run.py
15 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
from datetime import datetime, date, time, timedelta
import pandas as pd
import numpy as np
import os
import sys
from lxml import etree
from netCDF4 import Dataset
import logging
from logging.handlers import RotatingFileHandler
import time as myTime
def main():
J2000REF = 946679400 # 2000-01-01T00:00:00 -30min
# CHECK ARGS
checkArgs(3, 'Usage : python run.py (target) (Solar Wind XML config file)')
prefix = sys.argv[1]
xmlFile = sys.argv[2]
start_time = myTime.time()
# GET ENVIRONMENT VARIABLES
SW2ROOT = os.getenv('SW2ROOT')
SW2MISSIONS = os.getenv('REQ')
SW2DATA = os.getenv('SW2DATA')
SW2NC = os.getenv('SW2NC')
# GET INFOS FROM XML CONFIG FILE
start,stop,plasmaVi,srcVi,srcR,srcLon,tgtVi,tgtR,tgtLon = getXMLConfig(xmlFile)
src = plasmaVi.split('_')[0]
# CREATE A DIRECTORY FOR THE NEW QUERY
MYDIR = SW2DATA+'/'+src+'/'+prefix+'_'+datetime.now().strftime('%Y%m%d')
if not os.path.exists(MYDIR):
os.makedirs(MYDIR,0775)
# CREATION OF A LOGGER
logFile = prefix+'_'+datetime.now().strftime('%Y%m%d')+'.log'
logger = initLogger(MYDIR+'/'+logFile)
logger.info("Start : " + start)
logger.info("Stop : " + stop)
logger.info("Plasma VI : " + plasmaVi)
logger.info("Source VI : " + srcVi)
logger.info("Source distance : " + srcR)
logger.info("Source longitude : " + srcLon)
logger.info("Target VI : " + tgtVi)
logger.info("Target distance : " + tgtR)
logger.info("Target longitude : " + tgtLon)
# COMPUTING BOUNDARIES
marginPlasma = getMarginDays(tgtVi) #Days
plasmaStart = shiftedDate(start, days=-marginPlasma, seconds=-1)
plasmaDDStart = time2ddtime(plasmaStart)
# if run run.py 'alone' - for previous years
#plasmaStop = shiftedDate(stop, days=marginPlasma)
plasmaStop = shiftedDate(stop)
plasmaDDStop = time2ddtime(plasmaStop)
ddTimeDeltaPlasma = DDTimeDelta(plasmaStart, plasmaStop)
marginOrbit = 20 # Hours
orbitsStart = shiftedDate(plasmaStart, hours=-marginOrbit)
orbitsStop = shiftedDate(plasmaStop, hours=marginOrbit)
orbitsDDStart = time2ddtime(orbitsStart)
ddTimeDeltaOrbit = DDTimeDelta(orbitsStart, orbitsStop)
# GET DATA FROM DD BASE DEPENDING ON SW INPUT
if plasmaVi == 'omni_hour_all':
plasmaCmd = ['get_OMNI_1H',MYDIR+'/plasma.csv',plasmaDDStart,ddTimeDeltaPlasma]
elif plasmaVi == 'ace_swepam_real':
plasmaCmd = ['get_ACE_RT',MYDIR+'/plasma.csv',MYDIR+'/mag.csv',plasmaDDStart,ddTimeDeltaPlasma]
srcCmd = ['get_R_LON_HCI',MYDIR+'/source.csv',srcVi,srcR,srcLon,orbitsDDStart,ddTimeDeltaOrbit]
tgtCmd = ['get_R_LON_HCI',MYDIR+'/target.csv',tgtVi,tgtR,tgtLon,orbitsDDStart,ddTimeDeltaOrbit]
os.system(' '.join(plasmaCmd))
os.system(' '.join(srcCmd))
os.system(' '.join(tgtCmd))
if os.path.getsize(MYDIR+'/plasma.csv') == 0:
logger.error('Failed to load plasma data')
sys.exit(2)
elif os.path.getsize(MYDIR+'/source.csv') == 0:
logger.error('Failed to load source orbit data')
sys.exit(2)
