed(target)
        print(f"{name} ra={ephem['ra_equinox']:.6f} dec={ephem['dec_equinox']:.6f} dra={ephem['dra_equinox']*3600:.5f} ddec={ephem['ddec_equinox']*3600:.5f} equinox={ephem['header']['equinox']} epoch={ephem['jd']}")

    if example == 11:
        """
        Simple ask to HADEC
        """
        eph = Ephemeris()
        eph.set_home("guitalens")
        name = "My object"
        target  = "HADEC 12 34 32.12 -01 45 46.2"
        #target_type = eph.radec(target, target_type_only=True)
        #ra, dec, equinox, epoch= eph.radec(target)
        #print(f"{name} ra={ra:.6f} dec={dec:.6f} equinox={equinox} epoch={epoch}")
        ephem = eph.radec_speed(target)
        print(f"{name} ra={ephem['ra_equinox']:.6f} dec={ephem['dec_equinox']:.6f} dra={ephem['dra_equinox']*3600:.5f} ddec={ephem['ddec_equinox']*3600:.5f} equinox={ephem['header']['equinox']} epoch={ephem['jd']}")

    if example == 12:
        """
        Compute the ephemeris of a target along all a night
        """
        import matplotlib.pyplot as plt
        def compute_hours(ephem):
            jd0 = ephem['jd'][0]
            frac = jd0 - np.floor(jd0)
            offset = frac - 0.5
            hours = (ephem['jd'] - jd0 + offset)*24
            date = Date(jd0).iso(0)
            return hours, date
        # ---
        eph = Ephemeris()
        eph.set_home("guitalens")
        nsec = 86400
        night = "20230320"
        preference = "bestelev"
        duskelev = -7
        #preference = "immediate"
        # --- horizon
        from horizon import Horizon
        hor = Horizon(eph.home)
        hor.horizon_altaz = [(0,40), (180,0), (360,40)]
        hor_az, hor_elev = hor.horizon_altaz
        # --- Test nsec
        if False:
            nsec = 3
            night = "2023-03-20T12:00:00"
        # --- sun
        target = "sun"
        t0 = time.time()
        ephem_sun = eph.target2night(target, night, None, None, nsec=nsec)
        dt = time.time()-t0
        print(f"SUN dt={dt}")
        # --- moon
        target = "moon"
        t0 = time.time()
        ephem_moon = eph.target2night(target, night, None, None, nsec=nsec)
        dt = time.time()-t0
        print(f"MOON dt={dt}")
        # --- target
        target = "RADEC 4h56m -12d23m"
        #target = "HADEC 2h +16d"
        t0 = time.time()
        speed = True
        ephem = eph.target2night(target, night, ephem_sun, ephem_moon, horizon=hor, preference=preference, duskelev=duskelev, speed=speed, nsec=nsec)
        dt = time.time()-t0
        print(f"TARGET dt={dt}")
        hours, date = compute_hours(ephem)
        plt.plot(hours, ephem_sun['alt'], "y-")
        plt.plot(hours, ephem['alt'], "b-")
        plt.plot(hours, ephem['horizon'], "g-")
        plt.plot(hours, ephem['visibility'], "k:")
        plt.plot(hours, ephem['observability'], "k-")
        plt.grid()
        plt.ylabel('Degrees')
        plt.xlabel(f'Hours since {date}')

    if example == 13:
        """
        Transform HADEC or ALTAZ to ephem (a dict of all coordinates)
        """
        eph = Ephemeris()
        eph.set_home("guitalens")
        ephem = eph.altaz2ephem(-90, 0, "now")
        print(ephem)

    if example == 14:
        """
        Compute the ephemeris for PYROS test
        """
        import matplotlib.pyplot as plt
        def compute_hours(ephem):
            jd0 = ephem['jd'][0]
            frac = jd0 - np.floor(jd0)
            offset = frac - 0.5
            hours = (ephem['jd'] - jd0 + offset)*24
            date = Date(jd0).iso(0)
            return hours, date
        # ---
        eph = Ephemeris()
        eph.set_home("GPS 2.0375 E 43.6443484725 136.9")
        nsec = 86400
        night = "now"
        preference = "bestelev"
        duskelev = -7
        #preference = "immediate"
        # --- horizon
        from horizon import Horizon
        hor = Horizon(eph.home)
        hor.horizon_altaz = [ [0,0], [360,0] ]
        hor_az, hor_elev = hor.horizon_altaz
        # --- sun
        target = "sun"
        t0 = time.time()
        ephem_sun = eph.target2night(target, night, None, None, nsec=nsec)
        dt = time.time()-t0
        print(f"SUN dt={dt}")
        # --- moon
        target = "moon"
        t0 = time.time()
        ephem_moon = eph.target2night(target, night, None, None, nsec=nsec)
        dt = time.time()-t0
        print(f"MOON dt={dt}")
        # --- target
        target = "RADEC 18h -15d"
        t0 = time.time()
        speed = True
        ephem = eph.target2night(target, night, ephem_sun, ephem_moon, horizon=hor, preference=preference, duskelev=duskelev, speed=speed, nsec=nsec)
        #ephem = eph.target2night(target, night, None, None, preference=preference, duskelev=duskelev, speed=speed, nsec=nsec)
        dt = time.time()-t0
        print(f"TARGET dt={dt}")
        hours, date = compute_hours(ephem)
        plt.plot(hours, ephem_sun['alt'], "y-")
        plt.plot(hours, ephem['distmoon'], "c-")
        plt.plot(hours, ephem['alt'], "b-")
        plt.plot(hours, ephem['horizon'], "g-")
        plt.plot(hours, ephem['visibility'], "k:")
        plt.plot(hours, ephem['observability'], "k-")
        plt.grid()
        plt.ylabel('Degrees')
        plt.xlabel(f'Hours since {date}')