ImageLookup.java
16.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
/*
* ESO Archive
*
* $Id: ImageLookup.java,v 1.2 2009/02/20 23:10:11 abrighto Exp $
*
* who when what
* -------------- ---------- ----------------------------------------
* Allan Brighton 1999/11/17 Created
*/
package jsky.image;
import jsky.image.operator.*;
import java.awt.image.DataBuffer;
import javax.media.jai.*;
import java.awt.*;
/**
* Implements various image scaling operations that
* reduce the source image data to byte range. The source image
* data is first converted to ushort range, if necessary, and then
* a lookup table is used to convert to byte range, based on
* the algorithm chosen.
*
* @author Allan Brighton
* @version $Revision: 1.2 $
*/
public class ImageLookup {
/**
* assume 256 colors in the final image
*/
protected static final int NCOLORS = 256;
/**
* minimum color value used in lookup table
*/
protected static final int MIN_COLOR = 0;
/**
* maximum color value used in lookup table
*/
protected static final int MAX_COLOR = 255;
/**
* size of a lookup table for full short range
*/
protected static final int LOOKUP_SIZE = 65536;
/**
* minimum image value allowed
*/
protected static final int LOOKUP_MIN = -32768;
/**
* maximum image value allowed
*/
protected static final int LOOKUP_MAX = 32767;
/**
* Constant to pass to the scale method for linear scaling
*/
public static final int LINEAR_SCALE = 0;
/**
* Constant to pass to the scale method for square root scaling
*/
public static final int SQRT_SCALE = 1;
/**
* Constant to pass to the scale method for logarithmic scaling
*/
public static final int LOG_SCALE = 2;
/**
* Constant to pass to the scale method for histogram equalization scaling
*/
public static final int HIST_EQ = 3;
/**
* use to convert short data to byte using the selected algorithm
*/
protected LookupTableJAI lookupTable;
/**
* array used by lookup table
*/
protected byte[] lookupArray;
/**
* size of the lookup table
*/
protected int lookupSize;
/**
* lookup table offset (subtract from image value before lookup)
*/
protected int lookupOffset;
/**
* data type of the image
*/
protected int dataType;
/**
* low cut value scaled to ushort range
*/
protected int scaledLowCut;
/**
* high cut value scaled to ushort range
*/
protected int scaledHighCut;
/**
* default constructor
*/
public ImageLookup() {
}
/**
* Return the generated lookup table
*/
public LookupTableJAI getLookupTable() {
return lookupTable;
}
/**
* Scale the given image to short range, if needed, and return the new image.
* The given low and high cut values are used to scale int and floating point
* images to within short range so that a 64K lookup table may be used to scale
* the image further down to byte range for display, using a chosen algorithm.
* As a side effect, this method also notes the lookup table size and offsets,
* which are used to create the lookup table later.
*/
protected PlanarImage scaleToShortRange(PlanarImage im, double lowCut, double highCut) {
dataType = im.getSampleModel().getDataType();
lookupSize = LOOKUP_SIZE;
lookupOffset = 0; // subtracted from image value before lookup
scaledLowCut = (int) lowCut;
scaledHighCut = (int) highCut;
switch (dataType) {
case DataBuffer.TYPE_BYTE:
lookupOffset = -128; // This is subtracted from each image value before lookup
break;
case DataBuffer.TYPE_USHORT:
break;
case DataBuffer.TYPE_SHORT:
lookupOffset = LOOKUP_MIN; // shift to unsigned short range (result must be int)
break;
case DataBuffer.TYPE_INT:
case DataBuffer.TYPE_FLOAT:
case DataBuffer.TYPE_DOUBLE:
double scale = lookupSize / (highCut - lowCut); // scale to short range
lookupOffset = LOOKUP_MIN; // shift to unsigned short range (result must be int)
double bias = -((lowCut + highCut) * 0.5) * scale;
scaledLowCut = (int) (lowCut * scale + bias);
scaledHighCut = (int) (highCut * scale + bias);
// specify that the datatype of the rescaled image should be short
RenderingHints hint = ImageUtil.getSampleModelHint(im.getTileWidth(),
im.getTileHeight(),
DataBuffer.TYPE_SHORT);
im = ImageOps.rescale(im, scale, bias, hint);
break;
default:
throw new RuntimeException("Unsupported image data type: " + dataType);
}
scaledLowCut -= lookupOffset;
scaledHighCut -= lookupOffset;
return im;
}
/**
* Create an empty lookup table for the given image and scale the
* image to unsigned short range, if necessary, so that we can use
* a lookup table of at most 65536 bytes.
* Note that we could base the lookup table size on the range of
* image values, but that would require knowing the exact range,
* making it impossible to estimate it efficiently.
* <p/>
* The return image may have been scaled to ushort range, if needed
* (This is done for int and floating point images).
