main_sw1da_p.f
42.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
c======================================================================|
c solar wind model (6-ref.long. calculation)
c last update 2015.7.23
c======================================================================|
implicit none
integer :: i,j,iang,nang
integer :: idp_in,idp_prop,idp_out
real*8 :: angref0,touts,dtr
real*8 :: angref(30)
integer :: instop,instopfin,ifnpo,idprop
character*100 :: fnin,fnout,fnin1,fnout1,fntmp(12),fntmp2(12)
character*100 :: fdirtmp
real*8,allocatable :: angref6(:)
real*8 :: xmin1,xmax1,xear
integer :: ix
!!!!! elena : namelist should be before executable statements
namelist /INPARA1/instop,fnin,fnout,ifnpo,dtr,touts,idprop
1 ,fdirtmp,angref,idp_in,idp_prop,idp_out,xmin1,xmax1
c---setting
angref(:)=-1.e10
open(unit=50,file='namelist',status='old',form='formatted')
read(50,nml=INPARA1)
close(50)
c----set angle
do i=1,30
if(angref(i).eq.-1.e10) goto 319
enddo
319 continue
nang=i-1
allocate(angref6(nang))
!!!! elena : dimensions mismatch 6/30
angref6(1:nang)=angref(1:nang)
c----set filename
do iang=1,nang
angref0=angref6(iang)
write(fntmp(iang),'(a4,i3.3,a7)')
1 '/tmp',int(angref0),'_in.txt'
write(fntmp2(iang),'(a4,i3.3,a8)')
1 '/tmp',int(angref0),'_out.txt'
fntmp(iang)=trim(fdirtmp)//fntmp(iang)
fntmp2(iang)=trim(fdirtmp)//fntmp2(iang)
enddo
c---prepare dataset at angref0
if(idp_in.eq.1)
1 call sub_indat(fnin,fntmp(1:nang),angref6,nang,dtr,instopfin
1 ,ifnpo,idprop)
if(instop.eq.0) call count_lines(fntmp(1),instop)
c---solar wind propagation along angref0
do iang=1,nang
angref0=angref6(iang)
fnin1=fntmp(iang)
fnout1=fntmp2(iang)
if(idp_prop.eq.1)
1 call swmodel(angref0,instop,fnin1,fnout1,ifnpo,dtr,touts,idprop
1 ,xmax1,xmin1)
enddo
c---read & select dataset
if(idp_out.eq.1)
1 call sub_slct(fnin,fnout,fntmp2(1:nang),angref6,nang
1 ,touts,dtr,idprop,ifnpo)
stop
end
c======================================================================|
subroutine swmodel(angref0,instop,fnin,fnout,ifnpo,dtr,touts0
1 ,idprop ,xmax1,xmin1) !--REV0318
c======================================================================|
implicit double precision (a-h,o-z)
real*8,allocatable,dimension(:) :: x,xm,dx,dxm,ro,pr,vx,vy,by,bx
1 ,bxm,sc,scm,dsc,dscm,dv,gx,gxm,rr,rrm,drr,drrm,vz,bz,gy,gz
integer :: idprop !--REV0318
integer :: xin,xout,ifnpo,fnum,fnum2,fnpo,merr
real*8 :: touts0,touts
real*8 :: p8bd(8),parain(13),paranm(8)
real*8,allocatable :: jsinref(:),parainref(:,:)
real*8 :: bx0at1au,angref0,ns,gm
character*100 :: fnin,fnout
!!!!! elena
real*8 jjs
namelist /INPARA2/npout,bx0at1au,gm
open(unit=50,file='namelist',status='old',form='formatted')
read(50,nml=INPARA2)
close(50)
touts=touts0*0.5
ix=int((xmax1-xmin1)*400.+1.e-10)
xear=(1.-xmin1)*400.
allocate(x(ix),xm(ix),dx(ix),dxm(ix)
1 ,ro(ix),pr(ix),vx(ix),vy(ix),by(ix),bx(ix),bxm(ix)
1 ,sc(ix),scm(ix),dsc(ix),dscm(ix),dv(ix),gx(ix),gxm(ix)
1 ,rr(ix),rrm(ix),drr(ix),drrm(ix)
1 ,vz(ix),bz(ix),gy(ix),gz(ix))
c----------------------------------------------------------------------|
c prologue
c----------------------------------------------------------------------|
c----------------------------------------------------------------------|
c time control parametersn
c instop : number of time steps taken from input data
c (nstop : number of total time steps for the run, = instop)
c touts : data output's rate (ex.12 with dtr=300 -> 12x300=3600 sec.)
c npout : prosess print rate (<nstop!!)
c dtr : real time step (ex. 300 sec.)
c instop=131600 !***
c touts=12.
c npout=100
c dtr=300.0
bx0=bx0at1au/16.34d0
c----------------------------------------------------------------------|
c file open
c input file(32):solar wind at input, in/out positions (real value)
fnum=32
open(fnum,file=trim(fnin),status='old')
c output file(30):solar wind at specified position (real value)
fnum2=30
open(fnum2,file=trim(fnout)
& ,status='unknown',form='formatted')
c monitor file (ex. fnpo=61 -> fort.61)
fnpo=ifnpo
c----------------------------------------------------------------------|
c parameters
c margin: 1 in MLW, 2 in Roe, 4 in CIP
margin=2
c----------------------------------------------------------------------|
nstop=instop
allocate(jsinref(instop),parainref(6,instop))
paranm=(/10.,10000.,400.,400.,400.,1.,1.,1./)
c----------------------------------------------------------------------|
c initialize counters
time = 0.0
timep = 0.0
ns = 0.
merr = 0
c----------------------------------------------------------------------|
c setup numerical model (grid, initial conditions, etc.)
call model(idf,ro,pr,vx,vy,vz,by,bz,vstar,bx,bxm,gm,gx,gxm,gy,gz
& ,rr,rrm,sc,scm,dv,margin,x,ix,bx0,xear,xmin1,xmax1)
if(idprop.eq.1)
& p8bd(:)=(/ro(1),pr(1),vx(1),vy(1),vz(1),bx(1),by(1),bz(1)/)
if(idprop.eq.-1)
& p8bd(:)=(/ro(ix),pr(ix),-vx(ix),vy(ix),vz(ix)
& ,bx(ix),by(ix),bz(ix)/)
vx=vx*float(idprop) !--REV0318
call bnd3(margin,ro,pr,vx,vy,vz,by,bz,gm,vstar,ix,p8bd,idprop) !--REV0318
c----------------------------------------------------------------------|
c ready
call grdrdy(dx,xm,dxm,x,ix)
call scrdy(dsc,dscm,sc,scm,dx,dxm,ix)
call scrdy(drr,drrm,rr,rrm,dx,dxm,ix)
call bndsc(margin,sc,dsc,scm,dscm,ix)
c----------------------------------------------------------------------|
l=0.
