main_sw1da_p.f 42.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
c======================================================================|
c     solar wind model (6-ref.long. calculation)
c     last update 2015.7.23
c======================================================================|
      implicit none
      integer :: i,j,iang,nang
      integer :: idp_in,idp_prop,idp_out
      real*8 :: angref0,touts,dtr
      real*8 :: angref(30)
      integer :: instop,instopfin,ifnpo,idprop
      character*100 :: fnin,fnout,fnin1,fnout1,fntmp(12),fntmp2(12)
      character*100 :: fdirtmp
      real*8,allocatable :: angref6(:)
      real*8 :: xmin1,xmax1,xear
      integer :: ix
!!!!! elena : namelist should be before executable statements
      namelist /INPARA1/instop,fnin,fnout,ifnpo,dtr,touts,idprop
     1     ,fdirtmp,angref,idp_in,idp_prop,idp_out,xmin1,xmax1
     
c---setting
      angref(:)=-1.e10
      
      open(unit=50,file='namelist',status='old',form='formatted')
      read(50,nml=INPARA1)
      close(50)

c----set angle
      do i=1,30
       if(angref(i).eq.-1.e10) goto 319
      enddo
319   continue
      nang=i-1
      
      allocate(angref6(nang))
!!!! elena :  dimensions mismatch 6/30      
      angref6(1:nang)=angref(1:nang)

c----set filename
      do iang=1,nang
       angref0=angref6(iang)
       write(fntmp(iang),'(a4,i3.3,a7)')
     1       '/tmp',int(angref0),'_in.txt'
       write(fntmp2(iang),'(a4,i3.3,a8)')
     1       '/tmp',int(angref0),'_out.txt'
       fntmp(iang)=trim(fdirtmp)//fntmp(iang)
       fntmp2(iang)=trim(fdirtmp)//fntmp2(iang)
      enddo

c---prepare dataset at angref0
      if(idp_in.eq.1)
     1 call sub_indat(fnin,fntmp(1:nang),angref6,nang,dtr,instopfin
     1   ,ifnpo,idprop)
      if(instop.eq.0) call count_lines(fntmp(1),instop)

c---solar wind propagation along angref0
       do iang=1,nang         
       angref0=angref6(iang)
       fnin1=fntmp(iang)
       fnout1=fntmp2(iang)
       if(idp_prop.eq.1)
     1  call swmodel(angref0,instop,fnin1,fnout1,ifnpo,dtr,touts,idprop
     1   ,xmax1,xmin1)
      enddo
c---read & select dataset
      if(idp_out.eq.1)
     1 call sub_slct(fnin,fnout,fntmp2(1:nang),angref6,nang
     1     ,touts,dtr,idprop,ifnpo)

      stop
      end
c======================================================================|
      subroutine swmodel(angref0,instop,fnin,fnout,ifnpo,dtr,touts0
     1   ,idprop ,xmax1,xmin1)  !--REV0318
c======================================================================|
      implicit double precision (a-h,o-z)
      real*8,allocatable,dimension(:) :: x,xm,dx,dxm,ro,pr,vx,vy,by,bx
     1  ,bxm,sc,scm,dsc,dscm,dv,gx,gxm,rr,rrm,drr,drrm,vz,bz,gy,gz
      integer :: idprop  !--REV0318
      integer :: xin,xout,ifnpo,fnum,fnum2,fnpo,merr
      real*8 :: touts0,touts
      real*8 :: p8bd(8),parain(13),paranm(8)
      real*8,allocatable :: jsinref(:),parainref(:,:)
      real*8 :: bx0at1au,angref0,ns,gm
      character*100 :: fnin,fnout
!!!!! elena
      real*8 jjs

      namelist /INPARA2/npout,bx0at1au,gm 
      open(unit=50,file='namelist',status='old',form='formatted')
      read(50,nml=INPARA2)
      close(50)
       
      touts=touts0*0.5
      ix=int((xmax1-xmin1)*400.+1.e-10)
      xear=(1.-xmin1)*400.

      allocate(x(ix),xm(ix),dx(ix),dxm(ix)
     1   ,ro(ix),pr(ix),vx(ix),vy(ix),by(ix),bx(ix),bxm(ix)
     1   ,sc(ix),scm(ix),dsc(ix),dscm(ix),dv(ix),gx(ix),gxm(ix)
     1   ,rr(ix),rrm(ix),drr(ix),drrm(ix)
     1   ,vz(ix),bz(ix),gy(ix),gz(ix))

c----------------------------------------------------------------------|
c     prologue
c----------------------------------------------------------------------|
c----------------------------------------------------------------------|
c   time control parametersn
c   instop : number of time steps taken from input data
c   (nstop : number of total time steps for the run, = instop)
c   touts : data output's rate (ex.12 with dtr=300 -> 12x300=3600 sec.)
c   npout : prosess print rate (<nstop!!)
c   dtr : real time step (ex. 300 sec.)
c      instop=131600 !***
c      touts=12.
c      npout=100
c      dtr=300.0
      bx0=bx0at1au/16.34d0
c----------------------------------------------------------------------|
c  file open
c  input file(32):solar wind at input, in/out positions (real value)
      fnum=32
      open(fnum,file=trim(fnin),status='old')

c  output file(30):solar wind at specified position (real value)
      fnum2=30
      open(fnum2,file=trim(fnout)
     &     ,status='unknown',form='formatted')

c  monitor file (ex. fnpo=61 -> fort.61)
      fnpo=ifnpo
c----------------------------------------------------------------------|
c   parameters
c   margin: 1 in MLW, 2 in Roe, 4 in CIP
      margin=2
c----------------------------------------------------------------------|
      nstop=instop
      allocate(jsinref(instop),parainref(6,instop))
      paranm=(/10.,10000.,400.,400.,400.,1.,1.,1./)
c----------------------------------------------------------------------|
c  initialize counters
      time  = 0.0
      timep = 0.0
      ns    = 0.
      merr  = 0
c----------------------------------------------------------------------|
c   setup numerical model (grid, initial conditions, etc.)
      call model(idf,ro,pr,vx,vy,vz,by,bz,vstar,bx,bxm,gm,gx,gxm,gy,gz
     &   ,rr,rrm,sc,scm,dv,margin,x,ix,bx0,xear,xmin1,xmax1)
      if(idprop.eq.1) 
     &  p8bd(:)=(/ro(1),pr(1),vx(1),vy(1),vz(1),bx(1),by(1),bz(1)/)
      if(idprop.eq.-1)
     &  p8bd(:)=(/ro(ix),pr(ix),-vx(ix),vy(ix),vz(ix)
     &  ,bx(ix),by(ix),bz(ix)/)
      vx=vx*float(idprop) !--REV0318
      call bnd3(margin,ro,pr,vx,vy,vz,by,bz,gm,vstar,ix,p8bd,idprop) !--REV0318 
c----------------------------------------------------------------------|
c     ready
      call grdrdy(dx,xm,dxm,x,ix)
      call scrdy(dsc,dscm,sc,scm,dx,dxm,ix)
      call scrdy(drr,drrm,rr,rrm,dx,dxm,ix)
      call bndsc(margin,sc,dsc,scm,dscm,ix)
c----------------------------------------------------------------------|
      l=0.
      js=0.d0
      k=10
c----------------------------------------------------------------------|
c     time integration
c----------------------------------------------------------------------|
1000  continue  
         ns = ns+1.
c----------------------------------------------------------------------|
c     obtain time spacing
      call cfl_m3(dt,merr,gm,bx,ro,pr,vx,vy,vz,by,bz,dx,ix)