*/
protected PlanarImage makeLookupTable(PlanarImage im, double lowCut, double highCut) {
im = scaleToShortRange(im, lowCut, highCut);
lookupArray = new byte[lookupSize];
lookupTable = new LookupTableJAI(lookupArray, lookupOffset);
return im;
}
/**
* Set the values in the lookup table from imageVal to imageLim to the
* given pixel value return the new imageVal index.
*/
protected int fillLookupTable(int imageVal, int imageLim, int pixVal) {
// limit to size of lookup table
if (imageLim > lookupSize) {
imageLim = lookupSize;
}
while (imageVal < imageLim) {
lookupArray[imageVal++] = (byte) pixVal;
}
return imageVal;
}
/**
* Install a lookup table to perform a color scale operation on the image using the given cut levels
* and return the resulting image. Floating point images are first scaled to short range before
* applying the lookup table.
* This method only prepares the table and scales floating point images to the correct range if needed.
* To apply the lookup table to the image, use can use the ImageOps.lookup() method.
*
* @param im the input image (for FITS, after applying BZERO and BSCALE, if needed)
* @param scaleAlgorithm on of the constants defined in this class (LINEAR_SCALE, SQRT_SCALE, LOG_SCALE)
* @param lowCut ignore image pixel values below this value
* @param highCut ignore image pixel values above this value
*/
public PlanarImage scale(PlanarImage im, int scaleAlgorithm, double lowCut, double highCut) {
return scale(im, scaleAlgorithm, lowCut, highCut, null, null);
}
/**
* Install a lookup table to perform a color scale operation on the image using the given cut levels
* and return the resulting image. Floating point images are first scaled to short range before
* applying the lookup table.
* This method only prepares the table and scales floating point images to the correct range if needed.
* To apply the lookup table to the image, use can use the ImageOps.lookup() method.
*
* @param im the input image (for FITS, after applying BZERO and BSCALE, if needed)
* @param scaleAlgorithm on of the constants defined in this class (LINEAR_SCALE, SQRT_SCALE, LOG_SCALE, HIST_EQ)
* @param lowCut ignore image pixel values below this value
* @param highCut ignore image pixel values above this value
* @param roi if set, this describes the region of interest to use for histogram equalization.
* @param imageHistogram if set, this is used along with the ROI to generate the image histogram
*/
public PlanarImage scale(PlanarImage im, int scaleAlgorithm, double lowCut, double highCut,
ROI roi, ImageHistogram imageHistogram) {
switch (scaleAlgorithm) {
case LINEAR_SCALE:
return linearScale(im, lowCut, highCut);
case SQRT_SCALE:
return sqrtScale(im, lowCut, highCut);
case LOG_SCALE:
return logScale(im, lowCut, highCut);
case HIST_EQ:
if (roi != null && imageHistogram != null) {
return histEqScale(im, lowCut, highCut, roi, imageHistogram);
}
default:
return linearScale(im, lowCut, highCut);
}
}
/**
* Install a lookup table to perform a linear scale operation on
* the image using the given cut levels and return the resulting
* image. Floating point images are first scaled to short range
* before applying the lookup table. This method only prepares
* the table and scales floating point images to the correct range
* if needed. To apply the lookup table to the image, you can use
* the ImageOps.lookup() method.
*/
public PlanarImage linearScale(PlanarImage im, double lowCut, double highCut) {
im = makeLookupTable(im, lowCut, highCut);
int imageVal = scaledLowCut;
// input range / output range yields input cells per output cell
double scale = (double) (scaledHighCut - scaledLowCut + 1) / NCOLORS;
// upper bound is ideal edge between colors (offset for rounding)
double upperBound = scaledLowCut + 0.5;
int level = MIN_COLOR;
int pixVal = level;
int imageLim;
while (level++ < MAX_COLOR) {
upperBound += scale;
imageLim = (int) upperBound;
imageVal = fillLookupTable(imageVal, imageLim, pixVal);
if (imageLim > lookupSize) {
break;
}
pixVal = level;
}
// fill in at top if short of highCut
fillLookupTable(imageVal, lookupSize, pixVal);
return im;
}
/**
* Install a lookup table to perform a sqare root scale operation
* on the image using the given cut levels and return the
* resulting image. Floating point images are first scaled to
* short range before applying the lookup table. This method only
* prepares the table and scales floating point images to the
* correct range if needed. To apply the lookup table to the
* image, use can use the ImageOps.lookup() method.
*/
public PlanarImage sqrtScale(PlanarImage im, double lowCut, double highCut) {
im = makeLookupTable(im, lowCut, highCut);
int imageVal = scaledLowCut;
int level = 0;
int pixVal = 0;
int imageLim;
double range = scaledHighCut - scaledLowCut + 1;
double expo = 10.; // XXX should be a parameter
while (level++ < MAX_COLOR) {
imageLim = scaledLowCut + (int) ((Math.pow(((double) level) / MAX_COLOR, expo) * range) + 0.5);
if (imageLim > scaledHighCut) {
imageLim = scaledHighCut;
}
imageVal = fillLookupTable(imageVal, imageLim, pixVal);
pixVal = level;
}
// fill in at top if short of highCut
fillLookupTable(imageVal, lookupSize, pixVal);
return im;
}
/**
* Install a lookup table to perform a logarithmic scale operation
* on the image using the given cut levels and return the
* resulting image. Floating point images are first scaled to
* short range before applying the lookup table. This method only
* prepares the table and scales floating point images to the
* correct range if needed. To apply the lookup table to the
* image, use can use the ImageOps.lookup() method.