js=0.d0
k=10
c----------------------------------------------------------------------|
c time integration
c----------------------------------------------------------------------|
1000 continue
ns = ns+1.
c----------------------------------------------------------------------|
c obtain time spacing
call cfl_m3(dt,merr,gm,bx,ro,pr,vx,vy,vz,by,bz,dx,ix)
dt0=dtr/375000.d0
if(dt0.lt.dt) then
dt=dt0
else
write(fnpo,*) 'Time Spacing is NOT Correct! : dt0 > dt'
write(fnpo,*) 'dt=',dt
write(fnpo,*) 'dt0=',dt0
endif
if (merr.ne.0) goto 9999
c----data read & input----------
read(fnum,*) jjs,(parain(i),i=1,13)
!!!!! elena : js is defined as REAL in the file
js=int(jjs)
parain(3)=parain(3)*float(idprop) !--REV0318
xin=minval(minloc(abs(parain(9)-x)))
if(parain(9).lt.x(xin).and.idprop.eq.1) xin=xin-1 !--REV0318
if(parain(9).gt.x(xin).and.idprop.eq.-1) xin=xin+1 !--REV0318
jsinref(ns)=float(js)
parainref(1:2,ns)=parain(9:10)
parainref(3,ns)=x(xin)
parainref(4,ns)=parain(3) !km/s
call datin_varied3(ro,pr,vx,vy,vz,bx,by,bz
& ,vstar,ns,ix,parain,xin,paranm ,idprop,x) !--REV0318
c----initial setting
if(ns.eq.1.) js0=js
if(ns.eq.1.) write(fnpo,*) 'js=',js
if(ns.eq.1.) then
parainref(5,1)=parain(10)
else
dang0=parain(10)-parainref(2,ns-1)
if(dang0.le.-180.) dang0=dang0+360.
parainref(5,ns)=parainref(5,ns-1)+dang0
endif
parainref(6,ns)=parain(13)
c----------------------------------------------------------------------|
c solve hydrodynamic equations
call roe_m_bg(ro,pr,vx,vy,by,bx,bxm,dt,gm
& ,gx,dsc,scm,dv,rr,rrm,drr,dx,ix)
call bnd3_2(margin,ro,pr,vx,vy,vz,by,bz,gm,vstar,ix,idprop,x) !--REV0318
c----------------------------------------------------------------------|
c data output
c---monitoring
if(minval(pr).lt.0.) write(6,*) ns
if(minval(pr).lt.0.) write(6,*) minval(pr)
if(minval(pr).lt.0.) stop 'Pr<0'
if(idprop.eq.1.and.minval(vx).lt.0.) stop 'Vx opposite'
if(idprop.eq.-1.and.maxval(vx).gt.0.) then
write(6,1115) vx
stop 'Vx opposite'
endif
1115 format(15f10.7)
c----first dt estimation
if (mod(int(ns),int(touts)).eq.0) then
js=js0+ns*dtr *float(idprop) !--REV0318
xout=minval(minloc(abs(parain(11)-x)))
dtp1=(parain(11)-parain(9))*1.5d11/400./1.d3
! write(6,*) 'first dt estimation', dtp1
if((js-dtp1.le.js0.and.idprop.eq.1) !--REV0318
1 .or.(js+dtp1.ge.js0.and.idprop.eq.-1)) then !--REV0318
write(fnum2,704) js,1.,1.,100.,1.,1.,1.d-5,1.d-5,1.d-5
& ,0.d0,float(js0)
else
itin=minval(minloc(abs((js-dtp1*float(idprop))-jsinref))) !--REV0318
!!!!! elena
if(parainref(4,itin).eq.0.0)then
write(6,*) '!!!second dt',itin, ns, parain(12), parain(10)
itin = ns
endif
c----second dt estimation
dtp1=(parain(11)-parain(9))*1.5d11/parainref(4,itin)/1.d3
if((js-dtp1.le.js0.and.idprop.eq.1)
1 .or.(js+dtp1.ge.js0.and.idprop.eq.-1)) then
write(fnum2,704) js,1.,1.,100.,1.,1.,1.d-5,1.d-5,1.d-5
& ,0.d0,float(js0)
goto 1001
endif
itin_tmp=itin
itin=minval(minloc(abs((js-dtp1*float(idprop))-jsinref)))
!!!!! elena
if (parainref(4,itin).eq.0.0) itin=itin_tmp
c----output
dang0=-(parain(12)-parainref(2,itin))
dang0=mod(dang0,360.)
if(dang0.ge.180.) dang0=dang0-360.
if(angref0.ge.0.)
& dtp2=(parain(11)-x(xout))*1.5d11/vx(xout)/400.d3
& -(parainref(1,itin)-parainref(3,itin))*1.5d11 !x_datain-x_in
& /parainref(4,itin)/1.d3
!!!! elena
if (parainref(4,itin).eq.0.0) then ! NaN
write(6,*) '!!!!!! NaN in dtp2 ', angref0
write(6,*) parain(11), x(xout),vx(xout)
write(6,*) ns, itin, xout
write(6,*) parain(12), parain(10)
stop
endif
write(fnum2,704) js,ro(xout)*paranm(1)
& ,pr(xout)*1937./ro(xout)*paranm(2)
& ,vx(xout)*paranm(3)*float(idprop) !--REV0318
& ,vy(xout)*paranm(4),vz(xout)*paranm(5)
& ,bx(xout)*paranm(6)*16.34,by(xout)*paranm(7)*16.34
& ,bz(xout)*paranm(8)*16.34
& ,dtp2*float(idprop),jsinref(itin)-parainref(6,itin)
endif
704 format(i15.1, 9e18.8,f18.1)
1001 continue
endif
if (mod(int(ns),int(nstop/npout)).eq.0) then
l=l+1.
