ImageProcessor.java 35.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
/*
 * ESO Archive
 *
 * $Id: ImageProcessor.java,v 1.3 2009/03/04 11:13:45 abrighto Exp $
 *
 * who             when        what
 * --------------  ----------  ----------------------------------------
 * Allan Brighton  1999/11/17  Created
 */

package jsky.image;

import com.sun.media.jai.codec.ImageCodec;

import java.awt.RenderingHints;
import java.awt.geom.Rectangle2D;
import java.awt.image.DataBuffer;
import java.awt.image.SampleModel;
import java.awt.image.IndexColorModel;

import javax.media.jai.Histogram;
import javax.media.jai.Interpolation;
import javax.media.jai.InterpolationNearest;
import javax.media.jai.JAI;
import javax.media.jai.LookupTableJAI;
import javax.media.jai.PlanarImage;
import javax.media.jai.ROI;
import javax.media.jai.ROIShape;
import javax.media.jai.operator.TransposeDescriptor;
import javax.swing.event.ChangeListener;
import javax.swing.event.EventListenerList;

import jsky.image.fits.codec.FITSCodec;
import jsky.image.fits.codec.FITSImage;
import jsky.image.operator.CutLevelDescriptor;
import jsky.image.operator.ImageOps;
import jsky.image.operator.MinMaxDescriptor;
import jsky.util.gui.DialogUtil;

/**
 * Responsible for processing images before they are
 * displayed, including setting cut levels and manipulating colors
 * and lookup tables.
 *
 * @version $Revision: 1.3 $
 * @author Allan Brighton
 */
public class ImageProcessor {

    /** The default number of X pixels to skip for histograms and statistics */
    public static final int DEFAULT_X_PERIOD = 4;

    /** The default number of Y pixels to skip for histograms and statistics */
    public static final int DEFAULT_Y_PERIOD = 4;

    // The original source image
    private PlanarImage _sourceImage;

    // The original source image after applying BZERO and BSCALE, if needed
    private PlanarImage _rescaledSourceImage;

    // For grayscale images: The source image, scaled to short range (if needed),
    // so that a cut levels lookup table may be applied
    private PlanarImage _shortImage;

    // The color image, after applying any necessary transformations
    // (scale, rotate, translate, ...)
    private PlanarImage _displayImage;

    // If set, this is the region of interest in the image (normally the currently visible area)
    private ROI _roi = null;

    // If set, this is the region of interest in the image (normally the currently visible area)
    private Rectangle2D.Double _region;

    // Used to get a histogram of the image data in the visible area.
    private ImageHistogram _imageHistogram = new ImageHistogram();

    // The number of bands in the source image
    private int _numBands;

    // The object managing the image colormap
    private ImageColormap _colormap = new ImageColormap();

    // min and max pixel values
    private double _minValue = 0., _maxValue = 0.;

    // low and high image cut levels
    private double _lowCut = 0., _highCut = 0.;

    // The number of X pixels to skip for histograms and statistics
    private int _xPeriod = DEFAULT_X_PERIOD;

    // The number of Y pixels to skip for histograms and statistics
    private int _yPeriod = DEFAULT_Y_PERIOD;

    // list of listeners for change events
    private EventListenerList _listenerList = new EventListenerList();

    // Generic event fired whenever the image is updated
    private ImageChangeEvent _imageChangeEvent = new ImageChangeEvent(this);

    // True if the user has set the cut levels by hand (then we don't change them)
    private boolean _userSetCutLevels = false;

    // Rotation angle in radians
    private double _angle = 0.0;

    // if true, flip the X axis
    private boolean _flipX = false;

    // if true, flip the Y axis
    private boolean _flipY = false;

    // if true, reverse the meaning of flipY (for FITS images that were not flipped while reading)
    private boolean _reverseY = false;

    // Set to true if the Y axis of the (FITS) image was inverted already while reading.
    private boolean _invertedYAxis = false;

    // type of interpolation to use for rotating
    private Interpolation _interpolation = new InterpolationNearest();

    // Used to reduce image data to byte range
    private LookupTableJAI _scaleLookupTable;

