plotimage.pro
30.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
;+
; NAME:
; PLOTIMAGE
;
; AUTHOR:
; Craig B. Markwardt, NASA/GSFC Code 662, Greenbelt, MD 20770
; craigm@lheamail.gsfc.nasa.gov
;
; PURPOSE:
; Displays an image via a "PLOT"-like interface.
;
; CALLING SEQUENCE:
; PLOTIMAGE, img, [xrange=xrange,] [yrange=yrange,] ...
;
; DESCRIPTION:
;
; PLOTIMAGE displays an image (or slice of an image) on the current
; graphics device. The syntax is very similar to the PLOT command,
; in the sense that an XRANGE and YRANGE for the plot can be
; specified.
;
; PLOTIMAGE keeps separate the notions of the image coordinate
; system and the displayed coordinate system, which allows any input
; image to be "cropped," "zoomed," or "flipped."
;
; PLOTIMAGE allows the user to express image extents in physical
; units rather than pixel units.
;
; The image coordinate system specifies the physical coordinates of
; original image data, IMG. The image is considered to be a 2D
; array (IMG = ARRAY(NX,NY)), where the values are attached to the
; midpoint of each geometric pixel. The image has NX columns and NY
; rows. Physical coordinates are attached to each pixel by using
; the IMGXRANGE and IMGYRANGE keywords. The IMGXRANGE keyword is a
; two-element array specifying the "left" and "right" boundaries of
; the image pixels in physical units; the IMGYRANGE keyword
; specifies the "top" and "bottom" boundaries of the image. This is
; illustrated in Figure 1 for a simplified case.
;
; ___
; +-----------+-----------+ ^ IMGYRANGE[1]
; | | | |
; | IMG[0,1] | IMG[1,1] | |
; | + | + | |
; | | | |
; | | | |
; +-----------+-----------+ |
; | | | |
; | IMG[0,0] | IMG[1,0] | |
; | + | + | |
; | | | |
; | | | v
; +-----------+-----------+ ___ IMGYRANGE[0]
; | |
; |<----------------------->|
; IMGXRANGE[0] IMGXRANGE[1]
;
; Figure 1. Simplified example of a 2x2 input image,
; demonstrating that IMG[*,*] values refer to the pixel
; mid-points, and that IMGXRANGE and IMGYRANGE ranges specify the
; physical coordinates of the outer edges of the image extent in
; X and Y, respectively.
;
;
; The displayed plot coordinate system is entirely independent of
; the native image coordinates. Users can set up the plot scale
; using any combination of {X,Y}RANGE, {X,Y}STYLE and/or {X,Y}LOG,
; as they would for any IDL plot, using physical units. The input
; image will then be overlayed on this coordinate system.
;
; If the displayed plot coordinates are narrower than the native
; image coordinates, then the displayed portion of the image will be
; cropped to fit. If the displayed coordinates are wider than the
; native image coordinates, then the image will be displayed with
; blank spaces on either side (see Figure 2). A mirror "flip" is
; also possible in X and/or Y, if XRANGE or YRANGE are specified in
; reverse order.
; ___
; +---------------------------------------+ ^
; | ___ | |
; | ^ +---------------+ | |
; | | | | | |
; | | | | | |
; | IMGYRANGE| | IMG | | | YRANGE
; | | | | | |
; | v | | | |
; | ___ +---------------+ | |
; | |<-- IMGXRANGE -->| | |
; | | v
; +---------------------------------------+ ___
; |<------------- XRANGE -------------->|
;
; Figure 2. Example of an image whose native image coordinates
; are embedded in a wider plot display range.
;
; The standard [XY]STYLE keywords can be used to style either axis.
; However at the very least [XY]STYLE=1 is always implied, i.e. the
; plot limits exactly obey the [XY]RANGE keyword values.
;
; If XLOG or YLOG are set, then the image is assumed to be sampled
; on a logarithmic grid, and logarithmic axes are displayed
; accordingly. PLOTIMAGE does not attempt to resample the image
; from linear scale to logarithmic scale, or reverse.