write(fnpo,'(i6,a1,i6,a25,f7.1,a1)')
1 l,'/',npout,' :processed ! (angref=',angref0,')'
endif
c----------------------------------------------------------------------|
if (ns .lt. nstop) goto 1000
c----------------------------------------------------------------------|
c epilogue
c----------------------------------------------------------------------|
9999 continue
write(fnpo,*) 'js=',js
CLOSE (fnum, STATUS = 'KEEP')
CLOSE (fnum2, STATUS = 'KEEP')
deallocate(jsinref,parainref)
deallocate(x,xm,dx,dxm,ro,pr,vx,vy,by,bx,bxm,sc,scm,dsc,dscm
1 ,dv,gx,gxm,rr,rrm,drr,drrm,vz,bz,gy,gz)
return
end
c======================================================================|
subroutine model(idf,ro,pr,vx,vy,vz,by,bz
& ,vstar,bx,bxm,gm,gx,gxm,gy,gz,rr,rrm,sc,scm,dv,margin,x,ix,bx0
& ,xear,xmin1,xmax1)
c======================================================================|
implicit double precision (a-h,o-z)
c----------------------------------------------------------------------|
dimension x(ix),dxm(ix)
dimension ro(ix),pr(ix),vx(ix),vy(ix),by(ix)
dimension sc(ix),scm(ix),dv(ix)
dimension bx(ix),bxm(ix)
dimension gx(ix),gxm(ix)
dimension rr(ix),rrm(ix)
dimension vz(ix),bz(ix)
dimension gy(ix),gz(ix)
c----------------------------------------------------------------------|
c parameters
c----------------------------------------------------------------------|
gmst=0.0055248d0
vstar=0.d0
rstar=xmin1
rmax=xmax1
c-----------------------------------------------------------------------
c grid
c-----------------------------------------------------------------------
dx0=(rmax-rstar)/real(ix-margin*2)
c-----------------------------------------------------------------------
c dxm,x
do i=1,ix
dxm(i)=dx0
enddo
izero=margin
x(izero)=rstar-dxm(izero)/2.d0
do i=izero+1,ix
x(i) = x(i-1)+dxm(i-1)
enddo
do i=izero-1,1,-1
x(i) = x(i+1)-dxm(i)
enddo
c----------------------------------------------------------------------|
c gravity
c----------------------------------------------------------------------|
do i=1,ix
gx(i)=-1.d0*gmst/x(i)**2d0
gxm(i)=-1.d0*gmst/(x(i)+0.5d0*dxm(i))**2
gy(i)=0.d0
gz(i)=0.d0
enddo
c----------------------------------------------------------------------|
c rotation
c----------------------------------------------------------------------|
do i=1,ix
rr(i)=x(i)
rrm(i)=x(i)+dxm(i)/2.d0
enddo
c-----------------------------------------------------------------------|
c initial temperature, density, pressure distributions
c-----------------------------------------------------------------------|
ro=1./x**2
do i=1,ix
te=1.d0/x(i)**0.79
pr(i)=ro(i)*te/1937.d0
enddo
vx(:)=1.; vy(:)=0.; vz(:)=0.
c----------------------------------------------------------------------|
c magnetic field
c----------------------------------------------------------------------|
pi = acos(-1.0d0)
do i=1,ix
by(i)=0.d0
bz(i)=0.d0
bx(i)=bx0*x(xear)**2/x(i)**2
bxm(i)=bx0*x(xear)**2/(x(i)+dxm(i)/2.d0)**2
enddo
c----------------------------------------------------------------------|
c cross section of flux tube
c----------------------------------------------------------------------|
do i=1,ix
sc(i)=x(i)**2/x(xear)**2
scm(i)=(x(i)+dxm(i)/2.)**2/x(xear)**2
dv(i)=sc(i)
enddo
return
end
c======================================================================|
subroutine bdcnsx(mbnd,margin,qq,q0,ix)
c======================================================================|
c
c NAME bdcnsx
c
c PURPOSE
c apply constant-value boundary condition
c
c INPUTS & OUTPUTS
c qq(ix): [double] variable
c
c OUTPUTS
c None
c
c INPUTS
c ix: [integer] dimension size
c margin: [integer] margin, i.e. # of grid points outside the boundary
c mbnd: [integer] If mbnd=0, smaller 'i' side.
c If mbnd=1, larger 'i' side.
c q0: [double] constant boundary value to be taken
c
c HISTORY
c written 2002-3-1 T. Yokoyama
c
c----------------------------------------------------------------------|
implicit double precision (a-h,o-z)
dimension qq(ix)
c----------------------------------------------------------------------|
if (mbnd.eq.0) then
ibnd=1+margin
do i=1,margin
qq(ibnd-i) = q0
enddo
else
ibnd=ix-margin
do i=1,margin
qq(ibnd+i) = q0
enddo
endif
return
end
c======================================================================|
subroutine bdfrdx(mbnd,margin,qq,dxm,ix)
c======================================================================|
c
c NAME bdfrdx
c
c PURPOSE
c apply free boundary condition
c values are extended to have constant gradient
c
c INPUTS & OUTPUTS
c qq(ix): [double] variable
c
c OUTPUTS
c None
c
c INPUTS
c ix: [integer] dimension size
c margin: [integer] margin, i.e. # of grid points outside the boundary
c mbnd: [integer] If mbnd=0, smaller 'i' side.
c If mbnd=1, larger 'i' side.
c
c HISTORY
c written 2002-3-1 T. Yokoyama
c
c----------------------------------------------------------------------|
implicit double precision (a-h,o-z)
dimension qq(ix),dxm(ix)
c----------------------------------------------------------------------|
if (mbnd.eq.0) then
ibnd=1+margin
dqq=(qq(ibnd+1)-qq(ibnd))/dxm(ibnd)
do i=1,margin
qq(ibnd-i) = qq(ibnd-i+1)-dqq*dxm(ibnd-i)
enddo
else
ibnd=ix-margin
dqq=(qq(ibnd)-qq(ibnd-1))/dxm(ibnd-1)
do i=1,margin
qq(ibnd+i) = qq(ibnd+i-1)+dqq*dxm(ibnd+i-1)
enddo
endif
return
end
c======================================================================|
subroutine bdfrex(mbnd,margin,qq,ix)
c======================================================================|
c
c NAME bdfrex
c
c PURPOSE
c apply free boundary condition
c
c INPUTS & OUTPUTS
c qq(ix): [double] variable
c
c OUTPUTS
c None
c
c INPUTS
c ix: [integer] dimension size
c margin: [integer] margin, i.e. # of grid points outside the boundary
c mbnd: [integer] If mbnd=0, smaller 'i' side.
c If mbnd=1, larger 'i' side.