    // Algorithm used to scale image to byte range
    private int _scaleAlgorithm = ImageLookup.LINEAR_SCALE;

    // A name for this object (for diagnostic purposes)
    private String _name = "";

    // Value for bad pixels
    private float _blank = Float.NaN;

    // Value of the DATAMIN property, if defined
    private double _dataMin = 0.;

    // Value of the DATAMAX property, if defined
    private double _dataMax = 0.;

    // Value of the DATAMEAN property, if defined
    private double _dataMean = 0.;

    // Value of the BZERO property, if defined
    private double _bzero = 0.;

    // Value of the BSCALE property, if defined
    private double _bscale = 1.;

    // Value of the BITPIX property, if defined
    private double _bitpix = 1.;

    // Set to true if something was changed and a call to update() is needed.
    private boolean _updatePending = false;


    // static initializer
    static {
        // make sure we have the correct JAI version
        String expectedJAIVersion = "jai-1_1";
        try {
            // this method is only available starting with jai-1_1 - allow newer versions
            JAI.getBuildVersion();
        } catch (NoSuchMethodError e) {
            DialogUtil.error("Error: Incompatible JAI (Java Advanced Imaging) version. Expected "
                             + expectedJAIVersion);
            System.exit(1);
        }

        // add FITS support
        ImageCodec.registerCodec(new FITSCodec());

        // used in some cases to get the min and max pixel values
        MinMaxDescriptor.register();

        // used to calculate the image cut levels
        CutLevelDescriptor.register();
    }


    /**
     * Default constructor.
     *
     * Call setSourceImage(PlanarImage, Rectangle2D.Double) to set the image to process
     * and the region of interest.
     */
    public ImageProcessor() {
    }


    /**
     * Constructor.
     *
     * @param sourceImage The source image to process.
     * @param region the region of interest in the image (usually the visible area)
     *               in the coordinates of the source image (values will be clipped).
     */
    public ImageProcessor(PlanarImage sourceImage, Rectangle2D.Double region) {
        setSourceImage(sourceImage, region);
    }


    /** Returns the current source image. */
    public PlanarImage getSourceImage() {
        return _sourceImage;
    }


    /** Returns the current source image, after applying BZERO and BSCALE, if needed. */
    public PlanarImage getRescaledSourceImage() {
        return _rescaledSourceImage;
    }


    /**
     * Set the source image and copy all of the image processing settings from the
     * given ImageProcessor object. This method may be used, for example, for a pan window
     * that displays a separate, prescaled image, that should have the same
     * image processing settings as the main image.
     */
    public void setSourceImage(PlanarImage sourceImage, ImageProcessor imageProcessor) {
        this._sourceImage = sourceImage;
        _updatePending = true;

        if (_sourceImage == null) {
            _displayImage = _rescaledSourceImage = _sourceImage;
            return;
        }

        SampleModel sampleModel = _sourceImage.getSampleModel();
        if (sampleModel == null) {
            return;
        }
        _numBands = sampleModel.getNumBands();

        // copy the settings from the master image processor
        if (imageProcessor != this)
            copySettings(imageProcessor);

        // apply bscale and bzero if needed
        _rescaledSourceImage = rescaleImage(_sourceImage);

        // get image into short range
        ImageLookup imageLookup = new ImageLookup();
        _shortImage = imageLookup.scaleToShortRange(_rescaledSourceImage, _lowCut, _highCut);
    }


    /**
     * Set the source image and the region of interest and perform any requested
     * image processing to make the display image.
     *
     * @param region the region of interest in the image (usually the visible area)
     *               in the coordinates of the source image.
     */
    public void setSourceImage(PlanarImage sourceImage, Rectangle2D.Double region) {
        this._sourceImage = sourceImage;
        _updatePending = true;

        if (_sourceImage == null) {
            _displayImage = _rescaledSourceImage = _sourceImage;
            return;
        }

        SampleModel sampleModel = _sourceImage.getSampleModel();
        if (sampleModel == null) {
            return;
        }

        _numBands = sampleModel.getNumBands();
        _minValue = _maxValue = 0.;

        // if it is a FITS file, reverse the Y axis
        // (XXX should be done in FITS codec? But transpose is accelerated in JAI)
        Object o = _sourceImage.getProperty("#fits_image");

