qrsolv.pro
4.69 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
;+
; NAME:
; QRSOLV
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; craigm@lheamail.gsfc.nasa.gov
;
; PURPOSE:
; Solve a linear equation after performing QR factorization
;
; MAJOR TOPICS:
; Linear Systems
;
; CALLING SEQUENCE:
; X = QRSOLV(A, R, B, PIVOTS=IPVT)
;
; DESCRIPTION:
;
; The procedure QRSOLV completes the solution of a linear equation,
;
; A ## x = B
;
; after the MxN matrix has been factorized by QR decomposition.
; After being factorized once using QRFAC, the matrices can be used
; for multiple righthand sides (i.e., different B's).
;
; The solution technique is to first compute the factorization using
; QRFAC, which yields the orthogonal matrix Q and the upper
; triangular matrix R. [ Actually, Q is represented by its
; Householder reflectors. ] Then the solution vector, X, is computed
; using QRSOLV.
;
; If pivoting was performed in the factorization, the permutation
; vector IPVT returned by QRFAC must also be passed to QRSOLV.
;
;
; PARAMETERS:
;
; A - upon input, the factorized matrix A, returned by QRFAC.
;
; R - upon input, the upper diagonal matrix R, returned by QRFAC.
;
; B - upon input, the righthand vector B, which fits into the
; equation, A ## x = B
;
; X - upon ouptut, the solution vector X, to the above linear
; equation. For an overdetermined system, X is the least
; squares solution which minimizes TOTAL( (A ## X - B)^2 ).
;
;
; KEYWORD PARAMETERS:
;
; PIVOTS - upon input, the permutation matrix IPVT returned by
; QRFAC, if pivoting is to be performed.
;
;
; EXAMPLE:
;
; Solve the equation A ## X = B, in the least squares sense, where:
;
; A = [[1.0,1.0,1.0,1.0,1.0,1.0],$
; [0.6,0.8,0.5,0.8,0.7,0.9],$
; [0.2,0.3,0.1,0.4,0.3,0.4]]
;
; and B = [0.57E,0.69,0.5,0.7,0.6,0.8]
;
; qrfac, a, r, ipvt, /PIVOT
; x = qrsolv(a, r, b, PIVOTS=ipvt)
;
; print, x
; 0.0834092 0.852273 -0.179545
;
; REFERENCES:
;
; More', Jorge J., "The Levenberg-Marquardt Algorithm:
; Implementation and Theory," in *Numerical Analysis*, ed. Watson,
; G. A., Lecture Notes in Mathematics 630, Springer-Verlag, 1977.
;
; MODIFICATION HISTORY:
; Written (taken from MPFIT), CM, Feb 2002
; Usage message, error checking, CM, 15 Mar 2002
; Error checking is fixed, CM, 10 May 2002
; Found error in return of permuted results, CM, 21 May 2004
;
; $Id: qrsolv.pro,v 1.4 2004/05/22 02:16:02 craigm Exp $
;
;-
; Copyright (C) 2002, 2004, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-
function qrsolv, q, r, b, pivots=ipvt0
if n_params() EQ 0 then begin
USAGE:
message, 'USAGE:', /info
message, 'X = QRSOLV(Q, R, B, [PIVOTS=IPVT])', /info
message, ' Q and R are factorization from QRFAC', /info
message, ' B is right hand side of equation Q # X = B', /info
return, 0
endif
sz = size(q)
m = sz(1)
n = sz(2)
if sz(0) NE 2 OR m LT n then $
goto, USAGE
szr = size(r)
if szr(0) NE 2 OR szr(1) NE szr(2) OR szr(1) NE n then $
goto, USAGE
if n_elements(b) NE m then $
goto, USAGE
delm = lindgen(n) * (n+1) ;; Diagonal elements of r
;; Default pivoting if not specified
if n_elements(ipvt0) EQ 0 then ipvt = lindgen(n) $
else ipvt = ipvt0
;; Multiply QT * B to get QTB. Because Q is stored as reflectors,
;; they must be expanded explicitly.
wa4 = b
for j=0L, n-1 do begin
lj = ipvt(j)
temp3 = q(j,lj)
if temp3 NE 0 then begin
fj = q(j:*,lj)
wj = wa4(j:*)
;; *** optimization wa4(j:*)
wa4(j) = wj - fj * total(fj*wj) / temp3
endif
endfor
qtb = wa4(0:n-1)
;; Get some initial parameters
diag = r(delm)
x = qtb
;; Solve the triangular system for x. If the system is singular
;; then obtain a least squares solution
nsing = n
wh = where(diag EQ 0, ct)
if ct GT 0 then begin
nsing = wh(0)
x(nsing:*) = 0
endif
if nsing GE 1 then begin
;; Could use LUSOL here, but it turns out that the largest
;; expense for most reasonable problems is in computing QT*B,
;; rather than the solution here. For huge problems where that
;; is not true, you are going to run into other problems.
x(nsing-1) = x(nsing-1)/diag(nsing-1) ;; Degenerate case
;; *** Reverse loop ***
for j=nsing-2,0,-1 do begin
sum = total(r(j+1:nsing-1,j)*x(j+1:nsing-1))
x(j) = (x(j)-sum)/diag(j)
endfor
endif
;; Permute the components of x back to original
xp = x & xp(ipvt) = x
return, xp
end