cgkrig2d.pro 22.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
; docformat = 'rst'
;
; NAME:
;   cgKrig2D
;
; PURPOSE:
; 
;   The cgKrig2D function interpolates a regularly or irregularly sampled set of points of
;   the form z = f(x, y) to produced a gridded 2D array using a statistical process known
;   as kriging.
;******************************************************************************************;
;                                                                                          ;
;  Copyright (c) 2013, by Fanning Software Consulting, Inc. All rights reserved.           ;
;                                                                                          ;
;  Redistribution and use in source and binary forms, with or without                      ;
;  modification, are permitted provided that the following conditions are met:             ;
;                                                                                          ;
;      * Redistributions of source code must retain the above copyright                    ;
;        notice, this list of conditions and the following disclaimer.                     ;
;      * Redistributions in binary form must reproduce the above copyright                 ;
;        notice, this list of conditions and the following disclaimer in the               ;
;        documentation and/or other materials provided with the distribution.              ;
;      * Neither the name of Fanning Software Consulting, Inc. nor the names of its        ;
;        contributors may be used to endorse or promote products derived from this         ;
;        software without specific prior written permission.                               ;
;                                                                                          ;
;  THIS SOFTWARE IS PROVIDED BY FANNING SOFTWARE CONSULTING, INC. ''AS IS'' AND ANY        ;
;  EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES    ;
;  OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT     ;
;  SHALL FANNING SOFTWARE CONSULTING, INC. BE LIABLE FOR ANY DIRECT, INDIRECT,             ;
;  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED    ;
;  TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;         ;
;  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND             ;
;  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT              ;
;  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS           ;
;  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.                            ;
;******************************************************************************************;
;
;+
; The cgKrig2D function interpolates a regularly or irregularly sampled set of points of
; the form z = f(x, y) to produced a gridded 2D array using a statistical process known
; as kriging. Kriging is a method of optimal interpolation based on regression against known
; or observed z values of surrounding data points, weighted according to spatial covariance
; values by various types of kriging model functions. Each grid location is estimated from
; observed values at surrounding locations. It is often used with spatial data.
; 
; Like all interpolation schemes, kriging can produces spurious results in extreme cases,
; but has the advantage of being able to compensate for the effects of data clustering and
; other, similar problems better than other interpolation methods such as inverse distance squared,
; splines, and triangulation methods. This particular version of Krig2D is orders of magnitude
; faster than the version of Krig2D that was distributed with IDL through IDL 8.2.3.
; 
; An excellent explanation of the kriging process can be found here::
; 
;    http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//009z00000076000000.htm
;    http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Semivariograms_and_covariance_functions
;    
; An explanation of the innovation that caused Krig2D to be made faster by several orders
; of magnitude can be found here::
; 
;    http://www.idlcoyote.com/code_tips/krigspeed.php
;    
; I've implemented the kriging mathematical models described in the following references::
; 
;    http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//009z00000076000000.htm
;    http://www.nbb.cornell.edu/neurobio/land/OldStudentProjects/cs490-94to95/clang/kriging.html 
;
; :Categories:
;    Math, Interpolation, Gridding
;    
; :Examples:
;    To create a dataset of N random points and determine the surface formed from such points::
;    
;       n = 500 ;# of scattered points
;       seed = -121147L ;For consistency
;       x = RANDOMU(seed, n)
;       y = RANDOMU(seed, n)
;
;      ; Create a dependent variable in the form a function of (x,y)
;      data = 3 * EXP(-((9*x-2)^2 + (7-9*y)^2)/4) + $
;         3 * EXP(-((9*x+1)^2)/49 - (1-0.9*y)) + $
;         2 * EXP(-((9*x-7)^2 + (6-9*y)^2)/4) - $
;         EXP(-(9*x-4)^2 - (2-9*y)^2)
;    
;      params = [0.5, 0.0]
;      interpArray = cgKrig2D(data, x, y, EXPONENTIAL=params, XOUT=xout, YOUT=yout)
;      cgSurf, interpArray, xout, yout, /Save
;      cgPlots, x, y, data, PSYM=2, Color='red', /T3D
;
; :Author:
;    FANNING SOFTWARE CONSULTING::
;       David W. Fanning 
;       1645 Sheely Drive
;       Fort Collins, CO 80526 USA
;       Phone: 970-221-0438
;       E-mail: david@idlcoyote.com
;       Coyote's Guide to IDL Programming: http://www.idlcoyote.com
;
; :History:
;     Written, 15 Oct 2013, based on a fast varient of the Krig2D program in the IDL library.
;
; :Copyright:
;     Copyright (c) 2013, Fanning Software Consulting, Inc.
;-