      dt0=dtr/375000.d0
      if(dt0.lt.dt) then
        dt=dt0
      else
        write(fnpo,*) 'Time Spacing is NOT Correct! : dt0 > dt'
        write(fnpo,*) 'dt=',dt
        write(fnpo,*) 'dt0=',dt0       
      endif
      if (merr.ne.0) goto 9999


c----data read & input----------
      read(fnum,*) jjs,(parain(i),i=1,13)
!!!!! elena : js is defined as REAL in the file
      js=int(jjs)
      parain(3)=parain(3)*float(idprop)  !--REV0318
      xin=minval(minloc(abs(parain(9)-x)))
      if(parain(9).lt.x(xin).and.idprop.eq.1) xin=xin-1 !--REV0318
      if(parain(9).gt.x(xin).and.idprop.eq.-1) xin=xin+1 !--REV0318

      jsinref(ns)=float(js)
      parainref(1:2,ns)=parain(9:10)
      parainref(3,ns)=x(xin)
      parainref(4,ns)=parain(3) !km/s
      
      call datin_varied3(ro,pr,vx,vy,vz,bx,by,bz
     &        ,vstar,ns,ix,parain,xin,paranm ,idprop,x)  !--REV0318

c----initial setting
      if(ns.eq.1.) js0=js
      if(ns.eq.1.) write(fnpo,*) 'js=',js
      if(ns.eq.1.) then
        parainref(5,1)=parain(10)
      else
        dang0=parain(10)-parainref(2,ns-1)
        if(dang0.le.-180.) dang0=dang0+360.
        parainref(5,ns)=parainref(5,ns-1)+dang0
      endif
        parainref(6,ns)=parain(13)

c----------------------------------------------------------------------|
c     solve hydrodynamic equations
      call roe_m_bg(ro,pr,vx,vy,by,bx,bxm,dt,gm
     &            ,gx,dsc,scm,dv,rr,rrm,drr,dx,ix)
      call bnd3_2(margin,ro,pr,vx,vy,vz,by,bz,gm,vstar,ix,idprop,x) !--REV0318
c----------------------------------------------------------------------|
c     data output 
       
c---monitoring
       if(minval(pr).lt.0.) write(6,*) ns
       if(minval(pr).lt.0.) write(6,*) minval(pr)
       if(minval(pr).lt.0.) stop 'Pr<0' 
       if(idprop.eq.1.and.minval(vx).lt.0.) stop 'Vx opposite'
       if(idprop.eq.-1.and.maxval(vx).gt.0.) then
         write(6,1115) vx
         stop 'Vx opposite'
       endif
1115   format(15f10.7)
c----first dt estimation
      if (mod(int(ns),int(touts)).eq.0) then
       js=js0+ns*dtr *float(idprop) !--REV0318
       xout=minval(minloc(abs(parain(11)-x)))
       dtp1=(parain(11)-parain(9))*1.5d11/400./1.d3
       
!       write(6,*) 'first dt estimation', dtp1
       
       if((js-dtp1.le.js0.and.idprop.eq.1) !--REV0318
     1    .or.(js+dtp1.ge.js0.and.idprop.eq.-1)) then !--REV0318
         write(fnum2,704) js,1.,1.,100.,1.,1.,1.d-5,1.d-5,1.d-5
     &    ,0.d0,float(js0)
       else
         itin=minval(minloc(abs((js-dtp1*float(idprop))-jsinref))) !--REV0318
         
         !!!!! elena
         if(parainref(4,itin).eq.0.0)then        
           write(6,*) '!!!second dt',itin, ns, parain(12), parain(10)
           itin = ns
         endif
         
c----second dt estimation
         dtp1=(parain(11)-parain(9))*1.5d11/parainref(4,itin)/1.d3
                      
        if((js-dtp1.le.js0.and.idprop.eq.1)
     1    .or.(js+dtp1.ge.js0.and.idprop.eq.-1)) then
         write(fnum2,704) js,1.,1.,100.,1.,1.,1.d-5,1.d-5,1.d-5
     &    ,0.d0,float(js0)
         goto 1001
        endif
        
        itin_tmp=itin
        itin=minval(minloc(abs((js-dtp1*float(idprop))-jsinref)))
        
        !!!!! elena
        if (parainref(4,itin).eq.0.0) itin=itin_tmp
c----output
         dang0=-(parain(12)-parainref(2,itin))
         dang0=mod(dang0,360.)
         if(dang0.ge.180.) dang0=dang0-360.
         
         if(angref0.ge.0.)
     &     dtp2=(parain(11)-x(xout))*1.5d11/vx(xout)/400.d3
     &      -(parainref(1,itin)-parainref(3,itin))*1.5d11 !x_datain-x_in
     &        /parainref(4,itin)/1.d3  
          !!!!  elena   
          if (parainref(4,itin).eq.0.0) then ! NaN 
            write(6,*) '!!!!!! NaN in dtp2 ', angref0
            write(6,*) parain(11), x(xout),vx(xout)           
            write(6,*) ns, itin, xout 
            write(6,*) parain(12), parain(10)
            stop           
          endif
          
         write(fnum2,704) js,ro(xout)*paranm(1)
     &      ,pr(xout)*1937./ro(xout)*paranm(2)
     &      ,vx(xout)*paranm(3)*float(idprop)  !--REV0318
     &      ,vy(xout)*paranm(4),vz(xout)*paranm(5)
     &	    ,bx(xout)*paranm(6)*16.34,by(xout)*paranm(7)*16.34 
     &      ,bz(xout)*paranm(8)*16.34
     &	    ,dtp2*float(idprop),jsinref(itin)-parainref(6,itin)
       endif
        
704    format(i15.1, 9e18.8,f18.1)