;
; Psuedocolor images may be of any type, but must rescaled to a byte
; range by using the RANGE keyword. By default the color range used
; in the rescaling operation is 0 to !D.N_COLORS - 3B. The extra
; two color values are reserved for the background and default pen
; colors. This behavior can be adjusted by specifying the BOTTOM
; and/or NCOLORS keywords.
;
; Truecolor images must always be of type BYTE and one of their
; dimensions must have 3 elements, corresponding to the three color
; planes of the image.
;
;
; INPUTS:
;
; IMG - Array to be displayed. For single-plane images (i.e.,
; pseudocolor), the image must be two dimensional and of any
; real numeric type. For images that are not of BYTE type,
; the RANGE keyword must be supplied, and then PLOTIMAGE will
; rescale the image values to a byte range.
;
; An image declared as ARRAY(NX,NY) will be NX pixels in the
; x-direction and NY pixels in the y-direction. The image is
; resampled to fill the desired display region (and optionally
; smoothed).
;
; For three-plane images (i.e., truecolor) the image must be
; of type BYTE. One of the dimensions of the array must have
; three elements. Hence it must be one of BYTARR(NX, NY, 3),
; BYTARR(NX, 3, NY) or BYTARR(3, NX, NY). The 3-element
; dimension is recognized automatically.
;
; OPTIONAL INPUTS:
; NONE
;
; INPUT KEYWORD PARAMETERS:
;
; IMGXRANGE, IMGYRANGE - Each is a two component vector that
; describes the X and Y position of the outer
; edges of the first and last pixels.
; Default: IMGXRANGE = [0,NX]
; IMGYRANGE = [0,NY]
;
; XRANGE, YRANGE - Each is a two component vector that specifies the
; X and Y plot ranges, respectively. These values
; are not required to coincide with IMG[XY]RANGE.
; Default: XRANGE=IMGXRANGE
; YRANGE=IMGYRANGE
;
; POSITION - Position of the inner plot window in the standard
; graphics keyword format. Overrides PANEL and SUBPANEL.
;
; INTERP - if set, interpolate (smooth) the image before displaying.
; This keyword applies to the screen displays. For printed
; images that are coarser than MIN_DPI, the image is
; implicitly interpolated regardless of INTERP.
;
; PRESERVE_ASPECT - if set, preserve the aspect ratio of the
; original image (in pixels). The result will be
; the largest image that fits in the display
; region while maintaining approximately square
; pixels. However, PIXEL_ASPECT_RATIO overrides
; PRESERVE_ASPECT. The POSITION keyword will be
; reset upon output to the ultimate image
; position.
; DEFAULT: not set (image will fill POSITION rectangle)
;
; PIXEL_ASPECT_RATIO - The ratio of width to height for each pixel.
; If specified, then the image will be scaled
; so that each pixel has the specified aspect
; ratio. If not specified, then the image will
; be scaled independently in X and Y in order
; to fill the POSITION rectangle. NOTE: If you
; want to change the overall image aspect
; ratio, then use the POSITION keyword.
; DEFAULT: undefined (image will fill POSITION rectangle)
;
; MIN_DPI - if printing, the minimum dot-per-inch pixel resolution
; for the resulting image. Output images that would be
; coarser than this value are resampled to have a
; resolution of at least MIN_DPI, and smoothed. Some
; common resolutions are: screen, 90 dpi; dot matrix, 72
; dpi; laser printer 300-600 dpi. Note that large values
; of MIN_DPI will produce very large output files.
; Default: 0 (i.e., the output image will not be smoothed)
;
; RANGE - a two element vector. If the image is single plane (i.e.,
; pseudocolor) the input image can be of any real numeric
; type, and then must be rescaled into byte range with this
; keyword. In contrast, truecolor images must always be of
; type BYTE. Values are scaled into byte range with the
; following statement:
; RESULT = BYTSCL(INPUT, MIN=RANGE(0), MAX=RANGE(1), $
; TOP=NCOLORS-1) + BOTTOM
; so that pixels with an intensity RANGE(0) are set to
; BOTTOM; those with RANGE(1) are set to the maximum color.