*/
public PlanarImage logScale(PlanarImage im, double lowCut, double highCut) {
im = makeLookupTable(im, lowCut, highCut);
int imageVal = scaledLowCut;
int level = 0;
int pixVal = 0;
int imageLim;
double range = scaledHighCut - scaledLowCut + 1;
double expo = 10.; // XXX should be a parameter
double scale;
// base distribution on e**n as n goes from 0 to expo
if (expo >= 0) {
scale = range / (Math.exp(expo) - 1);
} else {
// negative exponents allocate more levels toward the high values
scale = range / (1.0 - Math.exp(expo));
}
while (level++ < MAX_COLOR) {
if (expo > 0) {
imageLim = scaledLowCut + (int) (((Math.exp((((double) level) / MAX_COLOR) * expo) - 1) * scale) + 0.5);
} else {
imageLim = scaledLowCut + (int) ((1. - Math.exp((((double) level) / MAX_COLOR) * expo) * scale) + 0.5);
}
if (imageLim > scaledHighCut) {
imageLim = scaledHighCut;
}
imageVal = fillLookupTable(imageVal, imageLim, pixVal);
pixVal = level;
}
// fill in at top if short of highCut
fillLookupTable(imageVal, lookupSize, pixVal);
return im;
}
/**
* Install a lookup table to perform a histogram equalization color
* scale operation on the image using the given cut levels and ROI and
* return the resulting image.
* Floating point images are first scaled to short range
* before applying the lookup table. This method only prepares
* the table and scales floating point images to the correct range
* if needed. To apply the lookup table to the image, use can use
* the ImageOps.lookup() method.
*
* @param im the input image (for FITS, after applying BZERO and BSCALE, if needed)
* @param lowCut ignore image pixel values below this value
* @param highCut ignore image pixel values above this value
* @param roi if set, this describes the region of interest to use for histogram equalization.
* @param imageHistogram if set, this is used along with the ROI to generate the image histogram
*/
public PlanarImage histEqScale(PlanarImage im, double lowCut, double highCut,
ROI roi, ImageHistogram imageHistogram) {
double n = highCut - lowCut;
if (n < NCOLORS) {
return linearScale(im, lowCut, highCut);
}
int numBins = 2048;
if (n < numBins) {
numBins = (int) n;
}
PlanarImage shortIm = makeLookupTable(im, lowCut, highCut);
Histogram histogram = imageHistogram.getHistogram(im, numBins, lowCut, highCut,
roi,
ImageProcessor.DEFAULT_X_PERIOD,
ImageProcessor.DEFAULT_Y_PERIOD);
// find out the maximum number of pixels in a bin
int[] bins = histogram.getBins(0);
// int binWidth = (scaledHighCut - scaledLowCut) / numBins;
// if (binWidth == 0) {
// binWidth = 1;
// }
int maxCount = 0;
int totalCount = 0;
for (int i = 0; i < numBins; i++) {
totalCount += bins[i];
if (bins[i] > maxCount) {
maxCount = bins[i];
}
}
if (maxCount == 0) {
return shortIm;
}
// distribute the color values in the lookup table based on the histogram
int imageVal = scaledLowCut;
double scale = (double) numBins / NCOLORS;
double upperBound = scaledLowCut + 0.5;
int level = MIN_COLOR;
int pixVal = level;
int imageLim;
int binIndex = 0;
int pixelsPerColor = totalCount / NCOLORS;
//System.out.println("XXX lookup: binWidth = " + binWidth + ", maxCount = " + maxCount);
//System.out.println("XXX lookup: scaledLowCut = " + scaledLowCut + ", scaledHighCut = " + scaledHighCut);
//System.out.println("XXX lookup: lowCut = " + lowCut + ", highCut = " + highCut);
while (level++ < MAX_COLOR) {
int binCount = 0;
do {
binCount += bins[binIndex];
//System.out.println("XXX lookup: bins[" + binIndex + "] = " + bins[binIndex]);
upperBound += scale;
if (binCount >= pixelsPerColor) {
break;
}
} while (binIndex++ < numBins);
imageLim = (int) upperBound;
//System.out.println("XXX lookup: " + imageVal + " to " + imageLim + " = " + pixVal);
imageVal = fillLookupTable(imageVal, imageLim, pixVal);
if (imageLim > lookupSize) {
break;
}
pixVal = level;
}
// fill in at top if short of highCut
fillLookupTable(imageVal, lookupSize, pixVal);
return shortIm;
}
}