slasubs.java
14.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
//=== File Prolog =============================================================
// This code was developed by NASA, Goddard Space Flight Center, Code 588
// for the Scientist's Expert Assistant (SEA) project.
//
//--- Contents ----------------------------------------------------------------
// class slasubs
//
//--- Description -------------------------------------------------------------
//
//--- Notes -------------------------------------------------------------------
//
//--- Development History -----------------------------------------------------
//
// 07/16/98 J. Jones / 588
//
// Original implementation.
//
//--- DISCLAIMER---------------------------------------------------------------
//
// This software is provided "as is" without any warranty of any kind, either
// express, implied, or statutory, including, but not limited to, any
// warranty that the software will conform to specification, any implied
// warranties of merchantability, fitness for a particular purpose, and
// freedom from infringement, and any warranty that the documentation will
// conform to the program, or any warranty that the software will be error
// free.
//
// In no event shall NASA be liable for any damages, including, but not
// limited to direct, indirect, special or consequential damages, arising out
// of, resulting from, or in any way connected with this software, whether or
// not based upon warranty, contract, tort or otherwise, whether or not
// injury was sustained by persons or property or otherwise, and whether or
// not loss was sustained from or arose out of the results of, or use of,
// their software or services provided hereunder.
//
//=== End File Prolog =========================================================
/* File slasubs.c
*** Starlink subroutines by Patrick Wallace used by wcscon.c subroutines
*** November 4, 1996
*/
package jsky.coords;
import java.awt.geom.*;
public class slasubs {
// constants
/**
* defines the maximum disagreement for quantities
*/
private static final double TINY = 1.0E-6;
/* Right ascension in radians */
/* Declination in radians */
/* x,y,z unit vector (returned) */
/*
** slaDcs2c: Spherical coordinates to direction cosines.
**
** The spherical coordinates are longitude (+ve anticlockwise
** looking from the +ve latitude pole) and latitude. The
** Cartesian coordinates are right handed, with the x axis
** at zero longitude and latitude, and the z axis at the
** +ve latitude pole.
**
** P.T.Wallace Starlink 31 October 1993
*/
public static double[] slaDcs2c(double a, double b) {
double cosb = Math.cos(b);
double[] v = new double[3];
v[0] = Math.cos(a) * cosb;
v[1] = Math.sin(a) * cosb;
v[2] = Math.sin(b);
return v;
}
/* 3x3 Matrix */
/* Vector */
/* Result vector (returned) */
/*
** slaDmxv:
** Performs the 3-d forward unitary transformation:
** vector vb = matrix dm * vector va
**
** P.T.Wallace Starlink 31 October 1993
*/
public static double[] slaDmxv(double[][] dm, double[] va) {
int i, j;
double w;
double[] vw = new double[3], vb = new double[3];
/* Matrix dm * vector va -> vector vw */
for (j = 0; j < 3; j++) {
w = 0.0;
for (i = 0; i < 3; i++) {
w += dm[j][i] * va[i];
}
vw[j] = w;
}
/* Vector vw -> vector vb */
for (j = 0; j < 3; j++) {
vb[j] = vw[j];
}
return vb;
}
/* x,y,z vector */
/* Right ascension in radians */
/* Declination in radians */
/*
** slaDcc2s:
** Direction cosines to spherical coordinates.
**
** Returned:
** *a,*b double spherical coordinates in radians
**
** The spherical coordinates are longitude (+ve anticlockwise
** looking from the +ve latitude pole) and latitude. The
** Cartesian coordinates are right handed, with the x axis
** at zero longitude and latitude, and the z axis at the
** +ve latitude pole.
**
** If v is null, zero a and b are returned.
** At either pole, zero a is returned.
**
** P.T.Wallace Starlink 31 October 1993
*/
public static Point2D.Double slaDcc2s(double[] v) {
double x, y, z, r;
x = v[0];
y = v[1];
z = v[2];
r = Math.sqrt(x * x + y * y);
Point2D.Double result = new Point2D.Double();
result.x = (r != 0.0) ? Math.atan2(y, x) : 0.0;
result.y = (z != 0.0) ? Math.atan2(z, r) : 0.0;
return result;
}
/* 2pi */
public static final double D2PI = 6.2831853071795864769252867665590057683943387987502;