        _reverseY = false;
        _invertedYAxis = false;
        if (o instanceof FITSImage) {
            FITSImage fitsImage = (FITSImage) o;
            _invertedYAxis = fitsImage.isYFlipped();
            _reverseY = !_invertedYAxis;

            // check for BZERO and BSCALE keywords and, if needed, apply the values
            _bzero = fitsImage.getKeywordValue("BZERO", 0.);
            _bscale = fitsImage.getKeywordValue("BSCALE", 1.);
            _bitpix = fitsImage.getKeywordValue("BITPIX", 0);
            _rescaledSourceImage = rescaleImage(_sourceImage);

            // check for grayscale images
            // (Note: GIF images can have _numBands == 1 and IndexColorModel, which is already color)
            if (_numBands == 1 && ! (_sourceImage.getColorModel() instanceof IndexColorModel)) {
                // get value of blank or bad pixels
                _blank = fitsImage.getKeywordValue("BLANK", Float.NaN);
                if (Float.isNaN(_blank))
                    _blank = fitsImage.getKeywordValue("BADPIXEL", Float.NaN);
                if (!Float.isNaN(_blank)) {
                    // assume blank value needs to be rescaled in the same way as the image
                    // (the resulting image is float data, so make sure the "blank" value is treated the same)
                    _blank = _blank * (float) _bscale + (float) _bzero;
                }

                // min/max pixel values, if specified in image properties
                _dataMin = fitsImage.getKeywordValue("DATAMIN", 0.);
                _dataMax = fitsImage.getKeywordValue("DATAMAX", 0.);
                _dataMean = fitsImage.getKeywordValue("DATAMEAN", Double.NaN);
            }
        } else {
            _bzero = 0.;
            _bscale = 1.;
            _bitpix = 0;
            _blank = Float.NaN;
            _dataMin = 0.;
            _dataMax = 0.;
            _dataMean = Double.NaN;
            _rescaledSourceImage = _sourceImage;
        }

        // check for grayscale images...
        if (_numBands == 1 && ! (_sourceImage.getColorModel() instanceof IndexColorModel)) {
            // set the image cut levels, preserving user's choice if needed
            if (!_userSetCutLevels) {
                autoSetCutLevels(region);
//                // 95% seems to be a better default than median filter
//                autoSetCutLevels(95., region);
            } else {
                setRegionOfInterest(region);
                setCutLevels(_lowCut, _highCut, true);
            }
        }
    }


    /** Returns the current display image. */
    public PlanarImage getDisplayImage() {
        return _displayImage;
    }

    /**
     * Process the source image, adding a lookup table and setting appropriate
     * cut levels where needed to improve visibility.
     */
    public void update() {
        if (!_updatePending)
            return;
        _updatePending = false;

        if (_sourceImage == null) {
            _displayImage = _rescaledSourceImage = _sourceImage;
            // notify listeners of changes in the image
            fireChange(_imageChangeEvent);
            return;
        }

        if (_rescaledSourceImage == null) {
            return;
        }

        try {
            PlanarImage colorImage;
            if (_numBands == 1 && ! (_sourceImage.getColorModel() instanceof IndexColorModel)) {
                if (_shortImage == null || _scaleLookupTable == null) {
                    return;
                }
                // perform a lookup operation to scale short to byte range.
                // (_shortImage should have been already prepared when cut levels were set)
                PlanarImage byteImage = ImageOps.lookup(_shortImage, _scaleLookupTable);

                // add a color RGB lookup table so we can manipulate the image colors
                colorImage = ImageOps.lookup(byteImage, _colormap.getColorLookupTable());
            } else {
                // source image is already color
                colorImage = _rescaledSourceImage;
            }

            // apply flipX, flipY, if needed
            _displayImage = setTrans(colorImage);

            // apply rotation, if needed
            _displayImage = rotate(_displayImage);
        } catch (Exception e) {
            e.printStackTrace();
            return;
        }

        //System.out.println("XXX ImageProcessor: " + _name + ": updateImage()");

        // notify listeners of changes in the image
        fireChange(_imageChangeEvent);
    }