1001   continue
      endif

      if (mod(int(ns),int(nstop/npout)).eq.0) then
      	l=l+1.
      	write(fnpo,'(i6,a1,i6,a25,f7.1,a1)') 
     1    l,'/',npout,' :processed ! (angref=',angref0,')'
      endif
c----------------------------------------------------------------------|
      if (ns .lt. nstop) goto 1000
c----------------------------------------------------------------------|
c     epilogue
c----------------------------------------------------------------------|
9999  continue

      write(fnpo,*) 'js=',js
      CLOSE (fnum, STATUS = 'KEEP')
      CLOSE (fnum2, STATUS = 'KEEP')
      deallocate(jsinref,parainref)

      deallocate(x,xm,dx,dxm,ro,pr,vx,vy,by,bx,bxm,sc,scm,dsc,dscm
     1   ,dv,gx,gxm,rr,rrm,drr,drrm,vz,bz,gy,gz)

      return
      end
c======================================================================|
      subroutine model(idf,ro,pr,vx,vy,vz,by,bz
     &  ,vstar,bx,bxm,gm,gx,gxm,gy,gz,rr,rrm,sc,scm,dv,margin,x,ix,bx0
     &  ,xear,xmin1,xmax1)
c======================================================================|
      implicit double precision (a-h,o-z)
c----------------------------------------------------------------------|
      dimension x(ix),dxm(ix)
      dimension ro(ix),pr(ix),vx(ix),vy(ix),by(ix)
      dimension sc(ix),scm(ix),dv(ix)
      dimension bx(ix),bxm(ix)
      dimension gx(ix),gxm(ix)
      dimension rr(ix),rrm(ix)
      dimension vz(ix),bz(ix)
      dimension gy(ix),gz(ix)
c----------------------------------------------------------------------|
c   parameters
c----------------------------------------------------------------------|
      gmst=0.0055248d0
      vstar=0.d0

      rstar=xmin1
      rmax=xmax1
c-----------------------------------------------------------------------
c     grid
c-----------------------------------------------------------------------
      dx0=(rmax-rstar)/real(ix-margin*2)
c-----------------------------------------------------------------------
c      dxm,x
      do i=1,ix
         dxm(i)=dx0
      enddo
      izero=margin
      x(izero)=rstar-dxm(izero)/2.d0
      do i=izero+1,ix
         x(i) = x(i-1)+dxm(i-1)
      enddo
      do i=izero-1,1,-1
         x(i) = x(i+1)-dxm(i)
      enddo
c----------------------------------------------------------------------|
c       gravity
c----------------------------------------------------------------------|
      do i=1,ix
        gx(i)=-1.d0*gmst/x(i)**2d0
        gxm(i)=-1.d0*gmst/(x(i)+0.5d0*dxm(i))**2
        gy(i)=0.d0
        gz(i)=0.d0
      enddo
c----------------------------------------------------------------------|
c   rotation
c----------------------------------------------------------------------|
      do i=1,ix
        rr(i)=x(i)
        rrm(i)=x(i)+dxm(i)/2.d0
      enddo
c-----------------------------------------------------------------------|
c   initial temperature, density, pressure distributions
c-----------------------------------------------------------------------|
      ro=1./x**2
      do i=1,ix
        te=1.d0/x(i)**0.79
        pr(i)=ro(i)*te/1937.d0
      enddo
      vx(:)=1.; vy(:)=0.; vz(:)=0.
c----------------------------------------------------------------------|
c       magnetic field
c----------------------------------------------------------------------|
      pi = acos(-1.0d0)
      do i=1,ix
        by(i)=0.d0
	bz(i)=0.d0
        bx(i)=bx0*x(xear)**2/x(i)**2
        bxm(i)=bx0*x(xear)**2/(x(i)+dxm(i)/2.d0)**2
      enddo
c----------------------------------------------------------------------|
c       cross section of flux tube
c----------------------------------------------------------------------|
      do i=1,ix
        sc(i)=x(i)**2/x(xear)**2
        scm(i)=(x(i)+dxm(i)/2.)**2/x(xear)**2
        dv(i)=sc(i)
      enddo
      return
      end
c======================================================================|
      subroutine bdcnsx(mbnd,margin,qq,q0,ix)
c======================================================================|
c
c NAME  bdcnsx
c
c PURPOSE
c    apply constant-value boundary condition
c
c INPUTS & OUTPUTS
c    qq(ix): [double] variable
c
c OUTPUTS
c    None
c
c INPUTS
c    ix: [integer] dimension size
c    margin: [integer] margin, i.e. # of grid points outside the boundary
c    mbnd: [integer] If mbnd=0, smaller 'i' side. 
c                    If mbnd=1, larger  'i' side.
c    q0: [double] constant boundary value to be taken 
c
c HISTORY
c    written 2002-3-1 T. Yokoyama
c
c----------------------------------------------------------------------|
      implicit double precision (a-h,o-z)
      dimension qq(ix)
c----------------------------------------------------------------------|
      if (mbnd.eq.0) then 
        ibnd=1+margin
        do i=1,margin
          qq(ibnd-i) = q0
        enddo
      else
        ibnd=ix-margin
        do i=1,margin
          qq(ibnd+i) = q0
        enddo
      endif      
      return
      end
c======================================================================|
      subroutine bdfrdx(mbnd,margin,qq,dxm,ix)
c======================================================================|
c
c NAME  bdfrdx
c
c PURPOSE
c    apply free boundary condition
c    values are extended to have constant gradient
c
c INPUTS & OUTPUTS
c    qq(ix): [double] variable
c
c OUTPUTS
c    None
c
c INPUTS
c    ix: [integer] dimension size
c    margin: [integer] margin, i.e. # of grid points outside the boundary
c    mbnd: [integer] If mbnd=0, smaller 'i' side. 
c                    If mbnd=1, larger  'i' side.
c
c HISTORY
c    written 2002-3-1 T. Yokoyama
c
c----------------------------------------------------------------------|
      implicit double precision (a-h,o-z)
      dimension qq(ix),dxm(ix)
c----------------------------------------------------------------------|
      if (mbnd.eq.0) then 
        ibnd=1+margin
        dqq=(qq(ibnd+1)-qq(ibnd))/dxm(ibnd)
        do i=1,margin 
          qq(ibnd-i) = qq(ibnd-i+1)-dqq*dxm(ibnd-i)
        enddo
      else
        ibnd=ix-margin
        dqq=(qq(ibnd)-qq(ibnd-1))/dxm(ibnd-1)
        do i=1,margin
          qq(ibnd+i) = qq(ibnd+i-1)+dqq*dxm(ibnd+i-1)
        enddo
      endif
      