;+
; The exponential kriging semivariogram model function. This model should be applied when spatial
; autocorrelation decreases exponentially with increasing distance.
;
; :Returns:
;    A two-dimensional array containing the covariance model.
;
; :Params:
;
;     d: in, required, type=float
;         The distance matrix of every point to each other.
;
;     t: in, required, type=float
;         A three-element vector containing, in this order, the values for the range, nugget, and
;         covariance value for the sample population (also called the partial sill), or [A, C0, C].
;         The sill is properly described as sill = (c0 + c).
;-
FUNCTION cgKrig2d_Exponential, d, t

    Compile_Opt idl2
    
    ; Make assignments that allow you to create the mathematical models described in the reference.
    a = t[0]
    c0 = t[1]
    c = t[2]
    
    result = c0 + c * ( 1.0 - Exp( (-3*Abs(d))/a ) )
    indices = Where(d EQ 0, count)
    IF count GT 0 THEN result[indices] = 0
    
    RETURN, result
END

;+
; The spherical kriging semivariogram model function. This model show a progressive decrease of
; spatial autocorrelation until some distance, beyond which the autocorrelation is zero. This is
; one of the most commonly used models.
; 
; :Returns:
;    A two-dimensional array containing the covariance model.
;
; :Params:
; 
;     d: in, required, type=float
;         The distance matrix of every point to each other.
;         
;     t: in, required, type=float
;         A three-element vector containing, in this order, the values for the range, nugget, and
;         covariance value for the sample population (also called the partial sill), or [A, C0, C].
;         The sill is properly described as sill = (c0 + c).
;-
FUNCTION cgKrig2d_Spherical, d, t

    Compile_Opt idl2
    
    ; Make assignments that allow you to create the mathematical models described in the reference.
    a = t[0]
    c0 = t[1]
    c = t[2]

    ; Set up the results for the spherical model. Find where distance GT a and where distance = 0.
    gtAIndices = Where(d GT a, gtACount)
    zeroIndices = Where(d EQ 0, zeroCount)
    r = d/a
    result = c0 + c * ( (1.5*r) - (0.5*r*r*r) )
    IF gtACount GT 0 THEN result[gtAIndices] = c0 + c
    IF zeroCount GT 0 THEN result[zeroIndices] = 0
    