elif os.path.getsize(MYDIR+'/target.csv') == 0:
logger.error('Failed to load target orbit data')
sys.exit(2)
# PLASMA DATAFRAME
if plasmaVi == 'omni_hour_all':
plasma = pd.read_csv(MYDIR+'/plasma.csv', dtype='S16,f4,f4,f4,f4,f4,f4,f4,f4')
elif plasmaVi == 'ace_swepam_real':
if os.path.getsize(MYDIR+'/mag.csv') == 0:
logger.error('Failed to load mag data')
sys.exit(2)
sw = pd.read_csv(MYDIR+'/plasma.csv', dtype='S16,f4,f4,f4')
mag = pd.read_csv(MYDIR+'/mag.csv', dtype='S16,f4,f4,f4')
plasma = sw.merge(mag, on='Time')
plasma['Time'] = ddTime2Datetime(plasma['Time'])
plasma = plasma.set_index('Time')
logger.info('Number of NaNs for plasma data before cleaning : %d' % plasma.isnull().sum().sum())
plasma = plasma.interpolate().fillna(method='bfill')
logger.info('Number of NaNs for plasma data after cleaning : %d' % plasma.isnull().sum().sum())
# SOURCE DATAFRAME
source = pd.read_csv(MYDIR+'/source.csv', dtype='S16,f4,f4,f4')
source['Time'] = ddTime2Datetime(source['Time'])
source.columns = ['Time','R_HCI_source', 'LON_HCI_source']
source = source.set_index('Time')
# TARGET DATAFRAME
target = pd.read_csv(MYDIR+'/target.csv', dtype='S16,f4,f4,f4')
target['Time'] = ddTime2Datetime(target['Time'])
target.columns = ['Time','R_HCI_target', 'LON_HCI_target']
target = target.set_index('Time')
# CARTESIAN TO SPHERICAL COORDS
r_source = source['R_HCI_source']
lon_source_deg = np.degrees(source['LON_HCI_source'])
lon_source_deg[lon_source_deg < 0] = lon_source_deg+360.0 #-180/180 -> 0/360
sourceData = np.array([source.index,r_source,lon_source_deg]).T
sourceColumns = ['Time','R_source','Lon_source']
source = pd.DataFrame(data=sourceData,columns=sourceColumns)
source = source.set_index('Time')
r_target = target['R_HCI_target']
lon_target_deg = np.degrees(target['LON_HCI_target'])
lon_target_deg[lon_target_deg < 0] = lon_target_deg+360.0 #-180/180 -> 0/360
targetData = np.array([target.index,r_target,lon_target_deg]).T
targetColumns = ['Time','R_target','Lon_target']
target = pd.DataFrame(data=targetData,columns=targetColumns)
target = target.set_index('Time')
# SPHERICAL TO CARTESIAN COORDS
if plasmaVi == 'omni_hour_all':
vlon = np.radians(plasma['Vlon'])
vlat = np.radians(plasma['Vlat'])
elif plasmaVi == 'ace_swepam_real':
vlon = np.radians(-2.0)
vlat = np.radians(1.0)
vx = plasma['V']*np.cos(vlat)*np.cos(vlon)
vy = -plasma['V']*np.cos(vlat)*np.sin(vlon)
vz = plasma['V']*np.sin(vlat)
# ROTATION
bx = -np.array(plasma['Bx'])
by = -np.array(plasma['By'])
bz = np.array(plasma['Bz'])
# FINAL PLASMA DATAFRAME
plasmaData = np.array([plasma.index,plasma.Density,plasma.Temperature,vx,vy,vz,bx,by,bz])
plasmaColumns = ['Time','Density','Temperature','Vx','Vy','Vz','Bx','By','Bz']
plasma = pd.DataFrame(data=plasmaData.T,columns=plasmaColumns)
plasma = plasma.set_index('Time')
# FINAL DATAFRAME
combined = plasma.join(source,how='outer').join(target,how='outer')