      return
      end
c======================================================================|
      subroutine bdfrex(mbnd,margin,qq,ix)
c======================================================================|
c
c NAME  bdfrex
c
c PURPOSE
c    apply free boundary condition
c
c INPUTS & OUTPUTS
c    qq(ix): [double] variable
c
c OUTPUTS
c    None
c
c INPUTS
c    ix: [integer] dimension size
c    margin: [integer] margin, i.e. # of grid points outside the boundary
c    mbnd: [integer] If mbnd=0, smaller 'i' side. 
c                    If mbnd=1, larger  'i' side.
c
c HISTORY
c    written 2002-3-1 T. Yokoyama
c
c----------------------------------------------------------------------|
      implicit double precision (a-h,o-z)
      dimension qq(ix)
c----------------------------------------------------------------------|
      if (mbnd.eq.0) then 
        ibnd=1+margin
        do i=1,margin 
          qq(ibnd-i) = qq(ibnd)
        enddo
      else
        ibnd=ix-margin
        do i=1,margin
          qq(ibnd+i) = qq(ibnd)
        enddo
      endif
      return
      end
c======================================================================|
      subroutine bnd3(margin,ro,pr,vx,vy,vz,by,bz,gm,vstar,ix 
     1  ,p8bd,idprop) !--REV0318 
c======================================================================|
c     apply boundary condition 
c----------------------------------------------------------------------|      
      implicit double precision (a-h,o-z)
      dimension ro(ix),pr(ix),vx(ix),vy(ix),by(ix)
      dimension vz(ix),bz(ix)
      real*8 p8bd(8)
      integer :: idprop  !--REV0318 
c----------------------------------------------------------------------|      
      ro0=p8bd(1)
      pr0=p8bd(2)
      vstar=p8bd(4)
      if(idprop.eq.1)then !--REV0318
       call bdcnsx(0,margin,ro,ro0,ix)
       call bdcnsx(0,margin,pr,pr0,ix)
       call bdfrex(0,margin,vx,ix)
       call bdcnsx(0,margin,vy,vstar,ix)
       call bdfrex(0,margin,by,ix)
       call bdfrex(0,margin,vz,ix)
       call bdfrex(0,margin,bz,ix)
       call bdfrex(1,margin,ro,ix)
       call bdfrex(1,margin,pr,ix)
       call bdfrex(1,margin,vx,ix)
       call bdfrex(1,margin,vy,ix)
       call bdfrex(1,margin,by,ix)
       call bdfrex(1,margin,vz,ix)
       call bdfrex(1,margin,bz,ix)
      else
c       call bdcnsx(1,margin,ro,ro0,ix)
c       call bdcnsx(1,margin,pr,pr0,ix)
       call bdfrex(1,margin,ro,ix)
       call bdfrex(1,margin,pr,ix)
       call bdfrex(1,margin,vx,ix)
c       call bdcnsx(1,margin,vy,vstar,ix)
       call bdfrex(1,margin,vy,ix)
       call bdfrex(1,margin,by,ix)
       call bdfrex(1,margin,vz,ix)
       call bdfrex(1,margin,bz,ix)
       call bdfrex(0,margin,ro,ix)
       call bdfrex(0,margin,pr,ix)
       call bdfrex(0,margin,vx,ix)
       call bdfrex(0,margin,vy,ix)
       call bdfrex(0,margin,by,ix)
       call bdfrex(0,margin,vz,ix)
       call bdfrex(0,margin,bz,ix)
      endif
      return
      end
c======================================================================|
      subroutine bnd3_2(margin,ro,pr,vx,vy,vz,by,bz,gm,vstar,ix
     1   ,idprop,x)
c======================================================================|
c     apply boundary condition 
c----------------------------------------------------------------------|      
      implicit double precision (a-h,o-z)
      dimension ro(ix),pr(ix),vx(ix),vy(ix),by(ix)
      dimension vz(ix),bz(ix)
      dimension x(ix)
      integer :: idprop !--REV0318
c----------------------------------------------------------------------|      
      if(idprop.eq.1) then
       call bdfrex(1,margin,ro,ix)
       call bdfrex(1,margin,pr,ix)
       call bdfrex(1,margin,vx,ix)
       call bdfrex(1,margin,vy,ix)
       call bdfrex(1,margin,by,ix)
       call bdfrex(1,margin,vz,ix)
       call bdfrex(1,margin,bz,ix)
      else
       call bdfrex(0,margin,ro,ix)
c       ro(1)=ro(3)*x(3)**2/x(1)**2
c       ro(2)=ro(3)*x(3)**2/x(2)**2
       call bdfrex(0,margin,pr,ix)
       call bdfrex(0,margin,vx,ix)
       call bdfrex(0,margin,vy,ix)
       call bdfrex(0,margin,by,ix)
       call bdfrex(0,margin,vz,ix)
       call bdfrex(0,margin,bz,ix)
c       vx(1:2)=-1.
      endif
      return
      end
c======================================================================|
      subroutine bndsc(margin,sc,dsc,scm,dscm,ix)
c======================================================================|
c     apply boundary condition 
c----------------------------------------------------------------------|      
      implicit double precision (a-h,o-z)
      dimension sc(ix),dsc(ix)
      dimension scm(ix),dscm(ix)
c----------------------------------------------------------------------|      
      call bdfrex(0,margin,dsc,ix)
      call bdfrex(0,margin-1,dscm,ix)
      call bdfrex(1,margin,dsc,ix)
      call bdfrex(1,margin,dscm,ix)
      return
      end
c======================================================================|
      subroutine cfl_m3(dt,merr,gm,bx,ro,pr,vx,vy,vz,by,bz,dx,ix)
c======================================================================|
c 
c NAME  cfl_m
c
c PURPOSE
c    determine time step such that it satisfies CFL condition.
c        * MHD equations
c
c OUTPUTS
c    dt: [double] delta time
c    merr: [integer] error code, merr=0 is nominal.
c
c INPUTS
c    ix: [integer] dimension size
c    ro(ix): [double] density
c    pr(ix): [double] pressure
c    vx(ix): [double] velocity
c    vy(ix): [double] velocity
c    bx(ix): [double] magnetic field
c    by(ix): [double] magnetic field
c    dx(ix): [double] grid spacing
c    gm: [double] polytropic index gamma
c
c HISTORY
c    written 2002-3-1 T. Yokoyama
c
c----------------------------------------------------------------------|
c     determine time step such that it satisfies cfl condition.
c----------------------------------------------------------------------|      
      implicit double precision (a-h,o-z)
      dimension dx(ix)
      dimension ro(ix)
      dimension pr(ix)
      dimension vx(ix)
      dimension vy(ix)
      dimension bx(ix)
      dimension by(ix)
      dimension dtq(ix)
      dimension vz(ix),bz(ix)
c----------------------------------------------------------------------|
      pi = acos(-1.0d0)
      pi4i=0.25/pi
      dtmin=2.0e-10
!      safety=0.8 !cf. 0.4 --original 
      safety=0.4
c----------------------------------------------------------------------|
      dt=1.e20
      imin   = 0
      do i=2,ix-1
         onero = 1.0/ro(i)
         v2 = vx(i)*vx(i)+vy(i)*vy(i)+vz(i)*vz(i)
         ca2 = (bx(i)*bx(i)+by(i)*by(i)+bz(i)*bz(i))*pi4i*onero
         cs2 = gm*pr(i)*onero
         dtcfl = dx(i)/sqrt(v2+cs2+ca2)
         dtq(i)=safety*dtcfl
      enddo
      do i=2,ix-1
        if(dtq(i).lt.dt) then
          imin=i
          dt=dtq(i)
        endif
      enddo
!      write(6,*) minval(pr)
c----------------------------------------------------------------------|
c     write the point where dt is smaller than critical value    
c----------------------------------------------------------------------|
      merr=0
      if (dt.lt.dtmin) then
         merr=9001
         write(6,*) '  ### stop due to small dt, less than dtmin ###'
         write(6,620) dt,dtmin,imin
 620     format('   dt = ',1pe10.3,'  < ',1pe10.3,' @ i =',i5) 
      endif
      return
      end
c======================================================================|
      subroutine datin_varied3(ro,pr,vx,vy,vz,bx,by,bz,
     &		vstar,ns,ix,parain,xear,paranm ,idprop,x) !--REV0318
c======================================================================|
      implicit double precision (a-h,o-z)
      dimension ro(ix),pr(ix),vx(ix),vy(ix),vz(ix)
      dimension bx(ix),by(ix),bz(ix)
      dimension x(ix)
      real*8 parain(12),paranm(8)
      integer :: xear,idprop
      if(idprop.eq.1)then
cc       ro(1:xear)=parain(1)/paranm(1)
cc       pr(1:xear)=parain(2)/paranm(2)*parain(1)/paranm(1)/1937.d0
       ro(1:xear)=parain(1)/paranm(1)/x(1:xear)**2*x(xear)**2
       pr(1:xear)=parain(2)/paranm(2)*ro(1:xear)/1937.d0
       vx(1:xear)=parain(3)/paranm(3)
       vy(1:xear)=parain(4)/paranm(4)
cc       vz(1:xear)=parain(5)/paranm(5)
       by(1:xear)=parain(7)/16.34d0
cc       bz(1:xear)=parain(8)/16.34d0
      else
       ro(xear:ix)=parain(1)/paranm(1)
       pr(xear:ix)=parain(2)/paranm(2)*parain(1)/paranm(1)/1937.d0
cc       ro(xear:ix)=parain(1)/paranm(1)/x(xear:ix)**2*x(xear)**2
cc       pr(xear:ix)=parain(2)/paranm(2)/ro(xear:ix)/1937.d0
       vx(xear:ix)=parain(3)/paranm(3)
       vy(xear:ix)=parain(4)/paranm(4)
cc       vz(xear:ix)=parain(5)/paranm(5)
       by(xear:ix)=parain(7)/16.34d0
cc       bz(xear:ix)=parain(8)/16.34d0
      endif
      return
      end
c======================================================================|
      subroutine datin_const3(ro,pr,vx,vy,vz,bx,by,bz,vstar,ns,ix)
c======================================================================|
      implicit double precision (a-h,o-z)
      dimension ro(ix),pr(ix),vx(ix),vy(ix),vz(ix)
      dimension bx(ix),by(ix),bz(ix)
      ro(1:xear)=1.d0
      pr(1:xear)=1.d0/1937.d0
      vx(1:xear)=1.d0
      vy(1:xear)=vstar
      vz(1:xear)=0.d0
      bx(1:xear)=0.0d0
      by(1:xear)=0.0d0
      bz(1:xear)=0.0d0
      ro(xear+1)=ro(xear)
      pr(xear+1)=pr(xear)
      vx(xear+1)=vx(xear)
      vy(xear+1)=vy(xear)
      vz(xear+1)=vz(xear)
      bx(xear+1)=bx(xear)
      by(xear+1)=by(xear)
      bz(xear+1)=bz(xear)
      return
      end
c======================================================================|
      subroutine grdrdy(dx,xm,dxm,x,ix)
c======================================================================|
c
c NAME  grdrdy
c
c PURPOSE
c    calculate coordinate of mid-grid points and
c    grid spacing on the grid points
c
c OUTPUTS
c    dx(ix),dxm(ix): [double] grid spacing
c    xm(ix): [double] coordinate
c
c INPUTS
c    x(ix): [double] coordinate
c    ix: [integer] dimension size
c
c HISTORY
c    written 2002-3-1 T. Yokoyama
c
c----------------------------------------------------------------------|
      implicit double precision (a-h,o-z)
      dimension dx(ix),dxm(ix)
      dimension x(ix),xm(ix)
c----------------------------------------------------------------------|
      do i=1,ix-1
         dxm(i)=x(i+1)-x(i)
      enddo
      dxm(ix)=dxm(ix-1)