c
c HISTORY
c written 2002-3-1 T. Yokoyama
c
c----------------------------------------------------------------------|
implicit double precision (a-h,o-z)
dimension qq(ix)
c----------------------------------------------------------------------|
if (mbnd.eq.0) then
ibnd=1+margin
do i=1,margin
qq(ibnd-i) = qq(ibnd)
enddo
else
ibnd=ix-margin
do i=1,margin
qq(ibnd+i) = qq(ibnd)
enddo
endif
return
end
c======================================================================|
subroutine bnd3(margin,ro,pr,vx,vy,vz,by,bz,gm,vstar,ix
1 ,p8bd,idprop) !--REV0318
c======================================================================|
c apply boundary condition
c----------------------------------------------------------------------|
implicit double precision (a-h,o-z)
dimension ro(ix),pr(ix),vx(ix),vy(ix),by(ix)
dimension vz(ix),bz(ix)
real*8 p8bd(8)
integer :: idprop !--REV0318
c----------------------------------------------------------------------|
ro0=p8bd(1)
pr0=p8bd(2)
vstar=p8bd(4)
if(idprop.eq.1)then !--REV0318
call bdcnsx(0,margin,ro,ro0,ix)
call bdcnsx(0,margin,pr,pr0,ix)
call bdfrex(0,margin,vx,ix)
call bdcnsx(0,margin,vy,vstar,ix)
call bdfrex(0,margin,by,ix)
call bdfrex(0,margin,vz,ix)
call bdfrex(0,margin,bz,ix)
call bdfrex(1,margin,ro,ix)
call bdfrex(1,margin,pr,ix)
call bdfrex(1,margin,vx,ix)
call bdfrex(1,margin,vy,ix)
call bdfrex(1,margin,by,ix)
call bdfrex(1,margin,vz,ix)
call bdfrex(1,margin,bz,ix)
else
c call bdcnsx(1,margin,ro,ro0,ix)
c call bdcnsx(1,margin,pr,pr0,ix)
call bdfrex(1,margin,ro,ix)
call bdfrex(1,margin,pr,ix)
call bdfrex(1,margin,vx,ix)
c call bdcnsx(1,margin,vy,vstar,ix)
call bdfrex(1,margin,vy,ix)
call bdfrex(1,margin,by,ix)
call bdfrex(1,margin,vz,ix)
call bdfrex(1,margin,bz,ix)
call bdfrex(0,margin,ro,ix)
call bdfrex(0,margin,pr,ix)
call bdfrex(0,margin,vx,ix)
call bdfrex(0,margin,vy,ix)
call bdfrex(0,margin,by,ix)
call bdfrex(0,margin,vz,ix)
call bdfrex(0,margin,bz,ix)
endif
return
end
c======================================================================|
subroutine bnd3_2(margin,ro,pr,vx,vy,vz,by,bz,gm,vstar,ix
1 ,idprop,x)
c======================================================================|
c apply boundary condition
c----------------------------------------------------------------------|
implicit double precision (a-h,o-z)
dimension ro(ix),pr(ix),vx(ix),vy(ix),by(ix)
dimension vz(ix),bz(ix)
dimension x(ix)
integer :: idprop !--REV0318
c----------------------------------------------------------------------|
if(idprop.eq.1) then
call bdfrex(1,margin,ro,ix)
call bdfrex(1,margin,pr,ix)
call bdfrex(1,margin,vx,ix)
call bdfrex(1,margin,vy,ix)
call bdfrex(1,margin,by,ix)
call bdfrex(1,margin,vz,ix)
call bdfrex(1,margin,bz,ix)
else
call bdfrex(0,margin,ro,ix)
c ro(1)=ro(3)*x(3)**2/x(1)**2
c ro(2)=ro(3)*x(3)**2/x(2)**2
call bdfrex(0,margin,pr,ix)
call bdfrex(0,margin,vx,ix)
call bdfrex(0,margin,vy,ix)
call bdfrex(0,margin,by,ix)
call bdfrex(0,margin,vz,ix)
call bdfrex(0,margin,bz,ix)
c vx(1:2)=-1.
endif
return
end
c======================================================================|
subroutine bndsc(margin,sc,dsc,scm,dscm,ix)
c======================================================================|
c apply boundary condition
c----------------------------------------------------------------------|
implicit double precision (a-h,o-z)
dimension sc(ix),dsc(ix)
dimension scm(ix),dscm(ix)
c----------------------------------------------------------------------|
call bdfrex(0,margin,dsc,ix)
call bdfrex(0,margin-1,dscm,ix)
call bdfrex(1,margin,dsc,ix)
call bdfrex(1,margin,dscm,ix)
return
end
c======================================================================|
subroutine cfl_m3(dt,merr,gm,bx,ro,pr,vx,vy,vz,by,bz,dx,ix)
c======================================================================|
c
c NAME cfl_m
c
c PURPOSE
c determine time step such that it satisfies CFL condition.
c * MHD equations
c
c OUTPUTS
c dt: [double] delta time
c merr: [integer] error code, merr=0 is nominal.
c
c INPUTS
c ix: [integer] dimension size
c ro(ix): [double] density
c pr(ix): [double] pressure
c vx(ix): [double] velocity
c vy(ix): [double] velocity
c bx(ix): [double] magnetic field
c by(ix): [double] magnetic field
c dx(ix): [double] grid spacing
c gm: [double] polytropic index gamma
c
c HISTORY
c written 2002-3-1 T. Yokoyama
c
c----------------------------------------------------------------------|
c determine time step such that it satisfies cfl condition.