# trunk = combined.truncate(before=start, after=stop)
trunk = combined.truncate(after=stop)
df = trunk.groupby(trunk.index).first()
df = df.resample('1H')
df = df.interpolate().fillna(method='backfill')
if df['R_target'].mean() < df['R_source'].mean():
df = df.reindex(index=df.index[::-1])
idprop = -1
xmax1 = 1.3
xmin1 = 0.3
else:
idprop = 1
xmax1 = 5.8
xmin1 = 0.8
# QUALITY FLAG
dataFlagData = np.array( [df.index,np.zeros(len(df.index)).astype(int)])
# dataFlagData = np.array( [df.index,np.ones(len(df.index)).astype(int)])
dataFlagColumns = ['Time','QualityFlag']
dataFlag = pd.DataFrame(data=dataFlagData.T,columns=dataFlagColumns)
dataFlag = dataFlag.set_index('Time')
df = df.join(dataFlag,how='outer')
# WRITE TO A DATA FILE
df.to_csv(MYDIR+'/myInputs.txt',date_format='%Y-%m-%dT%H:%M:%S',float_format="%.2f",header=False, sep=" ")
# WRITE THE INPUTS FILE
myT = [ time2J2000(str(t),J2000REF) for t in df.index ]
filename = MYDIR+"/inputs.txt"
fmt = 'e'
sftFmt = ''
with open(filename, "w") as myFile:
for ti,di,tempi,vxi,vyi,vzi,bxi,byi,bzi,rsrci,lonsrci,rtgti,lontgti,qfi in zip(myT, df['Density'], df['Temperature'], df['Vx'], df['Vy'], df['Vz'], df['Bx'], df['By'], df['Bz'], df['R_source'], df['Lon_source'],df['R_target'],df['Lon_target'],df['QualityFlag']):
line = [sftFmt,ti,format(di, fmt),format(tempi, fmt),format(vxi, fmt),format(vyi, fmt),format(vzi, fmt),format(bxi, fmt),format(byi, fmt),format(bzi, fmt),format(rsrci, fmt),format(lonsrci, fmt),format(rtgti, fmt),format(lontgti, fmt),format(qfi, fmt)]
myFile.write(' '.join(line)+'\n')
myFile.close()
# SW MHD CODE
writeNamelist(MYDIR,idprop,xmax1,xmin1)
logger.info('Computing solar wind propagation ...')
os.system('sw.exe')
# PROCESSING OUTPUTS OF SW CODE
years,months,days,t,n,temp,vx,vy,by,pdyn,dphi,qualFlag = np.loadtxt(MYDIR+'/outputs.txt', comments="#", unpack="True", dtype=str,usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11))
myDates = []
for yi,mi,di,ti, in zip(years,months,days,t):
if ti=='24:00:00':
ti='23:00:00'
myDates.append(datetime.strptime(yi+'-'+mi+'-'+di+' '+ti, '%Y-%m-%d %H:%M:%S'))
myDates = np.array(myDates)
outputsData = np.array([myDates,n.astype(float),temp.astype(float),vx.astype(float),vy.astype(float),by.astype(float),pdyn.astype(float),dphi.astype(float),qualFlag.astype(float)])
outputsColumns = ['Time','Density','Temperature','Vx','Vy','By','pdyn','dphi','qualFlag']
outputs = pd.DataFrame(data=outputsData.T,columns=outputsColumns)
outputs = outputs.set_index('Time')
outputs = outputs.truncate(before=start)
outputs.to_csv(MYDIR+'/myOutputs.txt',date_format='%Y-%m-%dT%H:%M:%S',float_format="%.2f",header=False, sep=" ")
# WRITE THE NETCDF OUTPUT
ddTime = []
for ti in outputs.index:
ddTime.append(str(ti.year)+'{:03}'.format(ti.dayofyear-1)+'{:02}'.format(ti.hour)+'{:02}'.format(ti.minute)+'{:02}'.format(ti.second)+'000')
with open('ddTime.txt','w') as ddFile:
os.system('chmod ug+w ddTime.txt')