; Default: no range scaling occurs (and the image must hence
; be of type BYTE -- otherwise an error occurs)
;
; NCOLORS - number of color table values be used in the byte
; rescaling operation.
; Default: !D.N_COLORS - BOTTOM - 1 (for default pen color)
;
; BOTTOM - bottom-most value of the color table to be used in the
; byte rescaling operation.
; Default: 1 (for default background color)
;
; NOERASE - If set, the display is not erased before graphics
; operations.
;
; NODATA - If set, the image is not actually displayed, but
; coordinate axes may be drawn.
;
; NOAXES - An attempt is made to render the image without coordinate
; axes. However, it's usually more straightforward to set
; XSTYLE=4 or YSTYLE=4, which is the standard IDL way to
; disable coordinate axes.
;
; ORDER - same interpretation as the !ORDER system variable;
; if ORDER=0, then the first pixel is drawn in the lower
; left corner; if ORDER=1, then the first pixel is drawn in
; the upper left corner.
; Default: 0
;
;
; PANEL, SUBPANEL - An alternate way to more precisely specify the
; plot and annotation positions. See SUBCELL.
;
; PLOTIMAGE will pass other keywords directly to the PLOT command
; used for generating the plot axes. XSTYLE=1 and YSTYLE=1 are
; enforced.
;
; OUTPUTS:
; NONE
;
; PROCEDURE:
;
; EXAMPLE:
;
; This example constructs an image whose values are found by
; z(x,y) = cos(x) * sin(y)
; and x and y are in the range [-2,2] and [4,8], respectively.
; The image is then plotted, with appropriate axes.
;
; x = findgen(20)/5. - 2. + .1 ; 0.1 = half-pixel
; y = findgen(20)/5. + 4. + .1
; zz = cos(x) # sin(y)
; imgxrange = [-2.,2.] ; extend to pixel edges
; imgyrange = [4.,8.]
; plotimage, bytscl(zz), imgxrange=imgxrange, imgyrange=imgyrange
;
; This second example plots the same image, but with a plot range
; much larger than the image's.
;
; xr=[-10.,10]
; yr=[-10.,10]
; plotimage, bytscl(zz), imgxrange=imgxrange, imgyrange=imgyrange, $
; xrange=xr, yrange=yr
;
; SEE ALSO:
;
; OPLOTIMAGE, BYTSCL
;
; EXTERNAL SUBROUTINES:
;
; SUBCELL, DEFSUBCELL
;
; MODIFICATION HISTORY:
; Written, CM, 1997
; Correct various one-off problems, 02 Feb 1999, CM
; Made self-contained with some pre-processing, 17 Oct 1999, CM
; Corrected bug in newly introduced CONGRID functions, 18 Oct 1999, CM
; Correct behavior with no POSITION keyword, 17 Nov 1999, CM
; Simplified axis plotting, 17 Nov 1999, CM
; Use _EXTRA keyword in first PLOT, but with blank TITLEs, 11 Jan
; 2000, CM
; Correct implementation of X/YSTYLE in first PLOT, 11 Feb 2000, CM
; Correct CONGRID implementation (small effect when enlarging most
; images), 14 Feb 2000, CM
; Major changes: 19 Apr 2000
; - now handle decomposed color, automatic color mapping via
; RANGE, and 24-bit multiplane images
; - new PRESERVE_ASPECT keyword to keep square pixels
; - removed legacy TVIMAGE code
; - smoothing is more configurable, esp. for printers, but is not