c----------------------------------------------------------------------|
implicit double precision (a-h,o-z)
dimension dx(ix)
dimension ro(ix)
dimension pr(ix)
dimension vx(ix)
dimension vy(ix)
dimension bx(ix)
dimension by(ix)
dimension dtq(ix)
dimension vz(ix),bz(ix)
c----------------------------------------------------------------------|
pi = acos(-1.0d0)
pi4i=0.25/pi
dtmin=2.0e-10
! safety=0.8 !cf. 0.4 --original
safety=0.4
c----------------------------------------------------------------------|
dt=1.e20
imin = 0
do i=2,ix-1
onero = 1.0/ro(i)
v2 = vx(i)*vx(i)+vy(i)*vy(i)+vz(i)*vz(i)
ca2 = (bx(i)*bx(i)+by(i)*by(i)+bz(i)*bz(i))*pi4i*onero
cs2 = gm*pr(i)*onero
dtcfl = dx(i)/sqrt(v2+cs2+ca2)
dtq(i)=safety*dtcfl
enddo
do i=2,ix-1
if(dtq(i).lt.dt) then
imin=i
dt=dtq(i)
endif
enddo
! write(6,*) minval(pr)
c----------------------------------------------------------------------|
c write the point where dt is smaller than critical value
c----------------------------------------------------------------------|
merr=0
if (dt.lt.dtmin) then
merr=9001
write(6,*) ' ### stop due to small dt, less than dtmin ###'
write(6,620) dt,dtmin,imin
620 format(' dt = ',1pe10.3,' < ',1pe10.3,' @ i =',i5)
endif
return
end
c======================================================================|
subroutine datin_varied3(ro,pr,vx,vy,vz,bx,by,bz,
& vstar,ns,ix,parain,xear,paranm ,idprop,x) !--REV0318
c======================================================================|
implicit double precision (a-h,o-z)
dimension ro(ix),pr(ix),vx(ix),vy(ix),vz(ix)
dimension bx(ix),by(ix),bz(ix)
dimension x(ix)
real*8 parain(12),paranm(8)
integer :: xear,idprop
if(idprop.eq.1)then
cc ro(1:xear)=parain(1)/paranm(1)
cc pr(1:xear)=parain(2)/paranm(2)*parain(1)/paranm(1)/1937.d0
ro(1:xear)=parain(1)/paranm(1)/x(1:xear)**2*x(xear)**2
pr(1:xear)=parain(2)/paranm(2)*ro(1:xear)/1937.d0
vx(1:xear)=parain(3)/paranm(3)
vy(1:xear)=parain(4)/paranm(4)
cc vz(1:xear)=parain(5)/paranm(5)
by(1:xear)=parain(7)/16.34d0
cc bz(1:xear)=parain(8)/16.34d0
else
ro(xear:ix)=parain(1)/paranm(1)
pr(xear:ix)=parain(2)/paranm(2)*parain(1)/paranm(1)/1937.d0
cc ro(xear:ix)=parain(1)/paranm(1)/x(xear:ix)**2*x(xear)**2
cc pr(xear:ix)=parain(2)/paranm(2)/ro(xear:ix)/1937.d0
vx(xear:ix)=parain(3)/paranm(3)
vy(xear:ix)=parain(4)/paranm(4)
cc vz(xear:ix)=parain(5)/paranm(5)
by(xear:ix)=parain(7)/16.34d0
cc bz(xear:ix)=parain(8)/16.34d0
endif
return
end
c======================================================================|
subroutine datin_const3(ro,pr,vx,vy,vz,bx,by,bz,vstar,ns,ix)
c======================================================================|
implicit double precision (a-h,o-z)
dimension ro(ix),pr(ix),vx(ix),vy(ix),vz(ix)
dimension bx(ix),by(ix),bz(ix)
ro(1:xear)=1.d0
pr(1:xear)=1.d0/1937.d0
vx(1:xear)=1.d0
vy(1:xear)=vstar
vz(1:xear)=0.d0
bx(1:xear)=0.0d0
by(1:xear)=0.0d0
bz(1:xear)=0.0d0
ro(xear+1)=ro(xear)
pr(xear+1)=pr(xear)
vx(xear+1)=vx(xear)
vy(xear+1)=vy(xear)
vz(xear+1)=vz(xear)
bx(xear+1)=bx(xear)
by(xear+1)=by(xear)
bz(xear+1)=bz(xear)
return
end
c======================================================================|
subroutine grdrdy(dx,xm,dxm,x,ix)
c======================================================================|
c
c NAME grdrdy
c
c PURPOSE
c calculate coordinate of mid-grid points and
c grid spacing on the grid points
c
c OUTPUTS
c dx(ix),dxm(ix): [double] grid spacing
c xm(ix): [double] coordinate
c
c INPUTS
c x(ix): [double] coordinate
c ix: [integer] dimension size
c
c HISTORY
c written 2002-3-1 T. Yokoyama
c
c----------------------------------------------------------------------|
implicit double precision (a-h,o-z)
dimension dx(ix),dxm(ix)
dimension x(ix),xm(ix)
c----------------------------------------------------------------------|
do i=1,ix-1
dxm(i)=x(i+1)-x(i)
enddo
dxm(ix)=dxm(ix-1)
do i=2,ix-1
dx(i) = 0.5*(dxm(i-1)+dxm(i))
enddo
dx(1)=dx(2)
dx(ix)=dx(ix-1)
do i=1,ix-1
xm(i)=0.5*(x(i)+x(i+1))
enddo
xm(ix)=xm(ix-1)+dx(ix-1)
return
end
c======================================================================|
subroutine roe_m_bg(ro,pr,vx,vy,by,bx,bxm,dt,gm
& ,gx,dsc,scm,dv,rr,rrm,drr,dx,ix)
c======================================================================|
c
c NAME roe_m_bg
c
c PURPOSE
c solve eqs. by modified Roe + MUSCL-TVD method with effects of
c * MHD
c * axial symmetry
c * non-uniform poloidal magnetic field
c * gravity
c
c INPUTS & OUTPUTS
c ro(ix): [double] density