for i in ddTime:
ddFile.write(i+'\n')
ddFile.close()
if not os.path.exists(SW2NC):
os.makedirs(SW2NC,0775)
ncFile = SW2NC+'/'+os.path.basename(xmlFile).split('.')[0]+'.nc'
os.system('WriteDDTime '+ncFile)
os.system('chmod ug+w ' + ncFile)
nc = Dataset( ncFile, "a", format="NETCDF4" )
nc.createDimension( "Vector", 2 )
v = [ (vix, viy) for vix, viy in zip(np.array(outputs['Vx']), np.array(outputs['Vy'])) ]
velocityVar = nc.createVariable( 'V', 'f4', (u'Time', u'Vector') )
velocityVar.units = 'km/s'
velocityVar[:] = v
magVar = nc.createVariable( 'B', 'f4', (u'Time',) )
magVar.units = 'nT'
magVar[:] = np.array(outputs['By'])
densityVar = nc.createVariable( 'N', 'f4', (u'Time',) )
densityVar.units = 'cm-3'
densityVar[:] = np.array(outputs['Density'])
temperatureVar = nc.createVariable( 'T', 'f4', (u'Time',) )
tempKelvin = [ tempi/11600.0 for tempi in np.array(outputs['Temperature']) ]
temperatureVar.units = 'K'
temperatureVar[:] = tempKelvin
deltaPhiVar = nc.createVariable( 'Delta_angle', 'f4', (u'Time',) )
deltaPhiVar.units = 'degrees'
deltaPhiVar[:] = np.array(outputs['dphi'])
pdynVar = nc.createVariable( 'P_dyn', 'f4', (u'Time',) )
pdynVar.units = 'nPa'
pdynVar[:] = np.array(outputs['pdyn'])
qualFlagVar = nc.createVariable( 'QualityFlag', 'i4', (u'Time',) )
qualFlagVar[:] = np.array(outputs['qualFlag'])
globAttr = {'Source': 'Solar Wind Model', 'Created': str(datetime.now())}
nc.setncatts( globAttr )
nc.close()
# END OF PROCESS
os.system('mv namelist '+MYDIR)
os.system('mv fort.* '+MYDIR)
os.system('mv ddTime.txt '+MYDIR)
stop_time = myTime.time()
interval = stop_time - start_time
logger.info('Program terminated in ' + '{:.2f}'.format(interval) + ' seconds.')
def checkArgs(nbArgs, message):
if len(sys.argv) != nbArgs:
print(message)
sys.exit(2)
def initLogger(logfile):
logger = logging.getLogger()
logger.setLevel(logging.INFO)
fileFormatter = logging.Formatter('%(asctime)s :: [%(levelname)s] :: %(message)s')
fileHandler = RotatingFileHandler(logfile, 'a', 1000000, 1)
fileHandler.setLevel(logging.ERROR)
fileHandler.setFormatter(fileFormatter)
logger.addHandler(fileHandler)
consoleFormatter = logging.Formatter('[%(levelname)s] %(message)s')
consoleHandler = logging.StreamHandler()
consoleHandler.setLevel(logging.INFO)
consoleHandler.setFormatter(consoleFormatter)
logger.addHandler(consoleHandler)
return logger
def getXMLConfig(XMLFilename):
myXml = etree.parse(XMLFilename)
start = myXml.xpath("/MISSION/START")[0].text
stop = myXml.xpath("/MISSION/STOP")[0].text
plasmaVI = myXml.xpath("/MISSION/PLASMA_VI")[0].text
srcVI = myXml.xpath("/MISSION/SOURCE_VI")[0].text
srcR = myXml.xpath("/MISSION/SOURCE_R_PARAM")[0].text
srcLon = myXml.xpath("/MISSION/SOURCE_LON_PARAM")[0].text
tgtVI = myXml.xpath("/MISSION/TARGET_VI")[0].text
tgtR = myXml.xpath("/MISSION/TARGET_R_PARAM")[0].text
tgtLon = myXml.xpath("/MISSION/TARGET_LON_PARAM")[0].text
