qrfac.pro
8.26 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
;+
; NAME:
; QRFAC
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; craigm@lheamail.gsfc.nasa.gov
;
; PURPOSE:
; Perform QR decomposition of a rectangular matrix
;
; MAJOR TOPICS:
; Linear Systems
;
; CALLING SEQUENCE:
; QRFAC, A, R, [ IPVT, /PIVOT, QMATRIX=qmatrix ]
;
; DESCRIPTION:
;
; Given an MxN matrix A (M>N), the procedure QRFAC computes the QR
; decomposition (factorization) of A. This factorization is useful
; in least squares applications solving the equation, A # x = B.
; Together with the procedure QRSOLV, this equation can be solved in
; a least squares sense.
;
; The QR factorization produces two matrices, Q and R, such that
;
; A = Q ## R
;
; where Q is orthogonal such that TRANSPOSE(Q)##Q equals the identity
; matrix, and R is upper triangular. This procedure does not compute
; Q directly, but returns the more-compact Householder reflectors,
; which QRSOLV applies in constructing the solution.
;
; Pivoting can be performed by setting the PIVOT keyword. Rows with
; the largest L2-norm are pivoted into the top positions of the
; matrix. The permutation matrix is returned in the IPVT parameter.
;
;
; PARAMETERS:
;
; A - upon input, an MxN matrix ( =XARRAY(M,N) ) to be factored,
; where M is greater than N.
;
; Upon output, the upper triangular MxN matrix of Householder
; reflectors used in reconstructing Q. Obviously the original
; matrix A is destroyed upon output.
;
; Note that the dimensions of A in this routine are the
; *TRANSPOSE* of the conventional appearance in the least
; squares matrix equation.
;
; R - upon ouptut, an upper triangular NxN matrix
;
; IPVT - upon output, the permutation indices used in partial
; pivoting. If pivoting is used, this array should be passed
; to the PIVOTS keyword of QRSOLV. If the PIVOT keyword is
; not set, then IPVT returns an unpermuted array of indices.
;
; KEYWORD PARAMETERS:
;
; PIVOT - if set, then partial pivoting is performed, to bring the
; rows with the largest norm to the top of the matrix.
;
; QMATRIX - upon return, the fully explicit "Q" matrix is returned.
; This matrix is optional since the Householder vectors
; needed to solve QR problems, and to compute QMAT, are
; also stored in A. This square matrix can be used to
; perform explicit matrix multiplication (although not
; super efficiently).
;
;
; IMPLEMENTATION NOTE:
;
; Upon return, A is in standard parameter order; A(*,IPVT) is in
; permuted order. RDIAG and QMATRIX are in permuted order upon
; return. QRSOLV accounts for these facts at the solution stage.
;
; EXAMPLE:
;
; Decompose the 3x2 matrix [[9.,2.,6.],[4.,8.,7.]]
; aa = [[9.,2.,6.],[4.,8.,7.]]
; qrfac, aa, r, ipvt
;
; IDL> print, aa
; 1.81818 0.181818 0.545455
; XXXXXXXXX 1.90160 0.432573
; (position marked with Xs is undefined)
;
; Construct the matrix Q by expanding the Householder reflectors
; returned in AA. ( M = 3, N = 2 ) This same procedure is
; accomplished by using the QMATRIX keyword.
;
; ident = fltarr(m,m) ;; Construct an identity matrix
; ident(lindgen(m),lindgen(m)) = 1
;
; q = ident
; for i = 0, n-1 do begin
; v = aa(*,i) & if i GT 0 then v(0:i-1) = 0 ;; extract reflector
; q = q ## (ident - 2*(v # v)/total(v * v)) ;; generate matrix
; endfor
;
; Verify that Q ## R returns to the original AA
;
; print, q(0:1,*) ## r
; 9.00000 4.00000
; 2.00000 8.00000
; 6.00000 7.00000
; (transposed)
;
; See example in QRSOLV to solve a least squares problem.
;
;
; REFERENCES:
;
; More', Jorge J., "The Levenberg-Marquardt Algorithm:
; Implementation and Theory," in *Numerical Analysis*, ed. Watson,
; G. A., Lecture Notes in Mathematics 630, Springer-Verlag, 1977.