      do i=2,ix-1
         dx(i)  = 0.5*(dxm(i-1)+dxm(i))
      enddo
      dx(1)=dx(2)
      dx(ix)=dx(ix-1)

      do i=1,ix-1
         xm(i)=0.5*(x(i)+x(i+1))
      enddo
      xm(ix)=xm(ix-1)+dx(ix-1)
      return
      end
c======================================================================|
      subroutine roe_m_bg(ro,pr,vx,vy,by,bx,bxm,dt,gm
     &            ,gx,dsc,scm,dv,rr,rrm,drr,dx,ix)
c======================================================================|
c
c NAME  roe_m_bg
c
c PURPOSE
c    solve eqs. by modified Roe + MUSCL-TVD  method with effects of
c        * MHD
c        * axial symmetry
c        * non-uniform poloidal magnetic field
c        * gravity
c
c INPUTS & OUTPUTS
c    ro(ix): [double] density
c    pr(ix): [double] pressure
c    vx(ix): [double] velocity 
c    vy(ix): [double] velocity 
c    by(ix): [double] magnetic field
c
c OUTPUTS
c    None
c
c INPUTS
c    NOTE: ??m(ix) is the variable array defined at grid bounds
c
c    bx(ix), bxm(ix) : [double] magnetic field
c    gx(ix), gxm(ix) : [double] gravity
c    gy(ix), gym(ix) : [double] gravity
c    gz(ix), gzm(ix) : [double] gravity
c    scm(ix) : [double] cross section
c    dsc(ix), dscm(ix) : [double] cross section gradient
c    rr(ix), rrm(ix) : [double] distance from rotation axis
c    drr(ix), drrm(ix) : [double] distance gradient from rotation axis
c    dx(ix) : [double] grid spacing
c    gm: [double] polytropic index gamma
c    dt: [double] delta time
c    ix: [integer] dimension size
c
c HISTORY
c    written 2002-3-1 T. Yokoyama based on N. Fukuda's code
c
c----------------------------------------------------------------------|
      implicit double precision (a-h,o-z)
      dimension dx(ix)
      dimension ro(ix),pr(ix),vx(ix),vy(ix),by(ix)
      dimension bx(ix),bxm(ix)
      dimension dsc(ix),scm(ix),dv(ix)
      dimension rosc(ix),eesc(ix),rxsc(ix),rysc(ix),bysc(ix)
      dimension rosch(ix),eesch(ix),rxsch(ix),rysch(ix),bysch(ix)
      dimension fro(ix),fee(ix),frx(ix),fry(ix),fby(ix)
      dimension roh(ix),prh(ix),vxh(ix),vyh(ix),byh(ix)
      dimension row(ix,2),prw(ix,2),vxw(ix,2),vyw(ix,2)
     &         ,bxw(ix,2),byw(ix,2)
      dimension gx(ix)
      dimension rr(ix),drr(ix),rrm(ix)
c----------------------------------------------------------------------|      
c     numerical parameters
      pi = acos(-1.0d0)
      pi4=4.0d0*pi
      pi8=8.0d0*pi
      pi4i=1.0d0/pi4
      pi8i=5.0d-1*pi4i
c----------------------------------------------------------------------|
c     computation of conservative variables w(i,l)
      do i=1,ix
         rosc(i)=dv(i)*ro(i)
         rxsc(i)=dv(i)*ro(i)*vx(i)
         rysc(i)=dv(i)*ro(i)*vy(i)*rr(i)
         bysc(i)=dv(i)*by(i)/rr(i)
         v2=vx(i)**2+vy(i)**2
         b2=bx(i)**2+by(i)**2
         eesc(i)=dv(i)*(pr(i)/(gm-1.0d0) +0.5d0*ro(i)*v2 + pi8i*b2)
      enddo
c----------------------------------------------------------------------|
c     proceed half step
c     computation of 1st order flux f(i,l)
c----------------------------------------------------------------------|
      do i=1,ix-1
         row(i,1)=ro(i)
         prw(i,1)=pr(i)
         vxw(i,1)=vx(i)
         vyw(i,1)=vy(i)
         bxw(i,1)=bxm(i)
         byw(i,1)=by(i)
         row(i,2)=ro(i+1)
         prw(i,2)=pr(i+1)
         vxw(i,2)=vx(i+1)
         vyw(i,2)=vy(i+1)
         bxw(i,2)=bxm(i)
         byw(i,2)=by(i+1)
      enddo