    /**
     * Rescale the given image, if needed, using the given factor and offset and return the result.
     * The resulting image is converted to float, to avoid loosing data.
     */
    protected PlanarImage rescaleImage(PlanarImage im) {
        if (_bscale != 1. || _bzero != 0.) {
            RenderingHints hints = ImageUtil.getSampleModelHint(im.getTileWidth(),
                                                                im.getTileHeight(),
                                                                DataBuffer.TYPE_FLOAT);
            return ImageOps.rescale(im, _bscale, _bzero, hints);
        }
        return im;
    }


    /**
     * Perform a transpose operation on the given image using the current
     * rotate, flipX and flipY settings and return the resulting image.
     */
    protected PlanarImage setTrans(PlanarImage im) {
        if (_flipX)
            im = ImageOps.transpose(im, TransposeDescriptor.FLIP_HORIZONTAL);
        if (_flipY != _reverseY) {
            im = ImageOps.transpose(im, TransposeDescriptor.FLIP_VERTICAL);
        }
        return im;
    }


    /**
     * Rotate the image about the center by the specified angle (in radians).
     */
    protected PlanarImage rotate(PlanarImage im) {
        if (_angle != 0.0F) {
            double x = _sourceImage.getWidth() / 2.0;
            double y = _sourceImage.getHeight() / 2.0;
            im = ImageOps.rotate(im, (float) x, (float) y, (float) _angle, _interpolation, null);
        }
        return im;
    }

    /**
     * Set the current region of interest in the image (normally the
     * currently visible area). This is used by operations that need
     * to gather statistics on the image to avoid having to scan the
     * entire image.
     *
     * @param region the region of interest in the image
     */
    protected void setRegionOfInterest(Rectangle2D.Double region) {
        if (_roi != null && this._region != null && region.equals(this._region))
            return;
        this._region = region;

        // clip to image boundary to form the region of interest
        _region = new Rectangle2D.Double((int) _region.getX(), (int) _region.getY(),
                                         (int) _region.getWidth(), (int) _region.getHeight());
        _region = (Rectangle2D.Double) _region.createIntersection(new Rectangle2D.Double(_xPeriod, _yPeriod,
                                                                                         _sourceImage.getWidth() - _xPeriod,
                                                                                         _sourceImage.getHeight() - _yPeriod));
        _roi = new ROIShape(_region);
    }

    /**
     * Examine the given region of the source image to determine the min
     * and max pixel values as well as the default cut levels (using median filter).
     * As a result, the minValue, maxValue, lowCut, and highCut  member
     * variables are set.
     * This method should be called before calling getMinValue(), getMaxValue(),
     * getLowCut() or getHighCut(). If the same region is specified as in the
     * previous call, nothing is done.
     *
     * @param region the region of interest in the image
     */
    protected void calculateImageStatistics(Rectangle2D.Double region) {
        // clip to image boundary to form the region of interest
        setRegionOfInterest(region);

        // Get the min and max pixel values in the region (or for the image, if known)
        if (_dataMin != _dataMax) {
            // Use property values, if set
            _minValue = _dataMin;
            _maxValue = _dataMax;
        } else if (Float.isNaN(_blank) && _bitpix != -32 && _bitpix != -64) {
            // No blank pixel was defined, use extrema operation, which should be faster, since
            // it is implemented in native code. The JAI extrema operation doesn't handle NaNs though...
            try {
                // the extrema op seems to have problems with very small images? (like dummy, blank images?)
                double[][] extrema = ImageOps.extrema(_rescaledSourceImage, _roi, _xPeriod, _yPeriod);
                _minValue = extrema[0][0];
                _maxValue = extrema[1][0];
            } catch (Exception e) {
                _minValue = _maxValue = 0.;
            }
        } else {
            // A blank pixel was defined, use our MinMax operator
            double[] minMax = ImageOps.minMax(_rescaledSourceImage, _roi, _xPeriod, _yPeriod, _blank);
            _minValue = minMax[0];
            _maxValue = minMax[1];
             // the mean is also calculated for float images, to avoid NaN issues
             _dataMean = minMax[2];
        }

        if (_minValue > _maxValue) {
            throw new IllegalArgumentException("min value > max value.");
        }