c pr(ix): [double] pressure
c vx(ix): [double] velocity
c vy(ix): [double] velocity
c by(ix): [double] magnetic field
c
c OUTPUTS
c None
c
c INPUTS
c NOTE: ??m(ix) is the variable array defined at grid bounds
c
c bx(ix), bxm(ix) : [double] magnetic field
c gx(ix), gxm(ix) : [double] gravity
c gy(ix), gym(ix) : [double] gravity
c gz(ix), gzm(ix) : [double] gravity
c scm(ix) : [double] cross section
c dsc(ix), dscm(ix) : [double] cross section gradient
c rr(ix), rrm(ix) : [double] distance from rotation axis
c drr(ix), drrm(ix) : [double] distance gradient from rotation axis
c dx(ix) : [double] grid spacing
c gm: [double] polytropic index gamma
c dt: [double] delta time
c ix: [integer] dimension size
c
c HISTORY
c written 2002-3-1 T. Yokoyama based on N. Fukuda's code
c
c----------------------------------------------------------------------|
implicit double precision (a-h,o-z)
dimension dx(ix)
dimension ro(ix),pr(ix),vx(ix),vy(ix),by(ix)
dimension bx(ix),bxm(ix)
dimension dsc(ix),scm(ix),dv(ix)
dimension rosc(ix),eesc(ix),rxsc(ix),rysc(ix),bysc(ix)
dimension rosch(ix),eesch(ix),rxsch(ix),rysch(ix),bysch(ix)
dimension fro(ix),fee(ix),frx(ix),fry(ix),fby(ix)
dimension roh(ix),prh(ix),vxh(ix),vyh(ix),byh(ix)
dimension row(ix,2),prw(ix,2),vxw(ix,2),vyw(ix,2)
& ,bxw(ix,2),byw(ix,2)
dimension gx(ix)
dimension rr(ix),drr(ix),rrm(ix)
c----------------------------------------------------------------------|
c numerical parameters
pi = acos(-1.0d0)
pi4=4.0d0*pi
pi8=8.0d0*pi
pi4i=1.0d0/pi4
pi8i=5.0d-1*pi4i
c----------------------------------------------------------------------|
c computation of conservative variables w(i,l)
do i=1,ix
rosc(i)=dv(i)*ro(i)
rxsc(i)=dv(i)*ro(i)*vx(i)
rysc(i)=dv(i)*ro(i)*vy(i)*rr(i)
bysc(i)=dv(i)*by(i)/rr(i)
v2=vx(i)**2+vy(i)**2
b2=bx(i)**2+by(i)**2
eesc(i)=dv(i)*(pr(i)/(gm-1.0d0) +0.5d0*ro(i)*v2 + pi8i*b2)
enddo
c----------------------------------------------------------------------|
c proceed half step
c computation of 1st order flux f(i,l)
c----------------------------------------------------------------------|
do i=1,ix-1
row(i,1)=ro(i)
prw(i,1)=pr(i)
vxw(i,1)=vx(i)
vyw(i,1)=vy(i)
bxw(i,1)=bxm(i)
byw(i,1)=by(i)
row(i,2)=ro(i+1)
prw(i,2)=pr(i+1)
vxw(i,2)=vx(i+1)
vyw(i,2)=vy(i+1)
bxw(i,2)=bxm(i)
byw(i,2)=by(i+1)
enddo
call roeflux_m(fro,fee,frx,fry,fby,gm,row,prw,vxw,vyw,bxw,byw,ix)
do i=1,ix-1
fro(i)=scm(i)*fro(i)
fee(i)=scm(i)*fee(i)
frx(i)=scm(i)*frx(i)
fry(i)=scm(i)*fry(i)*rrm(i)
fby(i)=scm(i)*fby(i)/rrm(i)
enddo
do i=2,ix-1
rosch(i)=rosc(i)+0.5d0*dt*( (fro(i-1)-fro(i))/dx(i) )
eesch(i)=eesc(i)+0.5d0*dt*( (fee(i-1)-fee(i))/dx(i) )
rxsch(i)=rxsc(i)+0.5d0*dt*( (frx(i-1)-frx(i))/dx(i) )
rysch(i)=rysc(i)+0.5d0*dt*( (fry(i-1)-fry(i))/dx(i) )
bysch(i)=bysc(i)+0.5d0*dt*( (fby(i-1)-fby(i))/dx(i) )
enddo
do i=2,ix-1
see=dv(i)*ro(i)*vx(i)*gx(i)
eesch(i)=eesch(i)+0.5d0*dt*see
b2=bx(i)**2+by(i)**2
srx=dv(i)
& *(ro(i)*gx(i)+(ro(i)*vy(i)**2-by(i)**2*pi4i)/rr(i)*drr(i))
& +(pr(i)+b2*pi8i)*dsc(i)
rxsch(i)=rxsch(i)+0.5d0*dt*srx
enddo
c computation of basic variables on half step
do i=2,ix-1
roh(i)=rosch(i)/dv(i)
vxh(i)=rxsch(i)/rosch(i)
vyh(i)=rysch(i)/rosch(i)/rr(i)
byh(i)=bysch(i)/dv(i)*rr(i)
v2=vxh(i)**2+vyh(i)**2
b2= bx(i)**2+byh(i)**2
prh(i)=(gm-1.0d0)* (eesch(i)/dv(i)-0.5d0*roh(i)*v2 -b2*pi8i)
enddo
c----------------------------------------------------------------------|
c proceed full step
c computation of 2nd order flux f(i,l)
c----------------------------------------------------------------------|
call tvdminmod(roh,row,ix)
call tvdminmod(prh,prw,ix)
call tvdminmod(vxh,vxw,ix)
call tvdminmod(vyh,vyw,ix)
call tvdminmod(byh,byw,ix)
call roeflux_m(fro,fee,frx,fry,fby,gm,row,prw,vxw,vyw,bxw,byw,ix)
do i=2,ix-2
fro(i)=scm(i)*fro(i)
fee(i)=scm(i)*fee(i)
frx(i)=scm(i)*frx(i)
fry(i)=scm(i)*fry(i)*rrm(i)
fby(i)=scm(i)*fby(i)/rrm(i)
enddo
do i=2,ix-2
rosc(i)=rosc(i)+dt*( (fro(i-1)-fro(i))/dx(i) )
eesc(i)=eesc(i)+dt*( (fee(i-1)-fee(i))/dx(i) )
rxsc(i)=rxsc(i)+dt*( (frx(i-1)-frx(i))/dx(i) )
rysc(i)=rysc(i)+dt*( (fry(i-1)-fry(i))/dx(i) )
bysc(i)=bysc(i)+dt*( (fby(i-1)-fby(i))/dx(i) )
enddo
do i=3,ix-2
see=dv(i)*roh(i)*vxh(i)*gx(i)
eesc(i)=eesc(i)+dt*see
b2=bx(i)**2+byh(i)**2
srx=dv(i)
& *(roh(i)*gx(i)+(roh(i)*vyh(i)**2-byh(i)**2*pi4i)/rrm(i)*drr(i))
& +(prh(i)+b2*pi8i)*dsc(i)
rxsc(i)=rxsc(i)+dt*srx
enddo
c----------------------------------------------------------------------|
c computation of basic variables on full step
do i=3,ix-2
ro(i)=rosc(i)/dv(i)