; done by default; more printers are supported
; Corrected INTERPOLATE behavior (thanks to Liam Gumley
; <Liam.Gumley@ssec.wisc.edu>), other minor tweaks, CM 20 Apr 2000
; Added ability to use PRESERVE_ASPECT with POSITION, PANEL or
; SUBPANEL keywords CM 20 Oct 2000
; Oops, a typo is now fixed, CM 23 Oct 2000
; Add fix for MacIntoshes and DECOMPOSED color, Tupper, 02 Aug 2001
; Better behavior with fractional pixels (ie, when the image pixels
; are very large compared to the screen), 23 Aug 2001
; Add support for Z buffer, CM, 20 Oct 2002
; Memory conservation: use REVERSE() to reverse IMG; rewrote
; PLOTIMAGE_RESAMP to rescale entire image instead of each color plane
; separately. Jeff Guerber, 30 July 2003
; Add PIXEL_ASPECT_RATIO keyword, 22-25 Nov 2005
; Check for the case of an 1xNXxNY 3D image and treat it as a 2D
; image. The "1" dimension can be anywhere, CM, 03 Sep 2006
; Add the ORDER keyword parameter, CM, 20 Mar 2007
; Enable XLOG and YLOG keywords, for logarithmic axes;
; doesn't actually resample the image from linear<->log, CM
; 21 Jan 2009
; Documentation, CM, 21 Jan 2009
; Allow reverse color scale, CM, 13 Nov 2010
; Add checking for decomposed state of Z buffer, thanks David
; Palmer, 2013-08-12
;
; $Id: plotimage.pro,v 1.16 2013/09/30 02:22:49 cmarkwar Exp $
;
;-
; Copyright (C) 1997-2001,2003,2005,2006,2007,2009,2010,2013 Craig Markwardt
; This software is provided as is without any warranty whatsoever.
; Permission to use, copy, modify, and distribute modified or
; unmodified copies is granted, provided this copyright and disclaimer
; are included unchanged.
;-
;%insert HERE
;%include subcell.pro
;%include defsubcell.pro
; Utility routine to resample an image
;
; IMAGE - image data ARRAY(NX,NY,BDEPTH)
; NX,NY - original X,Y image size
; BDEPTH- original image depth
; NEWX, NEWY- desired X,Y image size
; INTERP - if set, then use bilinear interpolation, otherwise nearest neighbor
function plotimage_resamp, image, nx, ny, bdepth, newx, newy, interp=interp
;; Sometimes the final dimension is lost. Put it back
image = reform(image, nx, ny, bdepth, /overwrite)
;; Correct interpolation
srx = float(nx)/newx * findgen(newx) - 0.5 + 0.5*(float(nx)/newx)
sry = float(ny)/newy * findgen(newy) - 0.5 + 0.5*(float(ny)/newy)
srz = indgen(bdepth)
if keyword_set(interp) then $
return, interpolate(image, srx, sry, srz, /grid)
;; Simple nearest neighbor interpolation
return, interpolate(image, round(srx), round(sry), srz, /grid)
end
pro plotimage_pos, xrange0, imgxrange0, imgxsize, xreverse, srcxpix, imgxpanel, $
logscale=logscale, $
quiet=quiet, status=status, pixtolerance=pixtolerance
if keyword_set(logscale) then begin
if min(xrange0) LE 0 OR min(imgxrange0) LE 0 then $
message, ('ERROR: if XLOG or YLOG is set, then the image boundary cannot '+$
'cross or touch zero. Did you forget to set IMGXRANGE or IMGYRANGE?')
