quinterp.pro
6.96 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
;+
; NAME:
; QUINTERP
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; craigm@lheamail.gsfc.nasa.gov
; UPDATED VERSIONs can be found on my WEB PAGE:
; http://cow.physics.wisc.edu/~craigm/idl/idl.html
;
; PURPOSE:
; Quintic spline interpolation from tabulated first and second derivatives
;
; MAJOR TOPICS:
; Interpolation, Hermite Interpolation
;
; CALLING SEQUENCE:
; QINTERP, XTAB, YTAB, YPTAB, YPPTAB, $
; XINT, YINT, YPINT=, YPPINT=, MISSING=
;
; DESCRIPTION:
;
; QUINTERP performs quintic spline interpolation of a function.
; This routine is a natural extension of CUBETERP, in that it meant
; for interpolation where the tabulated function has known values,
; first derivatives *and* second derivatives at each point. Given
; that there are six known values for each interpolation interval,
; the resulting interpolation function is a quintic polynomial (one
; of a class of Hermite interpolating splines).
;
; The user provides a tabulated set of data, whose (X,Y) positions
; are (XTAB, YTAB), and whose first and second derivatives are YPTAB
; and YPPTAB. The user also provides a set of desired "X" abcissae
; for which interpolants are requested. The interpolated spline
; values are returned in YINT. The interpolated curve will smoothly
; pass through the control points, and have the requested
; derivatives at those points.
;
; Note that the user must provide both derivatives (they are not
; optional). If you don't have one or more derivatives, then you
; should use the IDL spline functions SPL_INIT/SPL_INTERP, or the
; functions CUBETERP, QUADTERP or LINTERP instead. Unlike CUBETERP,
; if the requested point is outside of the tabulated range, the
; function is not extrapolated. Instead the value provided by the
; MISSING keyword is returned for those points.
;
; The user may also optionally request the first and second
; derivatives of the function with the YPINT and YPPINT keywords.
;
; INPUTS:
;
; XTAB - tabulated X values. Must be sorted in increasing order.
;
; YTAB - tabulated Y values.
;
; YPTAB - tabulated first derivatives ( = dY/dX ). Not optional
; YPPTAB - tabulated second derivatives ( = d(YPTAB)/dX ). Not optional.
;
; XINT - X values of desired interpolants.
;
; OUTPUTS:
;
; YINT - Y values of desired interpolants.
;
; OPTIONAL KEYWORDS:
;
; YPINT - upon return, the slope (first derivative) at the
; interpolated positions.
;
; YPPINT - upon return, the second derivative at the interpolated
; positions.
;
; MISSING - a value to report for "missing" data. This function
; does not perform extrapolation; any requested point
; outside the range [MIN(XTAB),MAX(XTAB)] is considered
; missing.
; Default: 0
;
; EXAMPLE:
;
; ;; Set up some fake data, a sinusoid
; xtab = dindgen(101)/100d * 2d*!dpi ; 100 points from 0 -> 2*!dpi
; ytab = sin(xtab) ;; values
; yptab = cos(xtab) ;; 1st deriv
; ypptab = -sin(xtab) ;; 2nd deriv
;
; ;; Interpolate to a finer grid
; xint = dindgen(1001)/1000 * 2d*!dpi ;; 1000 points from 0->2*!dpi
; quinterp, xtab, ytab, yptab, ypptab, xint, yint, ypint=ypint, yppint=yppint
;
; ;; Plot it
; plot, xint, yint
; oplot, xtab, ytab, psym=1, symsize=2
; for i = 0, n_elements(xtab)-1 do $ ;; Also plot slopes
; oplot, xtab(i)+[-0.5,0.5], ytab(i)+[-0.5,0.5]*yptab(i)
;
;
; MODIFICATION HISTORY:
; Written and documented, CM, 08 Oct 2008
;
; $Id: quinterp.pro,v 1.2 2009/04/15 04:17:30 craigm Exp $
;
;-
; Copyright (C) 2008, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-
pro quinterp, xtab, ytab, yptab, ypptab, xint, yint, $
ypint=ypint, yppint=yppint, $
missing=missing0
ntab = n_elements(xtab)
if n_elements(xtab) EQ 0 OR n_elements(ytab) EQ 0 then begin
message, 'ERROR: XTAB and YTAB must be passed'
endif
if (n_elements(xtab) NE n_elements(ytab) OR $
n_elements(xtab) NE n_elements(yptab) OR $
n_elements(xtab) NE n_elements(ypptab)) then begin
message, $
'ERROR: Number of elements of XTAB, YTAB, YPTAB and YPPTAB must agree'
endif
if n_elements(xint) EQ 0 then begin
message, 'ERROR: XINT must be passed'
endif
if n_elements(missing0) EQ 0 then begin
miss = 0d
endif else begin
miss = missing0(0)
endelse
;; Locate previous tabulated value
ii = value_locate(xtab, xint)
;; Here we make a safety check, in case the desired point(s) is
;; above or below the interior of the interpolation range. In that
;; case, we will need to extrapolate, based on the next nearest
;; interval.