      call roeflux_m(fro,fee,frx,fry,fby,gm,row,prw,vxw,vyw,bxw,byw,ix)
      do i=1,ix-1
        fro(i)=scm(i)*fro(i)
        fee(i)=scm(i)*fee(i)
        frx(i)=scm(i)*frx(i)
        fry(i)=scm(i)*fry(i)*rrm(i)
        fby(i)=scm(i)*fby(i)/rrm(i)
      enddo

      do i=2,ix-1
         rosch(i)=rosc(i)+0.5d0*dt*( (fro(i-1)-fro(i))/dx(i) )
         eesch(i)=eesc(i)+0.5d0*dt*( (fee(i-1)-fee(i))/dx(i) )
         rxsch(i)=rxsc(i)+0.5d0*dt*( (frx(i-1)-frx(i))/dx(i) )
         rysch(i)=rysc(i)+0.5d0*dt*( (fry(i-1)-fry(i))/dx(i) )
         bysch(i)=bysc(i)+0.5d0*dt*( (fby(i-1)-fby(i))/dx(i) )
      enddo

      do i=2,ix-1
         see=dv(i)*ro(i)*vx(i)*gx(i)
         eesch(i)=eesch(i)+0.5d0*dt*see
         b2=bx(i)**2+by(i)**2
         srx=dv(i)
     &   *(ro(i)*gx(i)+(ro(i)*vy(i)**2-by(i)**2*pi4i)/rr(i)*drr(i))
     &       +(pr(i)+b2*pi8i)*dsc(i)
         rxsch(i)=rxsch(i)+0.5d0*dt*srx
      enddo

c     computation of basic variables on half step

      do i=2,ix-1
         roh(i)=rosch(i)/dv(i)
         vxh(i)=rxsch(i)/rosch(i)
         vyh(i)=rysch(i)/rosch(i)/rr(i)
         byh(i)=bysch(i)/dv(i)*rr(i)
         v2=vxh(i)**2+vyh(i)**2
         b2= bx(i)**2+byh(i)**2
         prh(i)=(gm-1.0d0)* (eesch(i)/dv(i)-0.5d0*roh(i)*v2 -b2*pi8i)
      enddo

c----------------------------------------------------------------------|
c     proceed full step
c     computation of 2nd order flux f(i,l)
c----------------------------------------------------------------------|
      call tvdminmod(roh,row,ix)
      call tvdminmod(prh,prw,ix)
      call tvdminmod(vxh,vxw,ix)
      call tvdminmod(vyh,vyw,ix)
      call tvdminmod(byh,byw,ix)

      call roeflux_m(fro,fee,frx,fry,fby,gm,row,prw,vxw,vyw,bxw,byw,ix)
      do i=2,ix-2
        fro(i)=scm(i)*fro(i)
        fee(i)=scm(i)*fee(i)
        frx(i)=scm(i)*frx(i)
        fry(i)=scm(i)*fry(i)*rrm(i)
        fby(i)=scm(i)*fby(i)/rrm(i)
      enddo

      do i=2,ix-2
         rosc(i)=rosc(i)+dt*( (fro(i-1)-fro(i))/dx(i) )
         eesc(i)=eesc(i)+dt*( (fee(i-1)-fee(i))/dx(i) )
         rxsc(i)=rxsc(i)+dt*( (frx(i-1)-frx(i))/dx(i) )
         rysc(i)=rysc(i)+dt*( (fry(i-1)-fry(i))/dx(i) )
         bysc(i)=bysc(i)+dt*( (fby(i-1)-fby(i))/dx(i) )
      enddo

      do i=3,ix-2
         see=dv(i)*roh(i)*vxh(i)*gx(i)
         eesc(i)=eesc(i)+dt*see
         b2=bx(i)**2+byh(i)**2
         srx=dv(i)
     &   *(roh(i)*gx(i)+(roh(i)*vyh(i)**2-byh(i)**2*pi4i)/rrm(i)*drr(i))
     &       +(prh(i)+b2*pi8i)*dsc(i)
         rxsc(i)=rxsc(i)+dt*srx
      enddo

c----------------------------------------------------------------------|
c     computation of basic variables on full step
      do i=3,ix-2
         ro(i)=rosc(i)/dv(i)
         vx(i)=rxsc(i)/rosc(i)
         vy(i)=rysc(i)/rosc(i)/rr(i)
         by(i)=bysc(i)/dv(i)*rr(i)
         v2=vx(i)**2+vy(i)**2
         b2=bx(i)**2+by(i)**2
         pr(i)=(gm-1.0d0)* (eesc(i)/dv(i)-0.5d0*ro(i)*v2-pi8i*b2)
      enddo
c----------------------------------------------------------------------|
      return
      end
c======================================================================|
      subroutine roeflux_m(fro,fee,frx,fry,fby
     &                         ,gm,row,prw,vxw,vyw,bxw,byw,ix)
c======================================================================|
c
c NAME  roeflux_m
c
c PURPOSE
c    derive numerical flux by solving the linearized Riemann problem
c        * MHD
c
c INPUTS & OUTPUTS
c    None
c
c OUTPUTS
c    fro(ix): [double] density flux
c    fee(ix): [double] total-energy flux
c    frx(ix): [double] momentum flux
c    fry(ix): [double] momentum flux
c    fby(ix): [double] magnetic field flux
c
c INPUTS
c    row(ix,2): [double] density at cell boundary
c    prw(ix,2): [double] pressure at cell boundary
c    vxw(ix,2): [double] velocity at cell boundary
c    vyw(ix,2): [double] velocity at cell boundary
c    byw(ix,2): [double] magnetic field at cell boundary
c    gm: [double] polytropic index gamma
c    ix: [integer] dimension size
c
c HISTORY
c    written 2002-3-1 T. Yokoyama based on N. Fukuda's code
c
c----------------------------------------------------------------------|
      implicit double precision (a-h,o-z)
      dimension row(ix,2),prw(ix,2),vxw(ix,2)
      dimension vyw(ix,2),byw(ix,2),bxw(ix,2)
      dimension fro(ix),fee(ix),frx(ix),fry(ix),fby(ix)
c----------------------------------------------------------------------|
      pi = acos(-1.0d0)
      pi4=4.0d0*pi
      pi4i=1.0d0/pi4
      pi8i=5.0d-1*pi4i

