histomatch.pro
7.58 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
;+
; NAME:
; HistoMatch
;
; PURPOSE:
;
; This is a function for Histogram Matching, in which an image
; is manipulated in such a way that it's final histogram approximates
; the histogram of an input image or histogram. Histogram matching
; allows the user to specify the shape of the histogram of the final
; product.
;
; AUTHOR:
;
; FANNING SOFTWARE CONSULTING
; David Fanning, Ph.D.
; 1645 Sheely Drive
; Fort Collins, CO 80526 USA
; Phone: 970-221-0438
; E-mail: david@idlcoyote.com
; Coyote's Guide to IDL Programming: http://www.idlcoyote.com
;
; CATEGORY:
;
; Image Processing
;
; CALLING SEQUENCE:
;
; output_image = HistoMatch(image, histogram_to_match)
;
; INPUTS:
;
; image - The input image to be manipulated. Assumed to be a 2D byte array.
;
; histogram_to_match - Can be either a 1D long vector of 256 elements specifying
; the histogram to match, or a 2D byte array from which the histogram to
; match is calculated.
;
; OUTPUTS:
;
; output_image - The manipulated image adjusted to the histogram specifications.
;
; INPUT KEYWORDS:
;
; None.
;
; OUTPUT KEYWORDS:
;
; None.
;
; DEPENDENCIES:
;
; None.
;
; METHOD:
;
; Based on the Histogram Matching method on pages 94-102 of Digital
; Image Processing, 2nd Edition, Rafael C. Gonzalez and Richard E. Woods,
; ISBN 0-20-118075-8.
;
; EXAMPLE:
;
; There is an example program at the end of this file. It will require cgImage
; from the Coyote Library to run. You can also find an explanation of this program
; at http://www.idlcoyote.com/ip_tips/histomatch.html.
;
; MODIFICATION HISTORY:
;
; Written by David W. Fanning, January 2003.
;-
;
;******************************************************************************************;
; Copyright (c) 2008, by Fanning Software Consulting, Inc. ;
; All rights reserved. ;
; ;
; Redistribution and use in source and binary forms, with or without ;
; modification, are permitted provided that the following conditions are met: ;
; ;
; * Redistributions of source code must retain the above copyright ;
; notice, this list of conditions and the following disclaimer. ;
; * Redistributions in binary form must reproduce the above copyright ;
; notice, this list of conditions and the following disclaimer in the ;
; documentation and/or other materials provided with the distribution. ;
; * Neither the name of Fanning Software Consulting, Inc. nor the names of its ;
; contributors may be used to endorse or promote products derived from this ;
; software without specific prior written permission. ;
; ;
; THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY ;
; EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ;
; OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT ;
; SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT, ;
; INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED ;
; TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; ;
; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ;
; ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ;
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;
; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;
;******************************************************************************************;
FUNCTION HISTOMATCH, image, histogram_to_match
; Error handling.
Catch, theError
IF theError NE 0 THEN BEGIN
Catch, /Cancel
ok = cgErrorMsg(/Traceback)
IF N_Elements(image) NE 0 THEN RETURN, image ELSE RETURN, -1L
ENDIF
; We require two input parameters.
IF N_Params() NE 2 THEN Message, 'Two arguments required. Please read the program documentation.'
; Must have 2D image array.
IF Size(image, /N_Dimensions) NE 2 THEN Message, 'Image argument must be 2D. Returning.'
; Is the histogram_to_match variable a 1D or 2D array? Branch accordingly.
CASE Size(histogram_to_match, /N_Dimensions) OF
1: BEGIN
IF N_Elements(histogram_to_match) NE 256 THEN $
Message, 'Histogram to match has incorrect size. Returning.'
match_histogram = histogram_to_match
END
2: match_histogram = Histogram(Byte(histogram_to_match), Min=0, Max=255, Binsize=1)
ELSE: Message, 'Histogram to match has incorrect number of dimensions. Returning.'
ENDCASE
; Calculate the histogram of the input image.
h = Histogram(Byte(image), Binsize=1, Min=0, Max=255)
; Make sure the two histograms have the same number of pixels. This will
; be a problem if the two images are different sizes, you are matching a
; histogram from an image subset, etc.
totalPixels = Float(N_Elements(image))
totalHistogramPixels = Float(Total(match_histogram))
IF totalPixels NE totalHistogramPixels THEN $
factor = totalPixels / totalHistogramPixels ELSE $
factor = 1.0
match_histogram = match_histogram * factor
; Find a mapping from the input pixels to the transformation function s.
s = FltArr(256)
FOR k=0,255 DO BEGIN
s[k] = Total(h(0:k) / totalPixels)
ENDFOR
; Find a mapping from input histogram to the transformation function v.
v = FltArr(256)
FOR q=0,255 DO BEGIN
v[q] = Total(match_histogram(0:q) / Total(match_histogram))
ENDFOR
; Find probablitly density function z from v and s.
z = BytArr(256)
FOR j=0,255 DO BEGIN
i = Where(v LT s[j], count)
IF count GT 0 THEN z[j] = (Reverse(i))[0] ELSE z[j]=0
ENDFOR
; Create the matched image.
matchedImage = z[Byte(image)]
RETURN, matchedImage
END
; ----------------------------------------------------------------------------
PRO Example
; Get an image whose histogram you want to match.
filename = Filepath('ctscan.dat', Subdir=['examples', 'data'])
OpenR, lun, filename, /Get_Lun
image_to_match = BytArr(256, 256)
ReadU, lun, image_to_match
Free_Lun, lun
; Get an image to apply the histogram to.
filename = Filepath('worldelv.dat', Subdir=['examples', 'data'])
OpenR, lun, filename, /Get_Lun
image = BytArr(360, 360)
ReadU, lun, image
Free_Lun, lun
Window, 0, XSize=500, YSize=250, Title='Match this Image Histogram', XPos=100, YPos=100
!P.Multi=[0,2,1]
cgImage, image_to_match
Plot, Histogram(image_to_match), Max_Value=5000
!P.Multi=0
Window, 1, XSize=500, YSize=250, Title='Manipulate this Image', XPos=100, YPos=360
!P.Multi=[0,2,1]
cgImage, image
Plot, Histogram(image), Max_Value=5000
!P.Multi=0
Window, 2, XSize=500, YSize=250, Title='Final Result', XPos=100, YPos=630
!P.Multi=[0,2,1]
match = HistoMatch(image, image_to_match)
cgImage, match
Plot, Histogram(match), Max_Value=5000
!P.Multi=0
END