xrange = alog10(xrange0)
imgxrange = alog10(imgxrange0)
endif else begin
xrange = xrange0
imgxrange = imgxrange0
endelse
if n_elements(pixtolerance) EQ 0 then pixtolerance = 1.e-2
status = 0
;; Decide if image must be reversed
xreverse = 0
if double(xrange(1)-xrange(0))*(imgxrange(1)-imgxrange(0)) LT 0 then begin
xreverse = 1
imgxrange = [imgxrange(1), imgxrange(0)]
endif
srcxpix = [ 0L, imgxsize-1 ]
;; Size of one x pix
dx = double(imgxrange(1) - imgxrange(0)) / imgxsize
if min(xrange) GE max(imgxrange) OR max(xrange) LE min(imgxrange) then begin
message, 'WARNING: No image data in specified plot RANGE.', /info, $
noprint=keyword_set(quiet)
return
endif
;; Case where xrange cuts off image at left
if (xrange(0) - imgxrange(0))/dx GT 0 then begin
offset = double(xrange(0)-imgxrange(0))/dx
if abs(offset-round(offset)) LT pixtolerance then $
offset = round(offset)
srcxpix(0) = floor(offset)
froffset = offset - floor(offset)
if abs(froffset) GT pixtolerance then begin
xrange = double(xrange)
xrange(0) = imgxrange(0) +dx*srcxpix(0)
endif
endif
;; Case where xrange cuts off image at right
if (xrange(1) - imgxrange(1))/dx LT 0 then begin
offset = double(xrange(1)-imgxrange(0))/dx
if abs(offset-round(offset)) LT pixtolerance then $
offset = round(offset)
srcxpix(1) = ceil(offset) - 1
froffset = offset - ceil(offset)
if abs(froffset) GT pixtolerance then begin
xrange = double(xrange)
srcxpix(1) = srcxpix(1) < (imgxsize-1)
xrange(1) = imgxrange(0) + dx*(srcxpix(1)+1)
endif
endif
imgxpanel = [0., 1.]
if (xrange(0) - imgxrange(0))/dx LT 0 then $
imgxpanel(0) = (imgxrange(0) - xrange(0))/(xrange(1)-xrange(0))
if (xrange(1) - imgxrange(1))/dx GT 0 then $
imgxpanel(1) = (imgxrange(1) - xrange(0))/(xrange(1)-xrange(0))
status = 1
return
end
;; Main program
pro plotimage, img0, xrange=xrange0, yrange=yrange0, $
imgxrange=imgxrange0, imgyrange=imgyrange0, $
xlog=xlog, ylog=ylog, $
position=position, panel=panel, subpanel=subpanel, $
xstyle=xstyle, ystyle=ystyle, title=title, $
interp=interp0, quiet=quiet, dither=dither, $
preserve_aspect=paspect, pixel_aspect_ratio=asprat, $
min_dpi=min_dpi, order=order, $
ncolors=ncolors0, bottom=bottom0, range=range, $
noerase=noerase0, nodata=nodata, noaxes=noaxes, $
pixtolerance=pixtolerance, _EXTRA=extra
;; Return to user when an error is encountered
on_error, 2
;; Usage message
if n_params() EQ 0 then begin
message, 'PLOTIMAGE, image, xrange=, yrange=, imgxrange=, imgyrange=,..', $
/info
return
endif
;; Must have a byte-scaled image already
imgsize = size(img0)
;; Make sure windowing exists (borrowed from IMDISP)
if ((!d.flags and 256) ne 0) and (!d.window lt 0) then begin
window, /free, /pixmap
wdelete, !d.window
endif
;; Parameter checking
if n_elements(ystyle) EQ 0 then ystyle = 0L
if n_elements(xstyle) EQ 0 then xstyle = 0L
if keyword_set(nodata) then mynodata = 1 else mynodata = 0
if n_elements(pixtolerance) EQ 0 then pixtolerance = 1.e-2
if n_elements(title) EQ 0 then title = ''
if n_elements(min_dpi) EQ 0 then min_dpi = 0
interp = keyword_set(interp0)
noerase = keyword_set(noerase0)
imgpanel = [0., 0., 1., 1.]