/*
** slaDranrm:
** Normalize angle into range 0-2 pi.
** The result is angle expressed in the range 0-2 pi (double).
** Defined in slamac.h: D2PI
**
** P.T.Wallace Starlink 30 October 1993
*/
/* angle in radians */
public static double slaDranrm(double angle) {
double w;
w = Math.IEEEremainder(angle, D2PI); // was fmod
return (w >= 0.0) ? w : w + D2PI;
}
/*
** slaDeuler:
** Form a rotation matrix from the Euler angles - three successive
** rotations about specified Cartesian axes.
**
** A rotation is positive when the reference frame rotates
** anticlockwise as seen looking towards the origin from the
** positive region of the specified axis.
**
** The characters of order define which axes the three successive
** rotations are about. A typical value is 'zxz', indicating that
** rmat is to become the direction cosine matrix corresponding to
** rotations of the reference frame through phi radians about the
** old z-axis, followed by theta radians about the resulting x-axis,
** then psi radians about the resulting z-axis.
**
** The axis names can be any of the following, in any order or
** combination: x, y, z, uppercase or lowercase, 1, 2, 3. Normal
** axis labelling/numbering conventions apply; the xyz (=123)
** triad is right-handed. Thus, the 'zxz' example given above
** could be written 'zxz' or '313' (or even 'zxz' or '3xz'). Order
** is terminated by length or by the first unrecognised character.
**
** Fewer than three rotations are acceptable, in which case the later
** angle arguments are ignored. Zero rotations produces a unit rmat.
**
** P.T.Wallace Starlink 17 November 1993
*/
/* specifies about which axes the rotations occur */
/* 1st rotation (radians) */
/* 2nd rotation (radians) */
/* 3rd rotation (radians) */
/* 3x3 Rotation matrix (returned) */
public static double[][] slaDeuler(String order, double phi, double theta, double psi) {
int j, i, l, n, k;
double result[][] = new double[3][3], rotn[][] = new double[3][3], angle, s, c, w, wm[][] = new double[3][3];
char axis;
/* Initialize result matrix */
for (j = 0; j < 3; j++) {
for (i = 0; i < 3; i++) {
result[i][j] = (i == j) ? 1.0 : 0.0;
}
}
/* Establish length of axis string */
l = order.length();
/* Look at each character of axis string until finished */
for (n = 0; n < 3; n++) {
if (n <= l) {
/* Initialize rotation matrix for the current rotation */
for (j = 0; j < 3; j++) {
for (i = 0; i < 3; i++) {
rotn[i][j] = (i == j) ? 1.0 : 0.0;
}
}
/* Pick up the appropriate Euler angle and take sine & cosine */
switch (n) {
case 0:
default:
angle = phi;
break;
case 1:
angle = theta;
break;
case 2:
angle = psi;
break;
}
s = Math.sin(angle);
c = Math.cos(angle);
/* Identify the axis */
axis = order.charAt(n);
if ((axis == 'X') || (axis == 'x') || (axis == '1')) {
/* Matrix for x-rotation */
rotn[1][1] = c;
rotn[1][2] = s;
rotn[2][1] = -s;
rotn[2][2] = c;
} else if ((axis == 'Y') || (axis == 'y') || (axis == '2')) {
/* Matrix for y-rotation */
rotn[0][0] = c;
rotn[0][2] = -s;
rotn[2][0] = s;
rotn[2][2] = c;
} else if ((axis == 'Z') || (axis == 'z') || (axis == '3')) {
/* Matrix for z-rotation */
rotn[0][0] = c;
rotn[0][1] = s;
rotn[1][0] = -s;
rotn[1][1] = c;
} else {
/* Unrecognized character - fake end of string */
l = 0;
}
/* Apply the current rotation (matrix rotn x matrix result) */
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
w = 0.0;
for (k = 0; k < 3; k++) {
w += rotn[i][k] * result[k][j];
}
wm[i][j] = w;
}
}
for (j = 0; j < 3; j++) {
for (i = 0; i < 3; i++) {
result[i][j] = wm[i][j];
}
}
}
}
return result;
}
/*
* Nov 4 1996 New file
*/
/**
* slDE2H code from Starlink adopted to Java for testing
* EquatorialToHorizonPositionMap class against
* Notes:
* <p/>
* 1) All the arguments are angles in radians.