return start,stop,plasmaVI,srcVI,srcR,srcLon,tgtVI,tgtR,tgtLon
def getMarginDays(tgtName):
if tgtName == 'mercury':
distAU == 0.61
elif tgtName == 'venus':
distAU = 0.28
elif tgtName == 'mars':
distAU = 0.52
elif tgtName == 'jupiter':
distAU = 4.21
elif tgtName == 'saturn':
distAU = 8.54
elif tgtName == 'p67':
distAU = 4.0
elif tgtName == 'juno':
distAU = 6.0
else:
distAU = 9.0
return np.ceil( (distAU*150000000)/(200*24*3600) )
def shiftedDate(myDate, days=0, hours=0, minutes=0, seconds=0):
fmt = "%Y-%m-%dT%H:%M:%S"
d = datetime.strptime(myDate, fmt)
myShiftedDate = d + timedelta(days=days, hours=hours, minutes=minutes, seconds=seconds)
return myShiftedDate.strftime("%Y-%m-%dT%H:%M:%S")
def time2ddtime(myDate):
fmt = "%Y-%m-%dT%H:%M:%S"
d = datetime.strptime(myDate, fmt)
dddoy = '{:03}'.format(int(d.strftime("%j"))-1)
hour = '{:02}'.format(d.hour)
minute = '{:02}'.format(d.minute)
second = '{:02}'.format(d.second)
ddtime = str(d.year) + dddoy + hour + minute + second +'000'
return ddtime
def timeDelta(date1, date2):
fmt = "%Y-%m-%dT%H:%M:%S"
d1 = datetime.strptime(date1, fmt)
d2 = datetime.strptime(date2, fmt)
td = d2 - d1
intDays = td.days
intHours = td.seconds//3600
intMinutes = (td.seconds//60)%60
intSeconds = td.seconds-intHours*3600-intMinutes*60
return intDays, intHours, intMinutes, intSeconds
def DDTimeDelta(date1, date2):
interD, interH, interM, interS = timeDelta(date1, date2)
ddTimeDelta = '0000' + '{:03}'.format(interD) + '{:02}'.format(interH) + '{:02}'.format(interM) + '{:02}'.format(interS) + '000'
return ddTimeDelta
def ddTime2Datetime(ddTime):
myDatetime = []
for t in ddTime:
year = int(t[0:4])
day = int(t[4:7]) + 1
myDate = datetime(year, 1, 1) + timedelta(day - 1)
hour = int(t[7:9])
minute = int(t[9:11])
seconds = int(t[11:13])
ms = int(t[13:16])*1000
myTime = time(hour, minute,seconds,ms)
myDatetime.append( datetime.combine(myDate, myTime) )
return myDatetime
# ISO to J2000
def time2J2000(myDate, j2000):
fmt = "%Y-%m-%d %H:%M:%S"
d = int(datetime.strptime(myDate, fmt).strftime("%s"))
return str(d-j2000)
# make NAMELIST
def writeNamelist(directory,idprop,xmax1,xmin1):
with open('namelist', "w") as nl:
nl.write('&INPARA1\n')
nl.write(' idp_in=1\n')
nl.write(' idp_prop=1\n')
nl.write(' idp_out=1\n')
#nl.write(' angref(1)=0.,30.,60.,90.,120.,150.,180.,210.,240.,270.,300.,330.\n')
nl.write(' angref(1)=0.,60.,120.,180.,240.,300.\n')
nl.write(' idprop='+str(idprop)+'\n')
nl.write(' fnin=\''+directory+'/inputs.txt\'\n')
nl.write(' fnout=\''+directory+'/outputs.txt\'\n')
nl.write(' fdirtmp=\''+directory+'/\'\n')
nl.write(' instop=0\n')
nl.write(' dtr=90.\n')
nl.write(' touts=40.\n')
nl.write(' xmin1='+str(xmin1)+'\n')
nl.write(' xmax1='+str(xmax1)+'\n')
nl.write('/\n')
nl.write('&INPARA2\n')
nl.write(' npout=10\n')
nl.write(' bx0at1au=0.001d0\n')
nl.write(' gm=1.40\n')
nl.write('/\n')
nl.close()
if __name__ == '__main__':
main()