;; Default handling of color table stuff
if n_elements(bottom0) EQ 0 then bottom0 = 1B
bottom = byte(bottom0(0)) < 255B
dncolors = min([!d.n_colors, !d.table_size, 256])
if n_elements(ncolors0) EQ 0 then ncolors0 = dncolors - 1 - bottom
;; Make sure color table values are in bounds
ncolors = floor(ncolors0(0)) < 256
if bottom + ncolors GT 256 then ncolors = 256 - bottom
;; Image size and dimensions
nimgdims = imgsize(0)
imgtype = imgsize(nimgdims+1)
if nimgdims LT 2 OR nimgdims GT 3 then begin
message, 'ERROR: image must have 2 or 3 dimensions'
endif
if nimgdims EQ 2 then begin
;; Two dimensional image is pseudo color
img = img0
ONE_CHANNEL_IMAGE:
imgxsize = imgsize(1)
imgysize = imgsize(2)
bdepth = 1
if imgtype NE 1 then begin
if n_elements(range) LT 2 then $
message, 'ERROR: non-byte image must be scaled with RANGE keyword'
if range(0) LE range(1) then begin
img = bytscl(img, min=range(0), max=range(1), top=ncolors-1B) $
+ bottom
endif else begin
;; Reverse color scheme
img = bytscl(img, min=range(1), max=range(0), top=ncolors-1B)
img = ncolors-1B-img + bottom
endelse
endif
img = reform(img, imgxsize, imgysize, bdepth, /overwrite)
endif else begin
wh = where(imgsize(1:3) EQ 1, ct)
if ct GT 0 then begin
imgxsize = 1
imgysize = 1
j = 0
for i = 1, 3 do if imgsize(i) NE 1 then begin
if j EQ 0 then imgxsize = imgsize(i) else imgysize = imgsize(i)
j = j + 1
endif
img = reform(img0, imgxsize, imgysize)
imgsize = size(img)
goto, ONE_CHANNEL_IMAGE
endif else begin
;; Three dimensional image has three planes
wh = where(imgsize(1:3) EQ 3, ct)
if imgtype NE 1 then $
message, 'ERROR: true color image must of type byte'
if ct EQ 0 then $
message, ('ERROR: True color image must have 3 elements '+$
'in one of its dimensions')
truedim = wh(0)
;; Shuffle the data so planes are interleaved ...
case truedim of
0: img = transpose(img0, [1,2,0]) ;; ... from pixels interleaved
1: img = transpose(img0, [0,2,1]) ;; ... from rows interleaved
2: img = img0 ;; ... by straight copying
end
imgsize = size(img)
imgxsize = imgsize(1)
imgysize = imgsize(2)
bdepth = imgsize(3)
endelse
endelse
;; By default, we have no info about the image, and display the
;; whole thing
if n_elements(imgxrange0) LT 2 then imgxrange = [ 0., imgxsize ] $
else imgxrange = 0. + imgxrange0(0:1)
if n_elements(xrange0) LT 2 then xrange = imgxrange $
else xrange = 0. + xrange0(0:1)
status = 0
plotimage_pos, xrange, imgxrange, imgxsize, xreverse, srcxpix, imgxpanel, $
quiet=keyword_set(quiet), status=status, pixtolerance=pixtolerance, $
logscale=xlog
if status EQ 0 then mynodata = 1 $
else imgpanel([0,2]) = imgxpanel
;; By default, we have no info about the image, and display the
;; whole thing
if n_elements(imgyrange0) LT 2 then imgyrange = [ 0., imgysize ] $
else imgyrange = 0. + imgyrange0(0:1)
if n_elements(yrange0) LT 2 then yrange = imgyrange $
else yrange = 0. + yrange0(0:1)
if keyword_set(order) then yrange = [yrange(1), yrange(0)]
status = 0
plotimage_pos, yrange, imgyrange, imgysize, yreverse, srcypix, imgypanel, $
quiet=keyword_set(quiet), status=status, pixtolerance=pixtolerance, $
logscale=ylog
if status EQ 0 then mynodata = 1 $
else imgpanel([1,3]) = imgypanel
;; Dimensions of output image in pixels
nx = srcxpix(1)-srcxpix(0)+1
ny = srcypix(1)-srcypix(0)+1