* <p/>
* 2) Azimuth is returned in the range 0-2pi; north is zero,
* and east is +pi/2. Elevation is returned in the range
* +/-pi/2.
* <p/>
* 3) The latitude must be geodetic. In critical applications,
* corrections for polar motion should be applied.
* <p/>
* 4) In some applications it will be important to specify the
* correct type of hour angle and declination in order to
* produce the required type of azimuth and elevation. In
* particular, it may be important to distinguish between
* elevation as affected by refraction, which would
* require the "observed" HA,Dec, and the elevation
* in vacuo, which would require the "topocentric" HA,Dec.
* If the effects of diurnal aberration can be neglected, the
* "apparent" HA,Dec may be used instead of the topocentric
* HA,Dec.
* <p/>
* 5) No range checking of arguments is carried out.
* <p/>
* 6) In applications which involve many such calculations, rather
* than calling the present routine it will be more efficient to
* use inline code, having previously computed fixed terms such
* as sine and cosine of latitude, and (for tracking a star)
* sine and cosine of declination.
*
* @param HA double containing the hour angle in radians
* @param DEC double containing the declination angle (rad.)
* @param PHI double containing the observatory latitude (rad.)
* @return AZEL double[2] array containing the
* 0: azimuth angle (radians)
* 1: elevation angle (radians)
*/
public static double[] slDE2H(double HA, double DEC, double PHI) {
double[] AZEL = new double[2];
// Useful trig functions
double SH = Math.sin(HA);
double CH = Math.cos(HA);
double SD = Math.sin(DEC);
double CD = Math.cos(DEC);
double SP = Math.sin(PHI);
double CP = Math.cos(PHI);
// Az,El as x,y,z
double X = -CH * CD * SP + SD * CP;
double Y = -SH * CD;
double Z = CH * CD * CP + SD * SP;
// To spherical
double R = Math.sqrt(X * X + Y * Y);
double A;
if (R == 0.) {
A = 0.;
} else {
A = Math.atan2(Y, X);
}
if (A < 0.0) {
A = A + 2. * Math.PI;
}
AZEL[0] = A;
AZEL[1] = Math.atan2(Z, R);
return AZEL;
}
/**
* Given the direction cosines of a star and of the
* tangent point, determine the star's tangent-plane
* coordinates.
* <p/>
* (double precision)
* <p/>
* Given:
* V d(3) direction cosines of star
* V0 d(3) direction cosines of tangent point
* <p/>
* Returned:
* XI,ETA d tangent plane coordinates of star
* J i status: 0 = OK
* 1 = error, star too far from axis
* 2 = error, antistar on tangent plane
* 3 = error, antistar too far from axis
* <p/>
* Notes:
* <p/>
* 1 If vector V0 is not of unit length, or if vector V is of zero
* length, the results will be wrong.
* <p/>
* 2 If V0 points at a pole, the returned XI,ETA will be based on the
* arbitrary assumption that the RA of the tangent point is zero.
* <p/>
* 3 This routine is the Cartesian equivalent of the routine slDSTP.
* <p/>
* P.T.Wallace Starlink 27 November 1996
* <p/>
* Copyright (C) 1996 Rutherford Appleton Laboratory
* Copyright (C) 1995 Association of Universities for Research in
* Astronomy Inc.
*/
public static double[] slDVTP(double[] V, double[] V0) {
int J; // identifies errors
double X = V[0];
double Y = V[1];
double Z = V[2];
double X0 = V0[0];
double Y0 = V0[1];
double Z0 = V0[2];
double R2 = X0 * X0 + Y0 * Y0;
double R = Math.sqrt(R2);
if (R == 0.) {
R = 1E-20;
X0 = R;
}
double W = X * X0 + Y * Y0;
double D = W + Z * Z0;
if (D > TINY) {
J = 0;
} else if (D >= 0.) {
J = 1;
D = TINY;
} else if (D > -TINY) {
J = 2;
D = -TINY;
} else {
J = 3;
}
D = D * R;
double XI = (Y * X0 - X * Y0) / D;
double ETA = (Z * R2 - Z0 * W) / D;
if (J != 0) {
System.out.println("ERROR: From slDVTP, J = " + J);
}
return new double[]{XI, ETA};
}
}