;
; MODIFICATION HISTORY:
; Written (taken from MPFIT), CM, Feb 2002
; Added usage message, error checking, CM 15 Mar 2002
; Corrected error in EXAMPLE, CM, 10 May 2002
; Now returns Q matrix explicitly if requested, CM, 14 Jul 2002
; Documented QMATRIX keyword, CM, 22 Jul 2002
; Corrected errors in computations of R and Q matrices when
; pivoting, CM, 21 May 2004
; Small correction to documentation, CM, 05 Oct 2007
; Documentation, CM, 17 Dec 2007
;
; $Id: qrfac.pro,v 1.9 2007/12/17 10:29:29 craigm Exp $
;
;-
; Copyright (C) 2002, 2004, 2007, Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-
pro qrfac, a, r, ipvt, acnorm, pivot=pivot, qmatrix=qmat
if n_params() EQ 0 OR n_elements(a) EQ 0 then begin
USAGE:
message, 'USAGE:', /info
message, 'QRFAC, A, R, [IPVT, /PIVOT]', /info
message, ' A is M x N matrix where (M>N)', /info
return
endif
sz = size(a)
tp = sz(sz(0)+1)
m = sz(1)
n = sz(2)
; if m LT n then begin
; message, 'ERROR: A must be an MxN matrix where M > N', /info
; goto, USAGE
; endif
machvals = machar(double=(tp EQ 5))
MACHEP0 = machvals.eps
;; Compute the initial column norms and initialize arrays
acnorm = make_array(n, value=a(0)*0.)
for j = 0L, n-1 do $
acnorm(j) = sqrt(total(a(*,j)^2))
rdiag = acnorm
wa = rdiag
ipvt = lindgen(n)
;; Reduce a to r with householder transformations
minmn = min([m,n])
for j = 0L, minmn-1 do begin
if NOT keyword_set(pivot) then goto, HOUSE1
;; Bring the column of largest norm into the pivot position
rmax = max(rdiag(j:*))
kmax = where(rdiag(j:*) EQ rmax, ct) + j
if ct LE 0 then goto, HOUSE1
kmax = kmax(0)
;; Exchange rows via the pivot only. Avoid actually exchanging
;; the rows, in case there is lots of memory transfer. The
;; exchange occurs later, within the body of MPFIT, after the
;; extraneous columns of the matrix have been shed.
if kmax NE j then begin
temp = ipvt(j) & ipvt(j) = ipvt(kmax) & ipvt(kmax) = temp
rdiag(kmax) = rdiag(j)
wa(kmax) = wa(j)
endif
HOUSE1:
;; Compute the householder transformation to reduce the jth
;; column of A to a multiple of the jth unit vector
lj = ipvt(j)
ajj = a(j:*,lj)
ajnorm = sqrt(total(ajj^2))
if ajnorm EQ 0 then goto, NEXT_ROW
if a(j,lj) LT 0 then ajnorm = -ajnorm
ajj = ajj / ajnorm
ajj(0) = ajj(0) + 1
;; *** Note optimization a(j:*,j)
a(j,lj) = ajj
;; Apply the transformation to the remaining columns
;; and update the norms
;; NOTE to SELF: tried to optimize this by removing the loop,
;; but it actually got slower. Reverted to "for" loop to keep
;; it simple.
if j+1 LT n then begin
for k=j+1, n-1 do begin
lk = ipvt(k)
ajk = a(j:*,lk)
;; *** Note optimization a(j:*,lk)
;; (corrected 20 Jul 2000)
if a(j,lj) NE 0 then $
a(j,lk) = ajk - ajj * total(ajk*ajj)/a(j,lj)
if keyword_set(pivot) AND rdiag(k) NE 0 then begin
temp = a(j,lk)/rdiag(k)
rdiag(k) = rdiag(k) * sqrt((1.-temp^2) > 0)
temp = rdiag(k)/wa(k)
if 0.05D*temp*temp LE MACHEP0 then begin
rdiag(k) = sqrt(total(a(j+1:*,lk)^2))
wa(k) = rdiag(k)
endif
endif
endfor
endif
NEXT_ROW:
rdiag(j) = -ajnorm
endfor
r = fltarr(minmn,minmn)+a(0)*0
for j = 1, minmn-1 do r(j,0:j-1) = a(0:j-1,ipvt(j))
idiag = lindgen(minmn)
r(idiag, idiag) = rdiag
;; Construct matrix Q explicitly, if requested
forward_function arg_present
if arg_present(qmat) then begin
ident = fltarr(m,m) ;; Construct an identity matrix
ident(lindgen(m),lindgen(m)) = 1
qmat = ident
for i = 0L, n-1 do begin
v = a(*,ipvt(i)) ;; extract reflector
if i GT 0 then v(0:i-1) = 0
qmat = qmat ## (ident - 2*(v # v)/total(v * v)) ;; generate matrix
endfor
endif
return
end