      do i=1,ix-1
         rhol=row(i,1)
         vxl=vxw(i,1)
         vyl=vyw(i,1)
         bxl=bxw(i,1)
         byl=byw(i,1)
         prl=prw(i,1)
         rhor=row(i,2)
         vxr=vxw(i,2)
         vyr=vyw(i,2)
         bxr=bxw(i,2)
         byr=byw(i,2)
         prr=prw(i,2)
c-----roe's variable
      sr0=sqrt(rhol)
      sr1=sqrt(rhor)
      sri=1.0d0/(sr0+sr1)
      rhobar=sr0*sr1
      vxbar=(sr0*vxl+sr1*vxr)*sri
      vybar=(sr0*vyl+sr1*vyr)*sri
      bxbar=(sr0*bxr+sr1*bxl)*sri
      bybar=(sr0*byr+sr1*byl)*sri
      hl=0.5d0*(vxl**2+vyl**2)+gm*prl/((gm-1.0d0)*rhol)
     1  +(bxbar**2+byl**2)/(pi4*rhol)
      hr=0.5d0*(vxr**2+vyr**2)+gm*prr/((gm-1.0d0)*rhor)
     1  +(bxbar**2+byr**2)/(pi4*rhor)
      hbar=(sr0*hl+sr1*hr)*sri
      byave=(byl+byr)/2.0d0
c-----characteristic speed
      delb2=(gm-2.0d0)/(gm-1.0d0)
     1     *((byr-byl)**2)*sri**2*pi8i
      cs2=(gm-1.0d0)*(hbar-0.5d0*(vxbar**2+vybar**2)
     1   -delb2-(bxbar**2+bybar**2)*pi4i/rhobar)
      astar2=(gm-1.0d0)
     1      *(hbar-0.5d0*(vxbar**2+vybar**2)-delb2)
     2      -(gm-2.0d0)*(bxbar**2+bybar**2)*pi4i/rhobar
      ca2=bxbar**2/(pi4*rhobar)
c      cfast2=0.5d0*(astar2+sqrt(astar2**2-4.0d0*cs2*ca2))
      cbr2=(bybar**2)*pi4i/rhobar
      cfast2=0.5d0*(astar2+sqrt(cbr2*(astar2+cs2+ca2)+(cs2-ca2)**2))
      cslow2=cs2*ca2/cfast2
      cfast=sqrt(cfast2)
      cslow=sqrt(cslow2)
      ca=sqrt(ca2)
      cs=sqrt(cs2)
c----- for singular points
      epsi=1.0d-12
      sgr=bybar**2-epsi
      sp=0.5d0+sign(0.5d0,sgr)
      betay=sp*bybar*sqrt(1.0d0/(bybar**2+1.0d0-sp))
     1     +sqrt(0.5d0)*(1.0d0-sp)
      betaz=sqrt(0.5d0)*(1.0d0-sp)
      eps2=1.0d-12
      sgr2=(bybar**2)/(pi4*rhobar)+abs(ca2-cs2)-eps2
      sp2=0.5d0+sign(0.5d0,sgr2)
      cfca=max(0.0d0,cfast2-ca2)
      cfcs=max(0.0d0,cfast2-cslow2)
      cfa=max(0.0d0,cfast2-cs2)
      alphf=sp2*sqrt(cfca/(cfcs+1.0d0-sp2))+1.0d0-sp2
      alphs=sp2*sqrt(cfa/(cfcs+1.0d0-sp2))
      sgnbx=sign(1.0d0,bxbar)
c----- eigen value & entropy condition
      eeps=(vxr-vxl+abs(vxr-vxl))*2.5d-1 
      elpf=-max(abs(vxbar+cfast),eeps)
      elmf=-max(abs(vxbar-cfast),eeps)
      elps=-max(abs(vxbar+cslow),eeps)
      elms=-max(abs(vxbar-cslow),eeps)
      elpa=-max(abs(vxbar+ca),eeps)
      elma=-max(abs(vxbar-ca),eeps)
      elze=-max(abs(vxbar),eeps)
c     elmax=max(abs(elpf),abs(elmf))
c----- amplitude;w's
      drho=rhor-rhol
      du21=rhobar*(vxr-vxl)
      du31=rhobar*(vyr-vyl)
      du41=0
      du6=byr-byl
      du5=0.
      t1=betay*du6+betaz*du5
      t2=(prr-prl+(byave*du6)*pi4i
     1  +(gm-2.0d0)*(bybar*du6)*pi4i)/(gm-1.0d0)
      t3=betaz*du6-betay*du5
      s1=du21
      s2=betay*du31+betaz*du41
      s3=betaz*du31-betay*du41
      p11=alphs*cfast*sqrt(pi4/rhobar)
      p12=-alphf*cs2/cfast*sqrt(pi4/rhobar)
      p21=alphf*(cfast2-cs2*(gm-2.0d0)/(gm-1.0d0))
      p22=alphs*(cslow2-cs2*(gm-2.0d0)/(gm-1.0d0))
      q11=alphf*cfast
      q12=alphs*cslow
      q21=-alphs*ca*sgnbx
      q22=alphf*cs*sgnbx
      detp=p11*p22-p12*p21
      detq=q11*q22-q12*q21
c     chkdp=cs2*cfast/(gm-1.0d0)*sqrt(pi4/rhobar)
c     chkdq=cfast*cs*sgnbx
      wpf=0.5d0*((p22*t1-p12*t2)/detp+(q22*s1-q12*s2)/detq)
      wmf=0.5d0*((p22*t1-p12*t2)/detp-(q22*s1-q12*s2)/detq)
      wps=0.5d0*((-p21*t1+p11*t2)/detp+(-q21*s1+q11*s2)/detq)
      wms=0.5d0*((-p21*t1+p11*t2)/detp-(-q21*s1+q11*s2)/detq)
      wpa=0.5d0*(sqrt(rhobar*pi4i)*t3-sgnbx*s3)
      wma=0.5d0*(sqrt(rhobar*pi4i)*t3+sgnbx*s3)
      wze=drho-alphf*(wpf+wmf)-alphs*(wps+wms)
c----- flux
      fluxlro=rhol*vxl
      fluxlrx=rhol*vxl*vxl+prl+(-bxbar**2+byl**2)*pi8i
      fluxlry=rhol*vxl*vyl-bxbar*byl*pi4i
      fluxlby=vxl*byl-vyl*bxbar
      fluxlee=rhol*vxl*hl-bxbar*(bxbar*vxl+byl*vyl)*pi4i