        // Try to guess the best cut levels for the image
        if (Double.isNaN(_dataMean)) {
            _dataMean = ImageOps.mean(_rescaledSourceImage, _roi, _xPeriod, _yPeriod)[0];
        }
        double[] cutLevels = ImageOps.cutLevel(_rescaledSourceImage, _roi, _blank, _dataMean);
        _lowCut = cutLevels[0];
        _highCut = cutLevels[1];
    }


    /**
     * Copy the settings from the given ImageProcessor to this one.
     */
    public void copySettings(ImageProcessor ip) {
        // Note: this method tends to be called more often than needed, due to
        // change events being fired and propagated. Try to avoid unnecessary
        // calls to update() by checking if any of the publicly accessible settings
        // have changed.
        if (_lowCut != ip._lowCut
                || _highCut != ip._highCut
                || (!_colormap.equals(ip._colormap))
                || _scaleAlgorithm != ip._scaleAlgorithm
                || _flipX != ip._flipX
                || _flipY != ip._flipY
                || _reverseY != ip._reverseY
                || _invertedYAxis != ip._invertedYAxis
                || _angle != ip._angle) {

            _updatePending = true;

            _minValue = ip._minValue;
            _maxValue = ip._maxValue;
            _dataMin = ip._minValue;
            _dataMax = ip._maxValue;
            _dataMean = ip._dataMean;
            _blank = ip._blank;
            _bzero = ip._bzero;
            _bscale = ip._bscale;
            _lowCut = ip._lowCut;
            _highCut = ip._highCut;
            _userSetCutLevels = true;

            // clone a shallow copy of the colormap object, so that we can compare
            // it later to see if anything changed, and avoid unnecessary updates.
            try {
                _colormap = (ImageColormap) ip._colormap.clone();
            } catch (CloneNotSupportedException e) {
                throw new RuntimeException(e); // should not happen
            }

            _scaleAlgorithm = ip._scaleAlgorithm;
            _scaleLookupTable = ip._scaleLookupTable;
            _flipX = ip._flipX;
            _flipY = ip._flipY;
            _reverseY = ip._reverseY;
            _invertedYAxis = ip._invertedYAxis;
            _angle = ip._angle;
        }
    }


    /**
     * Set the image cutoff levels.
     *
     * @param lowCut the low cut value
     * @param highCut the high cut value
     */
    public void setCutLevels(double lowCut, double highCut) {
        setCutLevels(lowCut, highCut, true);
    }


    /**
     * Set the image cutoff levels.
     *
     * @param lowCut the low cut value
     * @param highCut the high cut value
     * @param userSetCutLevels set to true if the cut levels were set by the user
     *                         (meaning they should not be changed automatically)
     */
    public void setCutLevels(double lowCut, double highCut, boolean userSetCutLevels) {
        if (lowCut > highCut) {
            return;
        }

        this._lowCut = lowCut;
        this._highCut = highCut;

        _updatePending = true;
        this._userSetCutLevels = userSetCutLevels;

        // reduce the image data to byte range with a lookup table
        ImageLookup imageLookup = new ImageLookup();
        _shortImage = imageLookup.scale(_rescaledSourceImage, _scaleAlgorithm, _lowCut, _highCut,
                                        _roi, _imageHistogram);
        _scaleLookupTable = imageLookup.getLookupTable();
        _imageChangeEvent.setNewCutLevels(true);
    }


    /**
     * Set the low cutoff level
     */
    public void setLowCut(double lowCut) {
        setCutLevels(lowCut, _highCut, true);
    }

    /**
     * Set the high cutoff level
     */
    public void setHighCut(double highCut) {
        setCutLevels(_lowCut, highCut, true);
    }

    /**
     * Get the low cutoff level
     */
    public double getLowCut() {
        return _lowCut;
    }

    /**
     * Get the high cutoff level
     */
    public double getHighCut() {
        return _highCut;
    }


    /**
     * Set the image cut levels automatically using median filtering on the given
     * area of the image.
     *
     * @param region the region of interest in the image
     */
    public void autoSetCutLevels(Rectangle2D.Double region) {
        calculateImageStatistics(region);
        setCutLevels(_lowCut, _highCut, false);
    }