;; Create a coordinate system by plotting with no data or axes
if n_elements(position) EQ 0 AND n_elements(panel) EQ 0 AND $
n_elements(subpanel) EQ 0 then begin
;; If PANEL/SUBPANEL is not given, then plot once to set up
;; axes, despite NOAXES
plot, xrange, yrange, noerase=noerase, /nodata, $
xstyle=xstyle OR 5, ystyle=xstyle OR 5, xlog=xlog, ylog=ylog, $
xrange=xrange, yrange=yrange, xtitle='', ytitle='', title='', $
_EXTRA=extra
;; Retrieve axis settings
xwindow = !x.window
ywindow = !y.window
subpanel1 = [xwindow(0), ywindow(0), xwindow(1), ywindow(1)]
imgposition = subcell(imgpanel, subpanel1)
position = subpanel1
endif else begin
;; Construct the plot size from panel info. Default is full-screen
if NOT keyword_set(noerase) then erase
if n_elements(position) GE 4 then begin
imgposition = subcell(imgpanel, position)
endif else begin
if n_elements(panel) LT 4 then panel = [0.0,0.0,1.0,1.0]
if n_elements(subpanel) LT 4 then subpanel = [-1., -1, -1, -1]
subpanel = defsubcell(subpanel)
imgposition = subcell(subcell(imgpanel, subpanel), panel)
position = subcell(subpanel, panel)
endelse
xwindow = position([0,2])
ywindow = position([1,3])
endelse
;; If the aspect is to be preserved then we need to recompute the
;; position after considering the image size. Since we have already
;; computed the outer envelope of the image from either the POSITION
;; or PANEL, or from the plot window itself, we can now go to the
;; logic which estimates the aspect-corrected size.
if (keyword_set(paspect) OR n_elements(asprat) GT 0) AND $
nx GT 0 AND ny GT 0 then begin
if n_elements(asprat) EQ 0 then asprat1 = 1.0 $
else asprat1 = asprat(0) + 0.
;; If we are preserving the aspect, then re-plot after scaling
;; the POSITION
imgaspect = float(ny)/float(nx)/asprat1
dispaspect = (ywindow(1)-ywindow(0))*!d.y_vsize $
/ ((xwindow(1)-xwindow(0))*!d.x_vsize)
;; Compute the new image dimensions
if imgaspect GT dispaspect then begin
x0 = total(xwindow)/2
dx = (ywindow(1)-ywindow(0))*!d.y_vsize/(imgaspect*!d.x_vsize)
xwindow = x0 + dx*[-0.5,0.5]
endif else begin
y0 = total(ywindow)/2
dy = (xwindow(1)-xwindow(0))*!d.x_vsize*imgaspect/!d.y_vsize
ywindow = y0 + dy*[-0.5,0.5]
endelse
subpanel1 = [xwindow(0), ywindow(0), xwindow(1), ywindow(1)]
imgposition = subcell(imgpanel, subpanel1)
position = subpanel1
;; Replot to regain coordinate system
plot, xrange, yrange, /noerase, /nodata, $
xstyle=xstyle OR 5, ystyle=xstyle OR 5, xlog=xlog, ylog=ylog, $
xrange=xrange, yrange=yrange, xtitle='', ytitle='', title='', $
position=position, _EXTRA=extra
endif
;; Draw the image data
if NOT keyword_set(mynodata) then begin
;; Reverse X- or Y- directions if necessary
if xreverse then $
srcxpix = imgxsize - 1 - [srcxpix(1), srcxpix(0)]
if yreverse then $
srcypix = imgysize - 1 - [srcypix(1), srcypix(0)]
;; Extract relevant image elements
img = (temporary(img))(srcxpix(0):srcxpix(1), srcypix(0):srcypix(1),*)
img = reform(img, nx, ny, bdepth, /overwrite)
;; Complete the extraction, if reversed
if xreverse then begin
img = reverse(img, 1, /overwrite)
img = reform(img, nx, ny, bdepth, /overwrite)
endif
if yreverse then begin
img = reverse(img, 2, /overwrite)
img = reform(img, nx, ny, bdepth, /overwrite)
endif
;; Compute the image position on screen in pixels