      fluxrro=rhor*vxr
      fluxrrx=rhor*vxr*vxr+prr+(-bxbar**2+byr**2)*pi8i
      fluxrry=rhor*vxr*vyr-bxbar*byr*pi4i
      fluxrby=vxr*byr-vyr*bxbar
      fluxree=rhor*vxr*hr-bxbar*(bxbar*vxr+byr*vyr)*pi4i
c----- components of the eigen vectors
      rpfro=alphf
      rpfrx=alphf*(vxbar+cfast)
      rpfry=alphf*vybar-alphs*betay*ca*sgnbx
      rpfby=alphs*betay*cfast*sqrt(pi4/rhobar)
      rpfee=alphf*(0.5d0*(vxbar**2+vybar**2)
     1           +delb2+cfast*vxbar+cfast2/(gm-1.0d0)
     2           +(cfast2-cs2)*(gm-2.0d0)/(gm-1.0d0))
     3    -alphs*ca*(betay*vybar)*sgnbx
      rmfro=alphf
      rmfrx=alphf*(vxbar-cfast)
      rmfry=alphf*vybar+alphs*betay*ca*sgnbx
      rmfby=rpfby
      rmfee=alphf*(0.5d0*(vxbar**2+vybar**2)
     1           +delb2-cfast*vxbar +cfast2/(gm-1.0d0)
     2           +(cfast2-cs2)*(gm-2.0d0)/(gm-1.0d0))
     3    +alphs*ca*(betay*vybar)*sgnbx
      rpsro=alphs
      rpsrx=alphs*(vxbar+cslow)
      rpsry=alphs*vybar+cs*sgnbx*alphf*betay
      rpsby=-sqrt(pi4/rhobar)*cs2*alphf*betay/cfast
      rpsee=alphs*(0.5d0*(vxbar**2+vybar**2)
     1           +delb2+cslow*vxbar+cslow2/(gm-1.0d0)
     2           +(cslow2-cs2)*(gm-2.0d0)/(gm-1.0d0))
     3    +alphf*cs*(betay*vybar)*sgnbx
      rmsro=alphs
      rmsrx=alphs*(vxbar-cslow)
      rmsry=alphs*vybar-cs*sgnbx*alphf*betay
      rmsby=rpsby
      rmsee=alphs*(0.5d0*(vxbar**2+vybar**2)
     1           +delb2-cslow*vxbar+cslow2/(gm-1.0d0)
     2           +(cslow2-cs2)*(gm-2.0d0)/(gm-1.0d0))
     3    -alphf*cs*(betay*vybar)*sgnbx
      rparo=0.0d0
      rparx=0.0d0
      rpary=-sgnbx*betaz
      rpaby=sqrt(pi4/rhobar)*betaz
      rpaee=-(betaz*vybar)*sgnbx
      rmaro=0.0d0
      rmarx=0.0d0
      rmary=-rpary
      rmaby=rpaby
      rmaee=-rpaee
      rzero=1.0d0
      rzerx=vxbar
      rzery=vybar
      rzeby=0.0d0
      rzeee=0.5d0*(vxbar**2+vybar**2)+delb2

c-----computation of f(i+1/2,j)
      fro(i)=0.5d0*(fluxlro+fluxrro
     1       +elpf*wpf*rpfro +elmf*wmf*rmfro 
     &       +elps*wps*rpsro +elms*wms*rmsro
     2       +elpa*wpa*rparo +elma*wma*rmaro +elze*wze*rzero)

      fee(i)=0.5d0*(fluxlee+fluxree
     1       +elpf*wpf*rpfee +elmf*wmf*rmfee 
     &       +elps*wps*rpsee +elms*wms*rmsee
     2       +elpa*wpa*rpaee +elma*wma*rmaee +elze*wze*rzeee)

      frx(i)=0.5d0*(fluxlrx+fluxrrx
     1       +elpf*wpf*rpfrx +elmf*wmf*rmfrx 
     &       +elps*wps*rpsrx +elms*wms*rmsrx
     2       +elpa*wpa*rparx +elma*wma*rmarx +elze*wze*rzerx)

      fry(i)=0.5d0*(fluxlry+fluxrry
     1       +elpf*wpf*rpfry +elmf*wmf*rmfry 
     &       +elps*wps*rpsry +elms*wms*rmsry
     2       +elpa*wpa*rpary +elma*wma*rmary +elze*wze*rzery)

      fby(i)=0.5d0*(fluxlby+fluxrby
     1       +elpf*wpf*rpfby +elmf*wmf*rmfby 
     &       +elps*wps*rpsby +elms*wms*rmsby
     2       +elpa*wpa*rpaby +elma*wma*rmaby +elze*wze*rzeby)

      enddo

      return
      end
c======================================================================|
      subroutine scrdy(dsc,dscm,sc,scm,dx,dxm,ix)
c======================================================================|
c
c NAME  scrrdy
c
c PURPOSE
c    calculate cross section derivatives
c
c OUTPUTS
c    dsc(ix), dscm(ix) : [double] cross section derivative
c
c INPUTS
c    sc(ix), scm(ix) : [double] cross section
c    dx(ix),dxm(ix): [double] grid spacing
c    ix: [integer] dimension size
c
c HISTORY
c    written 2002-3-1 T. Yokoyama
c
c----------------------------------------------------------------------|
      implicit double precision (a-h,o-z)
      dimension dsc(ix),dscm(ix)
      dimension sc(ix),scm(ix)
      dimension dx(ix),dxm(ix)
c----------------------------------------------------------------------|

      do i=2,ix-1
          dsc(i) = (scm(i) - scm(i-1))/dx(i)
      enddo

      do i=2,ix-2
        dscm(i)= (sc(i+1) - sc(i))/dxm(i)
      enddo

      return
      end
c======================================================================|
      subroutine tvdminmod(da,daw,ix)
c======================================================================|
c
c NAME  tvdminmod
c
c PURPOSE
c    Interporate the physical variables based on MUSCL
c    using 'min-mod' function as a limitter
c
c INPUTS & OUTPUTS
c    None
c
c OUTPUTS
c    daw(ix,2): [double] variable at cell boundary
c
c INPUTS
c    da(ix): [double] physical variable
c    ix: [integer] dimension size
c
c HISTORY
c    written 2002-3-1 T. Yokoyama based on N. Fukuda's code
c
c----------------------------------------------------------------------|
      implicit double precision (a-h,o-z)

      dimension da(ix)
      dimension daw(ix,2)
c----------------------------------------------------------------------|
c     define limiter functions
      flmt(a,b)=max(0.0d0,min(b*sign(1.0d0,a),abs(a)))*sign(1.0d0,a)
c----------------------------------------------------------------------|
      do i=2,ix-2
         daw(i,1)=da(i)+0.5*flmt(da(i+1)-da(i),da(i)-da(i-1))
         daw(i,2)=da(i+1)-0.5*flmt(da(i+1)-da(i),da(i+2)-da(i+1))
      enddo
      return
      end