    /**
     * Set the cut levels so that the given percent of pixels
     * in the given region of the image are within the low
     * and high cut values.
     *
     * @param percent value between 0. and 100. indicating percent
     *                of image pixels within the cut levels.
     * @param region the region of interest in the image
     */
    public void autoSetCutLevels(double percent, Rectangle2D.Double region) {
        _userSetCutLevels = false;
        double lowCut = _minValue, highCut = _maxValue;

        calculateImageStatistics(region);

        // get a histogram of the image data
        int dataType = _rescaledSourceImage.getSampleModel().getDataType();
        int numBins = 2048;
        double n = highCut - lowCut;
        if (n <= 0)
            return;

        if (n < numBins && dataType != DataBuffer.TYPE_FLOAT && dataType != DataBuffer.TYPE_DOUBLE)
            numBins = (int) n;

        if (numBins <= 0) {
            return;
        }

        Histogram histogram = _imageHistogram.getHistogram(_rescaledSourceImage, numBins, _minValue, _maxValue, _roi, _xPeriod, _yPeriod);

        // find out how many pixel we actually counted (may be significant numbers of blanks)
        int npixels = 0;
        int[] bins = histogram.getBins(0);
        double binWidth = (_maxValue - _minValue) / numBins;
        for (int i = 0; i < numBins; i++) {
            npixels += bins[i];
        }

        if (npixels > 0) {
            // change to  percent to cut off and split between lowCut and highCut
            int cutoff = (int) ((npixels * (100.0 - percent) / 100.0) / 2.0);

            // set low cut value
            npixels = 0;
            int nprev;
            for (int i = 0; i < numBins; i++) {
                nprev = npixels;
                npixels += bins[i];
                if (npixels >= cutoff) {
                    lowCut = _minValue + i * binWidth;
                    if (i != 0) {
                        // Interpolate between the relevant bins.
                        double interp = (double) (cutoff - nprev) / (npixels - nprev);
                        double d = _minValue + (i - 1) * binWidth;
                        lowCut = d + (lowCut - d) * interp;
                    }
                    break;
                }
            }

            // set high cut value
            npixels = 0;
//            nprev = 0;
            for (int i = numBins - 1; i > 0; i--) {
                nprev = npixels;
                npixels += bins[i];
                if (npixels >= cutoff) {
                    highCut = _minValue + i * binWidth;
                    if (i != numBins - 1) {
                        // Interpolate between the relevant bins.
                        double interp = (double) (cutoff - nprev) / (npixels - nprev);
                        double d = _minValue + (i + 1) * binWidth;
                        highCut = d + (d - highCut) * interp;
                    }
                    break;
                }
            }
        }

        setCutLevels(lowCut, highCut, false);
    }

    /** Return true if the user has set the cut levels and they were not automatically set. */
    public boolean isUserSetCutLevels() {
        return _userSetCutLevels;
    }

    /**
     * Set to true if the user has set the cut levels and they were not automatically set.
     * This has the effect that the cut levels will not be automatically set if a new image
     * is loaded.
     */
    public void setUserSetCutLevels(boolean b) {
        _userSetCutLevels = b;
    }

    /**
     * register to receive change events from this object whenever the
     * image or cut levels are changed.
     */
    public void addChangeListener(ChangeListener l) {
        _listenerList.add(ChangeListener.class, l);
    }

    /**
     * Stop receiving change events from this object.
     */
    public void removeChangeListener(ChangeListener l) {
        _listenerList.remove(ChangeListener.class, l);
    }

    /**
     * Notify any listeners of a change in the image or cut levels.
     */
    protected void fireChange(ImageChangeEvent changeEvent) {
        Object[] listeners = _listenerList.getListenerList();
        for (int i = listeners.length - 2; i >= 0; i -= 2) {
            if (listeners[i] == ChangeListener.class) {
                ((ChangeListener) listeners[i + 1]).stateChanged(changeEvent);
            }
        }
        changeEvent.reset();
    }