x0 = round(imgposition(0) * !d.x_vsize)
y0 = round(imgposition(1) * !d.y_vsize)
dx = round((imgposition(2) - imgposition(0)) * !d.x_vsize) > 1
dy = round((imgposition(3) - imgposition(1)) * !d.y_vsize) > 1
;; Decide which output type
windowing = (!d.name EQ 'WIN') OR (!d.name EQ 'MAC') OR (!d.name EQ 'X')
printing = (!d.name EQ 'PRINTER') OR (!d.flags AND 1) NE 0
;; Decide whether to resample the image
rescaling = (windowing OR (!d.name EQ 'Z')) $
AND ((dx NE nx) OR (dy NE ny))
;; If printing, and the printed resolution of the image will be
;; too coarse, then we should resample and interpolate
dpi = min([nx*!d.x_px_cm/dx, ny*!d.y_px_cm/dy]*2.54) ; d.p.i. of image
dxsize = dx & dysize = dy
if printing AND (dpi LT min_dpi(0)) then begin
dx = round(min_dpi(0)*dx/(2.54*!d.x_px_cm)) > nx
dy = round(min_dpi(0)*dy/(2.54*!d.y_px_cm)) > ny
interp = 1
rescaling = 1
endif
;; Rescale the image if needed
if rescaling then begin
img = plotimage_resamp(temporary(img), nx, ny, bdepth, $
dx, dy, interp=interp)
img = reform(img, dx, dy, bdepth, /overwrite)
endif
;; Generic printer device
if !d.name EQ 'PRINTER' then begin
if bdepth EQ 3 then begin
device, /true_color
tv, img, x0, y0, xsize=dxsize, ysize=dysize, true=3
endif else begin
device, /index_color
tv, img, x0, y0, xsize=dxsize, ysize=dysize
endelse
goto, DONE_IMG
endif
;; Devices with scalable pixels
if (!d.flags AND 1) NE 0 then begin
if bdepth EQ 3 then begin
tvlct, r, g, b, /get
loadct, 0, /silent
tv, img, x0, y0, xsize=dxsize, ysize=dysize, true=3
tvlct, r, g, b
endif else begin
tv, img, x0, y0, xsize=dxsize, ysize=dysize
endelse
goto, DONE_IMG
endif
;; Get visual depth (in bytes) and decomposed state
decomposed0 = 0
vdepth = 1
version = float(!version.release)
if windowing then begin
;; Visual depth
if version GE 5.1 then begin
device, get_visual_depth=vdepth
vdepth = vdepth / 8
endif else begin
if !d.n_colors GT 256 then vdepth = 3
endelse
;; Decomposed state
if vdepth GT 1 then begin
if version GE 5.2 then device, get_decomposed=decomposed0
if bdepth EQ 3 then device, decomposed=1 $
else device, decomposed=0
endif
endif else if !d.name EQ 'Z' then begin
if !d.n_colors GT 256 then vdepth = 3
endif
;; If visual is 8-bit but image is 24-bit, then quantize
if vdepth LE 1 AND bdepth EQ 3 then begin
img = color_quan(temporary(img), 3, r, g, b, colors=ncolors-1, $
dither=keyword_set(dither)) + bottom
tvlct, r, g, b, bottom
bdepth = 1
endif
;; Put the image
if bdepth EQ 3 then tv, img, x0, y0, true=3 $
else tv, img, x0, y0
;; Restore the decomposed state
if windowing then begin
if vdepth GT 1 then device, decomposed=decomposed0
;; Tupper supplies following work-around for MacIntoshes
if (!d.name EQ 'MAC') then tv, [0], -1, -1
endif
endif
;; Plot the axes if requested
DONE_IMG:
if NOT keyword_set(noaxes) then begin
if n_elements(xrange) EQ 0 then begin
if n_elements(imgxrange) GT 1 then xrange=imgxrange $
else xrange = [0L, imgxsize]
endif
if n_elements(yrange) EQ 0 then begin
if n_elements(imgyrange) GT 1 then yrange=imgyrange $
else yrange = [0L, imgysize]
endif
plot, xrange, yrange, /noerase, /nodata, /normal, $
xrange=xrange, yrange=yrange, xlog=xlog, ylog=ylog, $
xstyle=xstyle OR 1, ystyle=ystyle OR 1, title=title, $
position=position, _EXTRA=extra
endif
return
end