    RETURN, result
END

;+
; This function interpolates a regularly or irregularly gridded set of points Z = F(X,Y) using kriging.
; One of the kriging models MUST be used in the call to cgKrig2D. These are `CIRCULAR`, `EXPONENTIAL`, 
; `GAUSSIAN`, `LINEAR`, or `SPHERICAL`. The only models currently tested and in use are EXPONENTIAL and SPHERICAL.
; 
; :Returns:
;    A two-dimensional array containing the interpolated surface, sampled at input locations.
;
; :Params:
;    z: in, required, type=float
;       An array containing the values of the data points as a function of X and Y. If
;       X and Y are provided, this vector should be the same length. If X and Y are not
;       provided, this array must be a 2D array. In this case the output grid is determined
;       by `XGRID` (or `XVALUES`) and `YGRID` (or `YVALUES`) keywords, and default values for 
;       `NX` and `NY` are determined by the 2D dimensions of the input data array. If X and Y  
;       are not provided, regular gridding is assumed. Otherwise, the input data is assumed 
;       to be irregularly gridded, unless the 'REGULAR` keyword is set.
;       
;    x: in, optional, type=float
;       An array containing the x locations of the surface to be gridded. If use, the `Y` data 
;       parameter must also be used and all three positional parameters must be the same length.
;       
;    y: in, optional, type=float
;       An array containing the y locations of the surface to be gridded. If use, the `X` data
;       parameter must also be used and all three positional parameters must be the same length.
;
; :Keywords:
; 
;    bounds: in, optional, type=array
;       Set this keyword to a four-element array [xmin, ymin, xmax, ymax] containing the 
;       grid limits of the output grid. If not provided, the grid limits are set to the extent
;       of the X and Y vectors.
;
;    double: in, optional, type=boolean, default=0
;       Set this keyword to perform all calculations in double precision floating point math.
;       Otherwise, the calculations are done in since precision floating point math. 
;       
;    exponential: in, optional, type=array
;       Set this keyword to a two- or three-element vector containing the kriging model parameters
;       [A, C0, C] for the kriging exponential model. The parameter A is the range. At distances beyond
;       A, the semivariogram or covariance remains essentially constant. The parameter C0 is the nugget.
;       Theoretically, a zero separation distance, the semivariogram model should be zero. But, sometimes
;       the semivariogram model displays a "lag" where the model function intercepts that Y axis at a 
;       location other than zero. This is called the "nugget". The parameter C, if it is present, is the
;       value at which autocorrelation ceases to exist. If it is not present, it is calculated as the sample 
;       variance. The value C0+C is called the sill, which is the variogram value for very large distances. One 
;       of the kriging model keywords, `EXPONENTIAL` or `SPHERICAL`, must be used in the call to cgKrig2D. 
;       
;       For exponential models, the semivariagram at distance d is given as:
;            C(d) = C1 * Exp(-3 * (d/A)   if d not equal 0.
;            C(d) = C1 + C0               if d equal 0.
;     
;    gs: in, optional, type=array
;        A two-element array [xs, ys] giving the grid spacing of the output grid, where xs is the spacing
;        in the horizontal spacing between grid points, and ys is the vertical spacing. The default is 
;        based on the extents of x and y. If the grid starts at x value xmin and ends at xmax, then the 
;        default horizontal spacing is (xmax - xmin)/(`NX`-1). The ys parameter is computed in the same way.  
;        The default grid size, if neither `NX` or `NY` are specified, is 51 by 51.
;
;    nx: in, optional, type=integer, default=51
;        The output grid size in the X direction. If not specified, it can be be inferred from the `GS`
;        and `BOUNDS` keywords. If not specified, and required by the code, a value of 51 is used.
;        
;    ny: in, optional, type=integer, default=51
;        The output grid size in the Y direction. If not specified, it can be be inferred from the `GS`
;        and `BOUNDS` keywords. If not specified, and required by the code, a value of 51 is used.
;
;    regular: in, optional, type=boolean, default=0
;        Set this keyword to indicate the `Data` parameter is a 2D array containing measurements on a regular grid.
;        It is rare to set this keyword, as it is set automatically under many circumstances.
;        
;    spherical: in, optional, type=array
;       Set this keyword to a two- or three-element vector containing the exponential model parameters
;       [A, C0, C] for the kriging spherical model. The parameter A is the range. At distances beyond
;       A, the semivariogram or covariance remains essentially constant. The parameter C0 is the nugget.
;       Theoretically, a zero separation distance, the semivariogram model should be zero. But, sometimes
;       the semivariogram model displays a "lag" where the model function intercepts that Y axis at a 
;       location other than zero. This is called the "nugget". The parameter C, if it is present, is the
;       value at which autocorrelation ceases to exist. If it is not present, it is calculated as the sample
;       variance. The value C0+C is called the sill, which is the variogram value for very large distances. One 
;       of the kriging model keywords, `EXPONENTIAL` or `SPHERICAL`, must be used in the call to cgKrig2D. 
;
;       For spherical models, the semivariagram at distance d is given as:
;            C(d) = c0 + C * ( ( 1.5 * (d/a) ) - ( 0.5 * (d/a)^3) )    if d less than a.
;            C(d) = C + C0                                             if d greater than a.
;            C(d) = 0                                                  if d equals 0.
;
;    xgrid: in, optional, type=array
;        Set this keyword to a two-element array, [xstart, xspacing] to indicate where the output grid starts
;        and what the horizontal spacing will be. Do not specify the `XVALUES` keyword if this keyword is used.
;     
;    xvalues: in, optional, type=array
;        Set this keyword to a vector of X location values corresponding to the equivalent Z values in the `Data`
;        parameter. Do not use this keyword if using the `XGRID` keyword.
;        
;    ygrid: in, optional, type=array
;        Set this keyword to a two-element array, [ystart, yspacing] to indicate where the output grid starts
;        and what the vertical spacing will be. Do not specify the `YVALUES` keyword if this keyword is used.
;
;    yvalues: in, optional, type=array
;        Set this keyword to a vector of Y location values corresponding to the equivalent Z values in the `Data`
;        parameter. Do not use this keyword if using the `YGRID` keyword.
;
;-
FUNCTION cgKrig2d, z, x, y, $
    BOUNDS=bounds, $
    DOUBLE=double, $
    EXPONENTIAL=exponential, $
    GS=gs, $
    NX=nx, $
    NY=ny, $
    REGULAR=regular, $
    SPHERICAL=spherical, $
    XGRID=xgrid, $
    XOUT=xout, $
    XVALUES=xvalues, $
    YGRID=ygrid, $
    YOUT=yout, $
    YVALUES=yvalues
    