    /**
     * Return the min pixel value in the region specified in the last call
     * to calculateImageStatistics.
     */
    public double getMinValue() {
        return _minValue;
    }


    /**
     * Return the max pixel value in the region specified in the last call
     * to calculateImageStatistics.
     */
    public double getMaxValue() {
        return _maxValue;
    }

    /**
     * Return the value used for bad or blank pixels (taken from "BLANK" image property).
     */
    public float getBlank() {
        return _blank;
    }


    /**
     * Return the rotation angle.
     */
    public double getAngle() {
        return _angle;
    }

    /**
     * Set the rotation angle.
     */
    public void setAngle(double angle) {
        this._angle = angle;
        _imageChangeEvent.setNewAngle(true);
        _updatePending = true;
    }

    /** Return the type of interpolation to use (for rotating). */
    public Interpolation getInterpolation() {
        return _interpolation;
    }

    /** Set the type of interpolation to use (for rotating). */
    public void setInterpolation(Interpolation i) {
        _interpolation = i;
        _updatePending = true;
    }

    /**
     * Toggle the flipping of the X axis
     */
    public void toggleFlipX() {
        _flipX = !_flipX;
        _imageChangeEvent.setNewAngle(true);
        _updatePending = true;
    }

    /**
     * Set the value of the flipX flag.
     */
    public void setFlipX(boolean flipX) {
        if (this._flipX != flipX) {
            this._flipX = flipX;
            _imageChangeEvent.setNewAngle(true);
            _updatePending = true;
        }
    }

    /**
     * Return the value of the flipX flag.
     */
    public boolean getFlipX() {
        return _flipX;
    }

    /**
     * Toggle the flipping of the Y axis
     */
    public void toggleFlipY() {
        _flipY = !_flipY;
        _imageChangeEvent.setNewAngle(true);
        _updatePending = true;
    }

    /**
     * Set the value of the flipY flag.
     */
    public void setFlipY(boolean flipY) {
        if (this._flipY != flipY) {
            this._flipY = flipY;
            _imageChangeEvent.setNewAngle(true);
            _updatePending = true;
        }
    }

    /**
     * Return the value of the flipY flag.
     */
    public boolean getFlipY() {
        return _flipY;
    }


    /**
     * Set the value of the reverseY flag.
     * If this flag is set to true, the value of flipY is reversed (used for FITS images).
     */
    public void setReverseY(boolean reverseY) {
        if (this._reverseY != reverseY) {
            this._reverseY = reverseY;
            _imageChangeEvent.setNewAngle(true);
            _updatePending = true;
        }
    }

    /**
     * Return the value of the reverseY flag.
     * If this flag is true, the value of flipY is reversed (used for FITS images).
     */
    public boolean getReverseY() {
        return _reverseY;
    }

    /**
     * Set to true if the Y axis of the image was inverted while reading.
     * <p>
     * This means that the image doesn't need to be flipped before displaying,
     * but the image coordinate system still needs to be inverted in the Y axis.
     */
    public void setInvertedYAxis(boolean invertedYAxis) {
        if (_invertedYAxis != invertedYAxis) {
            _invertedYAxis = invertedYAxis;
            _imageChangeEvent.setNewAngle(true);
            _updatePending = true;
        }
    }

    /** Return true if the Y axis of the image was inverted while reading. */
    public boolean isInvertedYAxis() {
        return _invertedYAxis;
    }


    /**
     * Return a histogram for the image with the given size (number of bins)
     * and region of interest and default settings for the other arguments.
     */
    public Histogram getHistogram(int size, ROI roi) {
        return _imageHistogram.getHistogram(_rescaledSourceImage, size, _lowCut, _highCut, roi, _xPeriod, _yPeriod);
    }


    /** Set the name to use for this object (for testing and debugging). */
    public void setName(String name) {
        this._name = name;
    }

    /** Return the name of this object */
    public String getName() {
        return _name;
    }

    /** Return the lookup table used to scale the image to byte range */
    public LookupTableJAI getScaleLookupTable() {
        return _scaleLookupTable;
    }