vx(i)=rxsc(i)/rosc(i)
vy(i)=rysc(i)/rosc(i)/rr(i)
by(i)=bysc(i)/dv(i)*rr(i)
v2=vx(i)**2+vy(i)**2
b2=bx(i)**2+by(i)**2
pr(i)=(gm-1.0d0)* (eesc(i)/dv(i)-0.5d0*ro(i)*v2-pi8i*b2)
enddo
c----------------------------------------------------------------------|
return
end
c======================================================================|
subroutine roeflux_m(fro,fee,frx,fry,fby
& ,gm,row,prw,vxw,vyw,bxw,byw,ix)
c======================================================================|
c
c NAME roeflux_m
c
c PURPOSE
c derive numerical flux by solving the linearized Riemann problem
c * MHD
c
c INPUTS & OUTPUTS
c None
c
c OUTPUTS
c fro(ix): [double] density flux
c fee(ix): [double] total-energy flux
c frx(ix): [double] momentum flux
c fry(ix): [double] momentum flux
c fby(ix): [double] magnetic field flux
c
c INPUTS
c row(ix,2): [double] density at cell boundary
c prw(ix,2): [double] pressure at cell boundary
c vxw(ix,2): [double] velocity at cell boundary
c vyw(ix,2): [double] velocity at cell boundary
c byw(ix,2): [double] magnetic field at cell boundary
c gm: [double] polytropic index gamma
c ix: [integer] dimension size
c
c HISTORY
c written 2002-3-1 T. Yokoyama based on N. Fukuda's code
c
c----------------------------------------------------------------------|
implicit double precision (a-h,o-z)
dimension row(ix,2),prw(ix,2),vxw(ix,2)
dimension vyw(ix,2),byw(ix,2),bxw(ix,2)
dimension fro(ix),fee(ix),frx(ix),fry(ix),fby(ix)
c----------------------------------------------------------------------|
pi = acos(-1.0d0)
pi4=4.0d0*pi
pi4i=1.0d0/pi4
pi8i=5.0d-1*pi4i
do i=1,ix-1
rhol=row(i,1)
vxl=vxw(i,1)
vyl=vyw(i,1)
bxl=bxw(i,1)
byl=byw(i,1)
prl=prw(i,1)
rhor=row(i,2)
vxr=vxw(i,2)
vyr=vyw(i,2)
bxr=bxw(i,2)
byr=byw(i,2)
prr=prw(i,2)
c-----roe's variable
sr0=sqrt(rhol)
sr1=sqrt(rhor)
sri=1.0d0/(sr0+sr1)
rhobar=sr0*sr1
vxbar=(sr0*vxl+sr1*vxr)*sri
vybar=(sr0*vyl+sr1*vyr)*sri
bxbar=(sr0*bxr+sr1*bxl)*sri
bybar=(sr0*byr+sr1*byl)*sri
hl=0.5d0*(vxl**2+vyl**2)+gm*prl/((gm-1.0d0)*rhol)
1 +(bxbar**2+byl**2)/(pi4*rhol)
hr=0.5d0*(vxr**2+vyr**2)+gm*prr/((gm-1.0d0)*rhor)
1 +(bxbar**2+byr**2)/(pi4*rhor)
hbar=(sr0*hl+sr1*hr)*sri
byave=(byl+byr)/2.0d0
c-----characteristic speed
delb2=(gm-2.0d0)/(gm-1.0d0)
1 *((byr-byl)**2)*sri**2*pi8i
cs2=(gm-1.0d0)*(hbar-0.5d0*(vxbar**2+vybar**2)
1 -delb2-(bxbar**2+bybar**2)*pi4i/rhobar)
astar2=(gm-1.0d0)
1 *(hbar-0.5d0*(vxbar**2+vybar**2)-delb2)
2 -(gm-2.0d0)*(bxbar**2+bybar**2)*pi4i/rhobar
ca2=bxbar**2/(pi4*rhobar)
c cfast2=0.5d0*(astar2+sqrt(astar2**2-4.0d0*cs2*ca2))
cbr2=(bybar**2)*pi4i/rhobar
cfast2=0.5d0*(astar2+sqrt(cbr2*(astar2+cs2+ca2)+(cs2-ca2)**2))
cslow2=cs2*ca2/cfast2
cfast=sqrt(cfast2)
cslow=sqrt(cslow2)
ca=sqrt(ca2)
cs=sqrt(cs2)
c----- for singular points
epsi=1.0d-12
sgr=bybar**2-epsi
sp=0.5d0+sign(0.5d0,sgr)
betay=sp*bybar*sqrt(1.0d0/(bybar**2+1.0d0-sp))
1 +sqrt(0.5d0)*(1.0d0-sp)
betaz=sqrt(0.5d0)*(1.0d0-sp)
eps2=1.0d-12
sgr2=(bybar**2)/(pi4*rhobar)+abs(ca2-cs2)-eps2
sp2=0.5d0+sign(0.5d0,sgr2)
cfca=max(0.0d0,cfast2-ca2)
cfcs=max(0.0d0,cfast2-cslow2)
cfa=max(0.0d0,cfast2-cs2)
alphf=sp2*sqrt(cfca/(cfcs+1.0d0-sp2))+1.0d0-sp2
alphs=sp2*sqrt(cfa/(cfcs+1.0d0-sp2))
sgnbx=sign(1.0d0,bxbar)
c----- eigen value & entropy condition
eeps=(vxr-vxl+abs(vxr-vxl))*2.5d-1
elpf=-max(abs(vxbar+cfast),eeps)
elmf=-max(abs(vxbar-cfast),eeps)
elps=-max(abs(vxbar+cslow),eeps)
elms=-max(abs(vxbar-cslow),eeps)
elpa=-max(abs(vxbar+ca),eeps)
elma=-max(abs(vxbar-ca),eeps)
elze=-max(abs(vxbar),eeps)
c elmax=max(abs(elpf),abs(elmf))
c----- amplitude;w's
drho=rhor-rhol
du21=rhobar*(vxr-vxl)
du31=rhobar*(vyr-vyl)
du41=0
du6=byr-byl
du5=0.
t1=betay*du6+betaz*du5
t2=(prr-prl+(byave*du6)*pi4i
1 +(gm-2.0d0)*(bybar*du6)*pi4i)/(gm-1.0d0)
t3=betaz*du6-betay*du5
s1=du21
s2=betay*du31+betaz*du41
s3=betaz*du31-betay*du41
p11=alphs*cfast*sqrt(pi4/rhobar)
p12=-alphf*cs2/cfast*sqrt(pi4/rhobar)
p21=alphf*(cfast2-cs2*(gm-2.0d0)/(gm-1.0d0))
p22=alphs*(cslow2-cs2*(gm-2.0d0)/(gm-1.0d0))
q11=alphf*cfast
q12=alphs*cslow
q21=-alphs*ca*sgnbx
q22=alphf*cs*sgnbx
detp=p11*p22-p12*p21
detq=q11*q22-q12*q21
c chkdp=cs2*cfast/(gm-1.0d0)*sqrt(pi4/rhobar)
c chkdq=cfast*cs*sgnbx
wpf=0.5d0*((p22*t1-p12*t2)/detp+(q22*s1-q12*s2)/detq)
wmf=0.5d0*((p22*t1-p12*t2)/detp-(q22*s1-q12*s2)/detq)
wps=0.5d0*((-p21*t1+p11*t2)/detp+(-q21*s1+q11*s2)/detq)
wms=0.5d0*((-p21*t1+p11*t2)/detp-(-q21*s1+q11*s2)/detq)
wpa=0.5d0*(sqrt(rhobar*pi4i)*t3-sgnbx*s3)
wma=0.5d0*(sqrt(rhobar*pi4i)*t3+sgnbx*s3)