    Compile_Opt idl2
    
    ;On_Error, 2 ; Return to caller.
    
    ; Require some kind of positional parameter.
    IF N_Params() EQ 0 THEN Message, 'Syntax: griddedArray = cgKrig2d(z, x, y)'
    IF N_Params() EQ 2 THEN Message, 'Syntax: griddedArray = cgKrig2d(z, x, y) or griddedArray = cgKrig2d(data2d)'
    
    ; Are we doing a regular grid? Then we only need the first positional parameter and it must be 2D.
    regular = Keyword_Set(regular) || (N_Params() EQ 1) 
    double = Keyword_Set(double)
    IF regular THEN BEGIN
        ndims = Size(z, /N_DIMENSIONS)
        IF ndims NE 2 THEN Message, 'Regular gridding requires a 2D data set be provided.'
        dims = Size(z, /DIMENSIONS)
        nx = dims[0]
        ny = dims[1]
    ENDIF ELSE BEGIN ; Otherwise, irregular grid and all three parameters must be present and same size.
        IF N_Params() NE 3 THEN Message, 'All three positional parameters must be present to do irregular gridding.'
        IF N_Elements(z) NE N_Elements(x) THEN Message, 'All three positional parameters must contain the same number of elements.'
        IF N_Elements(z) NE N_Elements(y) THEN Message, 'All three positional parameters must contain the same number of elements.'
        IF N_Elements(nx) EQ 0 THEN nx = 51
        IF N_ELements(ny) EQ 0 THEN ny = 51
    ENDELSE
    
    ; Kriging model parameters MUST be provided.
    IF (N_Elements(exponential) EQ 0) && (N_Elements(spherical) EQ 0) THEN BEGIN
        Message, 'Model parameters must be provided. Use EXPONENTIAL or SPHERICAL keyword.'
    ENDIF ELSE BEGIN
        
        IF N_Elements(exponential) NE 0 THEN BEGIN
            IF (N_Elements(exponential) LT 2) || (N_Elements(exponential) GT 3) THEN BEGIN
                Message, 'The EXPONENTIAL model parameter vector must contain two or three elements.'
            ENDIF
            t = exponential
            functionName = 'cgKrig2d_Exponential'
        ENDIF
        
        IF N_Elements(spherical) NE 0 THEN BEGIN
            IF (N_Elements(spherical) LT 2) || (N_Elements(spherical) GT 3) THEN BEGIN
                Message, 'The SPHERICAL model parameter vector must contain two or three elements.'
            ENDIF
            t = spherical
            functionName = 'cgKrig2d_Spherical'
        ENDIF
        
    ENDELSE
    
    ; Did the user specify an XGRID or XVALUES keyword? If so, regular gridding is implied.
    IF N_Elements(xgrid) EQ 2 THEN BEGIN
        x = (double ? Dindgen(nx) : Findgen(nx)) * xgrid[1] + xgrid[0]
        regular = 1
    ENDIF ELSE BEGIN
        IF N_Elements(xvalues) GT 0 THEN BEGIN
            IF N_Elements(xvalues) NE nx THEN Message, 'XVALUES keyword must have ' + StrTrim(nx,2) + ' elements.'
            x = xvalues
            regular = 1
        ENDIF
    ENDELSE
    
    ; Did the user specify an YGRID or YVALUES keyword? If so, regular gridding is implied.
    IF N_Elements(ygrid) EQ 2 THEN BEGIN
        y = (double ? Dindgen(ny) : Findgen(ny)) * ygrid[1] + ygrid[0]
        regular = 1
    ENDIF ELSE BEGIN
        IF N_Elements(yvalues) GT 0 THEN BEGIN
            IF N_Elements(yvalues) NE ny THEN Message, 'YVALUES keyword must have ' + StrTrim(ny,2) + ' elements.'
            y = yvalues
            regular = 1
        ENDIF
    ENDELSE
    