    /**
     * Set the algorithm to use to scale the image to byte range.
     *
     * @param scaleAlgorithm one of the public constants defined in the ImageLookup class
     *                       (default: ImageLookup.LINEAR_SCALE).
     */
    public void setScaleAlgorithm(int scaleAlgorithm) {
        this._scaleAlgorithm = scaleAlgorithm;

        // reduce the image data to byte range with a lookup table
        ImageLookup imageLookup = new ImageLookup();
        _shortImage = imageLookup.scale(_rescaledSourceImage, _scaleAlgorithm, _lowCut, _highCut, _roi, _imageHistogram);
        _scaleLookupTable = imageLookup.getLookupTable();

        _imageChangeEvent.setNewColormap(true);
        _updatePending = true;
    }

    /**
     * Return the current image scaling algorithm (one of the constants defined in the
     * ImageLookup class (default: ImageLookup.LINEAR_SCALE).
     */
    public int getScaleAlgorithm() {
        return _scaleAlgorithm;
    }


    /**
     * Create a color RGB lookup table that can be added to the image processing chain,
     * so that we can manipulate the image colors.
     *
     * @param name the name of the colormap table to use. This is currently
     * One of: 	"Background", "Blue", "Heat", "Isophot", "Light", "Pastel",
     * "Ramp", "Real", "Smooth", "Staircase", "Standard".
     * User defined maps will be implemented in a later release.
     */
    public void setColorLookupTable(String name) {
        _colormap.setColorLookupTable(name);
        _imageChangeEvent.setNewColormap(true);
        _updatePending = true;
    }


    /** Return the current lookup table used to add color to a grayscale image. */
    public LookupTableJAI getColorLookupTable() {
        return _colormap.getColorLookupTable();
    }


    /** Return the name of the current color lookup table */
    public String getColorLookupTableName() {
        return _colormap.getColorLookupTableName();
    }


    /** Return the name of the current intensity lookup table */
    public String getIntensityLookupTableName() {
        return _colormap.getIntensityLookupTableName();
    }


    /**
     * Create an intensity lookup table that can be added to the image processing chain
     * to rearrange the order of the colors in the colormap.
     *
     * @param name the name of the intensity lookup table to use. This is currently
     * One of: 	"Equal", "Exponential",	"Gamma", "Jigsaw", "Lasritt", "Logarithmic",
     * "Negative", "Negative Log", "Ramp", "Staircase".
     *
     * User defined intensity lookup tables will be implemented in a later release.
     */
    public void setIntensityLookupTable(String name) {
        _colormap.setIntensityLookupTable(name);
        _imageChangeEvent.setNewColormap(true);
        _updatePending = true;
    }


    /**
     * Rotate the colormap by the given amount.
     */
    public void rotateColormap(int amount) {
        _colormap.rotateColormap(amount);
        _imageChangeEvent.setNewColormap(true);
        _updatePending = true;
    }


    /**
     * Shift the colormap by the given amount.
     */
    public void shiftColormap(int amount) {
        _colormap.shiftColormap(amount);
        _imageChangeEvent.setNewColormap(true);
        _updatePending = true;
    }

    /**
     * Scale the colormap by the given amount.
     */
    public void scaleColormap(int amount) {
        _colormap.scaleColormap(amount);
        _imageChangeEvent.setNewColormap(true);
        _updatePending = true;
    }


    /**
     * Save the current colormap state for the next shift, rotate or scale operation.
     */
    public void saveColormap() {
        _colormap.saveColormap();
    }


    /**
     * Reset the colormap to the default.
     */
    public void resetColormap() {
        _colormap.resetColormap();
        _imageChangeEvent.setNewColormap(true);
        _updatePending = true;
    }


    /**
     * Reset the colormap to the default.
     */
    public void setDefaultColormap() {
        _colormap.setDefaultColormap();
        setScaleAlgorithm(ImageLookup.LINEAR_SCALE);
        _imageChangeEvent.setNewColormap(true);
        _updatePending = true;
    }

    /** Set to true if something was changed and a call to update() is needed. */
    protected void setUpdatePending(boolean b) {
        _updatePending = b;
    }

    /** Return true if something was changed and a call to update() is needed. */
    protected boolean isUpdatePending() {
        return _updatePending;
    }
}