iis = ii > 0 < (ntab-2)
whbad = where(xint LT xtab(0) OR xint GT xtab(ntab-1), ctbad)
;; Distance from interpolated abcissae to previous tabulated abcissa
dx = (xint - xtab(iis))
;; Distance between adjoining tabulated abcissae and ordinates
xs = xtab(iis+1) - xtab(iis)
ys = ytab(iis+1) - ytab(iis)
;; Rescale or pull out quantities of interest
dx = dx/xs ;; Rescale DX
y0 = ytab(iis) ;; No rescaling of Y - start of interval
y1 = ytab(iis+1) ;; No rescaling of Y - end of interval
yp0 = yptab(iis)*xs ;; Rescale tabulated derivatives - start of interval
yp1 = yptab(iis+1)*xs ;; Rescale tabulated derivatives - end of interval
ypp0 = ypptab(iis)*xs*xs ;; Rescale tabulated 2nd der. - start of interval
ypp1 = ypptab(iis+1)*xs*xs;; Rescale tabulated 2nd der. - end of interval
;; Compute values of t^n for quintic (n = 0 .. 5)
t0 = 1d
t1 = dx
t2 = dx*dx
t3 = dx*t2
t4 = dx*t3
t5 = dx*t4
;; Quintic Hermite polynomial
yint = ((-6*t5 + 15*t4 - 10*t3 + 1 )*y0 + $
( 6*t5 - 15*t4 + 10*t3 )*y1 + $
(-3*t5 + 8*t4 - 6*t3 + t1)*yp0 + $
(-3*t5 + 7*t4 - 4*t3 )*yp1 + $
( -t5 + 3*t4 - 3*t3 + t2)*ypp0/2d + $
( t5 - 2*t4 + t3 )*ypp1/2d)
if ctbad GT 0 then yint(whbad) = miss
if arg_present(ypint) then begin
ypint = ((-30*t4 + 60*t3 - 30*t2 )*y0 + $
( 30*t4 - 60*t3 + 30*t2 )*y1 + $
(-15*t4 + 32*t3 - 18*t2 + 1 )*yp0 + $
(-15*t4 + 28*t3 - 12*t2 )*yp1 + $
( -5*t4 + 12*t3 - 9*t2 + 2*t1)*ypp0/2d + $
( 5*t4 - 8*t3 + 3*t2 )*ypp1/2d) / xs
if ctbad GT 0 then ypint(whbad) = miss
endif
if arg_present(yppint) then begin
yppint = ((-120*t3 + 180*t2 - 60*t1 )*y0 + $
( 120*t3 - 180*t2 + 60*t1 )*y1 + $
( -60*t3 + 96*t2 - 36*t1 )*yp0 + $
( -60*t3 + 84*t2 - 24*t1 )*yp1 + $
( -20*t3 + 36*t2 - 18*t1 + 2d)*ypp0/2d + $
( 20*t3 - 24*t2 + 6*t1 )*ypp1/2d) / (xs*xs)
if ctbad GT 0 then yppint(whbad) = miss
endif
return
end