    ; Make sure you have an X and Y value at this point if you are doing regular gridding.
    ; Expand the two vectors to be 2D arrays to match the data you are gridding.
    IF regular THEN BEGIN
        IF N_Elements(x) NE nx THEN x = (double) ? Dindgen(nx) : Findgen(nx)
        IF N_Elements(y) NE ny THEN y = (double) ? Dindgen(ny) : Findgen(ny)
        x = Rebin(x, nx, ny)
        y = Rebin(Reform(y, 1, ny), nx, ny)
    ENDIF
    
    ; Find the number of elements we are dealing with.
    numElements = N_Elements(x)
    
    ; If the model parameter vector contains only two elements, then we need a value for the variance. 
    IF N_Elements(t) EQ 2 THEN BEGIN
        meanData = Total(z, Double=double) / numElements
        varianceData = Total( (z - meanData)^2, DOUBLE=double) / numElements
        t = [t, varianceData - t[1]] ; Default value for C1 parameter.
    ENDIF
    
    ; Calculate the number of equations to solve.
    equNum = numElements + 1
    array = (double) ? DblArr(equNum, equNum) : FltArr(equNum, equNum)    
    
    ; Construct the symmetric distance matrix.
    FOR j=0,numElements-2 DO BEGIN
        k = Lindgen(numElements - j) + j
        d = (x[j]-x[k])^2 + (y[j]-y[k])^2
        array[j,k] = d
        array[k,j] = d
    ENDFOR

    ; Get the coefficient matrix by calling the appropriate model function.
    ; Fill the edges of the matrix.
    matrix = Call_Function(functionName, SQRT(array), t)       
    matrix[numElements,*] = 1.0           
    matrix[*,numElements] = 1.0
    matrix[numElements,numElements] = 0.0
    
    ; Use LU Decomposition to find a solution.
    LUDC, matrix, indx, DOUBLE=double    
    
    ; Make a boundary for the grid if one is not provided.
    xmin = Min(x, MAX=xmax)   
    ymin = Min(y, MAX=ymax)
    IF N_Elements(bounds) EQ 0 THEN bounds = [xmin, ymin, xmax, ymax]
    
    ; If a grid spacing parameter is not provided, compute one from the grid boundary.
    IF N_Elements(gs) EQ 0 THEN  gs = [(bounds[2]-bounds[0])/(nx-1.), (bounds[3]-bounds[1])/(ny-1.)]
        
    ; Subtract off a fudge factor to lessen roundoff errors.
    nx = Ceil((bounds[2]-bounds[0])/gs[0] - 1e-5)+1 ;# of elements
    ny = Ceil((bounds[3]-bounds[1])/gs[1] - 1e-5)+1
    
    ; Provide output grid vectors for the result.
    xout = bounds[0] + gs[0]*(double ? Dindgen(nx) : Findgen(nx))
    yout = bounds[1] + gs[1]*(double ? Dindgen(ny) : Findgen(ny))
    
    ; Create a similar matrix to hold the Lagrange multiplier.
    d = double ? DblArr(equNum) : FltArr(equNum)
    result = double ? DblArr(nx, ny, /NoZERO) : FltArr(nx, ny, /NoZERO)
    
    ; Solve the equations. Taking the LUSOL call out of the loop below is what
    ; speeds this function up by several orders of magnitude.
    az = LUSOL(matrix, indx, [Reform(z, N_Elements(z)), 0.0], DOUBLE=double)
    az = Rebin(Transpose(az), nx, numElements+1)
    xx = Rebin(Reform(x, 1, numElements), nx, numElements)
    dxsquare = (xx - Rebin(xout, nx, numElements))^2
    yy = Rebin(Reform(y, 1, numElements), nx, numElements)
    
    ; Do each row separately.
    FOR j=0,ny-1 DO BEGIN
        
        y0 = yout[j]
        
        ; Do all of the columns in parallel
        d = SQRT(dxsquare + (yy - y0)^2)
        d = Call_Function(functionName, d, t)
        
        ; Be sure to add the last row of AZ, which is the Lagrange constraint.
        result[*,j] = Total(d*az, 2) + az[*,numElements]
        
    ENDFOR
    
    ; Return the gridded result.
    RETURN, result
    
END