wze=drho-alphf*(wpf+wmf)-alphs*(wps+wms)
c----- flux
fluxlro=rhol*vxl
fluxlrx=rhol*vxl*vxl+prl+(-bxbar**2+byl**2)*pi8i
fluxlry=rhol*vxl*vyl-bxbar*byl*pi4i
fluxlby=vxl*byl-vyl*bxbar
fluxlee=rhol*vxl*hl-bxbar*(bxbar*vxl+byl*vyl)*pi4i
fluxrro=rhor*vxr
fluxrrx=rhor*vxr*vxr+prr+(-bxbar**2+byr**2)*pi8i
fluxrry=rhor*vxr*vyr-bxbar*byr*pi4i
fluxrby=vxr*byr-vyr*bxbar
fluxree=rhor*vxr*hr-bxbar*(bxbar*vxr+byr*vyr)*pi4i
c----- components of the eigen vectors
rpfro=alphf
rpfrx=alphf*(vxbar+cfast)
rpfry=alphf*vybar-alphs*betay*ca*sgnbx
rpfby=alphs*betay*cfast*sqrt(pi4/rhobar)
rpfee=alphf*(0.5d0*(vxbar**2+vybar**2)
1 +delb2+cfast*vxbar+cfast2/(gm-1.0d0)
2 +(cfast2-cs2)*(gm-2.0d0)/(gm-1.0d0))
3 -alphs*ca*(betay*vybar)*sgnbx
rmfro=alphf
rmfrx=alphf*(vxbar-cfast)
rmfry=alphf*vybar+alphs*betay*ca*sgnbx
rmfby=rpfby
rmfee=alphf*(0.5d0*(vxbar**2+vybar**2)
1 +delb2-cfast*vxbar +cfast2/(gm-1.0d0)
2 +(cfast2-cs2)*(gm-2.0d0)/(gm-1.0d0))
3 +alphs*ca*(betay*vybar)*sgnbx
rpsro=alphs
rpsrx=alphs*(vxbar+cslow)
rpsry=alphs*vybar+cs*sgnbx*alphf*betay
rpsby=-sqrt(pi4/rhobar)*cs2*alphf*betay/cfast
rpsee=alphs*(0.5d0*(vxbar**2+vybar**2)
1 +delb2+cslow*vxbar+cslow2/(gm-1.0d0)
2 +(cslow2-cs2)*(gm-2.0d0)/(gm-1.0d0))
3 +alphf*cs*(betay*vybar)*sgnbx
rmsro=alphs
rmsrx=alphs*(vxbar-cslow)
rmsry=alphs*vybar-cs*sgnbx*alphf*betay
rmsby=rpsby
rmsee=alphs*(0.5d0*(vxbar**2+vybar**2)
1 +delb2-cslow*vxbar+cslow2/(gm-1.0d0)
2 +(cslow2-cs2)*(gm-2.0d0)/(gm-1.0d0))
3 -alphf*cs*(betay*vybar)*sgnbx
rparo=0.0d0
rparx=0.0d0
rpary=-sgnbx*betaz
rpaby=sqrt(pi4/rhobar)*betaz
rpaee=-(betaz*vybar)*sgnbx
rmaro=0.0d0
rmarx=0.0d0
rmary=-rpary
rmaby=rpaby
rmaee=-rpaee
rzero=1.0d0
rzerx=vxbar
rzery=vybar
rzeby=0.0d0
rzeee=0.5d0*(vxbar**2+vybar**2)+delb2
c-----computation of f(i+1/2,j)
fro(i)=0.5d0*(fluxlro+fluxrro
1 +elpf*wpf*rpfro +elmf*wmf*rmfro
& +elps*wps*rpsro +elms*wms*rmsro
2 +elpa*wpa*rparo +elma*wma*rmaro +elze*wze*rzero)
fee(i)=0.5d0*(fluxlee+fluxree
1 +elpf*wpf*rpfee +elmf*wmf*rmfee
& +elps*wps*rpsee +elms*wms*rmsee
2 +elpa*wpa*rpaee +elma*wma*rmaee +elze*wze*rzeee)
frx(i)=0.5d0*(fluxlrx+fluxrrx
1 +elpf*wpf*rpfrx +elmf*wmf*rmfrx
& +elps*wps*rpsrx +elms*wms*rmsrx
2 +elpa*wpa*rparx +elma*wma*rmarx +elze*wze*rzerx)
fry(i)=0.5d0*(fluxlry+fluxrry
1 +elpf*wpf*rpfry +elmf*wmf*rmfry
& +elps*wps*rpsry +elms*wms*rmsry
2 +elpa*wpa*rpary +elma*wma*rmary +elze*wze*rzery)
fby(i)=0.5d0*(fluxlby+fluxrby
1 +elpf*wpf*rpfby +elmf*wmf*rmfby
& +elps*wps*rpsby +elms*wms*rmsby
2 +elpa*wpa*rpaby +elma*wma*rmaby +elze*wze*rzeby)
enddo
return
end
c======================================================================|
subroutine scrdy(dsc,dscm,sc,scm,dx,dxm,ix)
c======================================================================|
c
c NAME scrrdy
c
c PURPOSE
c calculate cross section derivatives
c
c OUTPUTS
c dsc(ix), dscm(ix) : [double] cross section derivative
c
c INPUTS
c sc(ix), scm(ix) : [double] cross section
c dx(ix),dxm(ix): [double] grid spacing
c ix: [integer] dimension size
c
c HISTORY
c written 2002-3-1 T. Yokoyama
c
c----------------------------------------------------------------------|
implicit double precision (a-h,o-z)
dimension dsc(ix),dscm(ix)
dimension sc(ix),scm(ix)
dimension dx(ix),dxm(ix)
c----------------------------------------------------------------------|
do i=2,ix-1
dsc(i) = (scm(i) - scm(i-1))/dx(i)
enddo
do i=2,ix-2
dscm(i)= (sc(i+1) - sc(i))/dxm(i)
enddo
return
end
c======================================================================|
subroutine tvdminmod(da,daw,ix)
c======================================================================|
c
c NAME tvdminmod
c
c PURPOSE
c Interporate the physical variables based on MUSCL
c using 'min-mod' function as a limitter
c
c INPUTS & OUTPUTS
c None
c
c OUTPUTS
c daw(ix,2): [double] variable at cell boundary
c
c INPUTS
c da(ix): [double] physical variable
c ix: [integer] dimension size
c
c HISTORY
c written 2002-3-1 T. Yokoyama based on N. Fukuda's code
c
c----------------------------------------------------------------------|
implicit double precision (a-h,o-z)
dimension da(ix)
dimension daw(ix,2)
c----------------------------------------------------------------------|
c define limiter functions
flmt(a,b)=max(0.0d0,min(b*sign(1.0d0,a),abs(a)))*sign(1.0d0,a)
c----------------------------------------------------------------------|
do i=2,ix-2
daw(i,1)=da(i)+0.5*flmt(da(i+1)-da(i),da(i)-da(i-1))
daw(i,2)=da(i+1)-0.5*flmt(da(i+1)-da(i),da(i+2)-da(i+1))
enddo
return
end